
BICFILE GOP'

A - -/ ECTED

- March 13-16, 1989
Sponsored by
ANCOST, INC.

.1.
With Participation by
United States Army
United States Navy

United States Air Force
06 -United Stat~s Marini-Corps

dl 0FAA Technical Center

iCo-Hosted by

& - _ 2'_Penn State/Harrisburg -

\~ ~I~ ~ -Jersey City State College
L - - Cheyney University

________j-Stockton State College

PROCEEDINGS OF SEVENTH ANNUAL
NATIONAL CONFERENCE ON

ADA TECHNOLOGY

Sponsored By: y) Pp

ANCOST, INC. .-

With Participation By:
United States Army ,
United States Navy

United States Air Force
United States Marine Corps

FAA Technical Center

Co-Hosted By:
Monmouth College Penn State/Harrisburg
Jersey City State College Cheyney University Stockton State College

Accesion For
Bally's Park Place Hotel, Atlantic City, NJ NTIS CRA& i

DTIC TAB 0
March- 13-16, 1989 Unano-inc.d 0

Juidic., g'lI________

By _

Jlt'Ihbuti~ IIt

AI odes

Approved for Public Release: Distribution Unlimited

90 01 23 178

7th ANNUAL NATIONAL CONFERENCE ON ADA TECHNOLOGY

CONFERENCE COMMITTEE 1988-1989
MR ELMER F GODWJIN. Director OR ARTHUR JONES MS CHARLENE ROBERTS-HAYDEN ADVISORY MEMBERS
GEF Associates Morehuse College GTE Government Syt,,ms MR BRIAN BAK'ER
Sliewstuty. NJ 07702 Atlanta. GA 30314 N@@dhulm Heights. MA 02104 Nvavy Dparment
MR JIM BARBOUR OR MURRAY KIRCH MR WALTER ROLLING Washington. DC 203%000
Digital equipment Corporation Stock~ton Slate Coliege Ada Techntology Group. Iirc MAJOR GEOPGE BEOARq
Marrimaic, NH 030S4 Pomona. NJ 08240 Washingion. DO Malin*ecorps Tactical systems
MR MIGUEL A CARRIO. JR OR GENEVIEVE M KNIGHT MS SUSAN ROSENBERG Support Activty
Teledyne Brown Engineering Coppin Slate College Cadre Technologies. Inc Camp Pendleton. CA 92055

-Fairfax, VA 22030 Ballimore. MD 21216 Providence. RI 02903 MR LOUIS J BONA
OR PHILIP CAVERLY OR RICHARD KUNTZ MS RUTH RUDOLPH FAA Technical Conmer
Jersey C41y state College Monmouth College Computer Sciences Corporation Atlantic City Airport. NJ 08405
Jersey City, NJ 07305 W Long Btanch NJ 077C-4 Moorestown. NJ 08057 CPT SHEILA BRYANT
MR MICHAEL DANKO OR RONALD LEACH MR MICHAEL SAPENTER Ma:tne Corps Tactical Symtema
General Electric Co Howard Universily Telos Foderal Systems Support Activity
Moorestown. NJ 08057 Washington. DO M059 Lawton. OK 73501 Camp Peneatelon. CA 92055
DR MARY R ELLIS MS SUSAN MARKEL MR JAMES SCHELL MR DANIEL 5. HOCK~ING
Hampton University TRW Consultant AIRMICS;
Hampton. VA 23668 Faiufax. VA 2231 OLean. NJ 077 12 Atnta. GA 30332.060
MR. DONALD C. FUHR MS. CATHERINE PEAVY MR TERENCE P, STARR MR ALBERT RODRIG~UEZ
Tuskegee University Martin Marietta Information General Electric Company HO. CECOM
Tuskegee, AL 36088 and Communication Systems Phiiladelphia. PA 19101 Fl. Monmouth~. NJ 07703-500
MS. JUDITH M GILES Denver. CO 80201-11260 MR CHARLES TANTILLO MAJOR DOUG SAMUELS
Intrmetrics. Inc, DR. M SUSAN RICHMAN Stockton Slate College HO AFSCJPLRT
Cambridge,. MA 02138 The Pennsylvania Slate Univ. Pomona. NJ 08240 Andre" AF8. DC 20334.5S00
MS DEEMU. GRAUMANN at Harrisburg MR. JAMES E. WALKER MS. KAY TREZZA
General Dynamics. OSO Middletown. PA 17057 Network Solutions HO CECOM
San Diego, CA 92138 MR. JOHN W. ROBERTS Venn. VA 22180 Ft, Monmouthi. NJ 07703-500
DR. GEORGE C. HARRISON EDO Corp. MR. JESSE WILLIAMS
Norfolk Slte University Chesapeake, VA 23320 Cteyney State University
Norfolk. VA 23504 Cheyney, PA 19319

PANELS AND TECHNICAL SESSIONS

Tuesday, March 14, 1988
9:00 .,... dVelcoming Remarks

10:00 AM P~r.e. i Ada Policy. Practices and Initiatives
2.00 PM Session I Applications
2.00 PM Secsion 2 Project Management
2*00 PM Session 3 Distributed Processing
,e,00 PM Session 4 Performance Measurements

Wednesday, March 15, 1989 *
11:30 AM Pr.nel 11 STARS Technology Update

10:45 AM Session 5 (Students' Presentations) Ada & Education
10:45 AM Session 6 (Students' Presentations) Lessions Learned and Exiperimentation -

- .0:45.AM Session 7 (Students' Presentations) Ada Developmrent Issues
2:00 !1M Session 8 Applications
2:00 PM Session 9 Project Management

- 2.00. PM Session 10 Technoiogy Research
2:00 PM Session I11 Education[Training

-.-. 3:45 PM Session 12 Ufa Cycle Environments
3:451 PM Session 13 IUfa Cycle Managemont
3:45 PM Session 14 *Reuse

- ~,.Tht,,sday, March 16, 1989
8:30 AM Panel III DoD Software Engineering Contractor's Capabilities Assessment
8:30 AM tSession 15 Reuse
8:30 AM Session 16 *Ufe Cycle Productivity
2:00 PM Session 17 Testing and Evaluation

'- 2:00 PM Session 18 Designing for Ada
2:00 PM Session 19 Ufa Cycle Productivity
3:45 PM Panel IV Looking to the Future with Ada

PAPERS
The papers in this volume were printed dir ectly from unedited reproducible copies prepared by the authors. Responsibility for contents rests
upon the authors and not the sympo3ium committee or its members. Alter the symposium, all th3 publication rights of each paper are reserved
by their authors, and requests for republication of a paper should be addressed to the appropriate author. Abstracting is permitted, and It
would be appreciated it the symposium is credited when abstracts or papers are republished. Requests for individual copies of papers should
be addressed to the authors.

PROCEEDINGS

SEVENTH NATIONAL CONFERENCE ON ADA TECHNOLOGY

Bound-Available at Fort Monmouth
2nd Annual National Conference on Ada Technology Proceedings-1984-SO.00
3rd Annual National Conference on Ada Technology Proceedings-1985-S 10.00
4th Annual National Conference on Ada Technology Proceedings-1986-S15.00
5th Annual National Conference on Ada Technology Proceedirgs-i 987-(Not Available)
6th Annual National Conference on Ada Technology Proceedings-1988-20,0
71h Annual National Conference on Ada Technology Proccedings-1989-25.00

Extra copies: 1-3 $25.00. next 4-10 $20: next 11 & above S!5.00 each

Make check or bank draft payable in U.S. dollars to the Annual National Conference on Ada Technology and for-
ward request to:

Annual National Conference on Ada Technology
U.S. Army Communlcations-Electronics Command
ATrTN AMSEL.RD-SE-CRM (Ms. Kay Trozza)
Fort Monmouth. Now Jersey 07703-5000

Telephone inquiries may be directed to Ms. Kay Trezza at (201) 532-1898

Photocopies-Available at Department of Commerce. Information or. prices andi shipping charges should be re-
quested from:

U.S. Department of Commerce
National Technical Information Service
Springfield, Virginia 22151
USA
Include title, year, and AD Number

2nd Annual National Conference on Ada Technology-1 984-AD Al 42403
3rd Annual National Conference on Ada Technology-1985-AD A164338
4th Annual National Conference on Ada Technology-1 986-AD Al 67802
5th Annual National Conference on Ada Technology-1 987-AD Al 78690
6th Annual National Conference on Ada Technology-i 988-AD Al 90936

Iii

HIGHLIGHTS
Sixth Annual National Conference on Ada Technology

March 14-18, 1988
Crystal Gateway Marriott Hotel, Arlington, VA

Greetings

Mt James E Schell- irector. Dr. Jesse C Leviis-VIPtesident for Or Joseph E. Gimour-Executive
Emeritus. Center for Software Academic Affairs. Norfolk State Assistant to the Chancellor. University
Engineering, U S Army CECO.M. Fort University, Norfolk. VA of Maryland. College Park. MD
M~onmouth, NJ

Guest Speakers

MG Billy M ThomnasCommanaig LY G Emmett G Paige. Jr... Dr. Alan B Salisbury. VP Canto!
General. U.S Army CECOM. Fort Mon. tRot'ed)-ornmander. U S Army In- Corp,. Fairfax. VA
mouth. NJ formation Systems Command. Fort

Huachuca. AZ2

b...i

Mr. Norman Augustine-CEO. Mar- BG F. Rusbelf Baldwin-Con- COL Archie Taylor-PM. Common
tin Marietta Corp. Bethesda. MD manding General. Seventh Signal HardwarelSoltware. Fort Monmouth.

Brigade. Fort Richie. MD NJ

IV

Opening Session Panel Members

MG Eric Nelson-Deputy Corn. MG Alonzo E. Short. Jt.-Deputy RADM Harty S Ounst-0lrocitr. In.
manding General. ESD. Hanscom Air Commanding Ganeftat. US Army Infor formation Systems Division. Depart-
Force Base. MA motion System Command. Fort mont of the Navy. Washington. DC

Huachuca. AZ

Mrt. Loron Diedichsen-Principal Ms. Virginia Castor-Director. Ada Dr. Lofty Druffot-Diroctor. Soft.
Technical Adviser. NATO Communica- Joint Program Office. Arlington. VA ware Engineering institute. Carnegie
tions and Information Systems Agency Mellon Institute. Pittsburgh. PA
(NACISA). Brussels

Special Recognition Awards

Al[-j
Mr. James E. Schell-Director. LTG Emmett Paige Jr -(Retired). Mr. J3Mos E. Scholl-Accepting a

Emeritus. Center for So';.ware Commander. U.S. Army lnfo'mation Certificate of Recognition and Scholar-
Engineering. U.S. Army CECOM. Ac- Systems Command. Fort Huachuc~l. ship Award in His Honor. from Dr.
cepting Ret'.rement Plaque for AN. AZ, accepting from Mr. Scholl a Sword Weldon jaci~soai. VP Academic Al faars.
COST Commaittee. In Recognition of his Dedication to tne Moorehouse College, Atlanta. GA

Symposium and Pending Retirement
from the Army,

V

IL4

c A

Ada a UJN tIR

,Fo

AlA

fli

VYI

... ..

_A0

Q1 I S Afa-

ILI

All.

1 A A

I

- ~I ~

-~ 1*~*

P'.

-1

9,

- (730

I,

01 III!

Ada II (Ii\0I 0~.\
(0\I I RI \~I

1x'~rr

CONFERENCE

*

4

'p

- 17* --

J'~f3~- ,,
Wi

- AL~

JI

A~t ILA
i)

484

0%

ji TABLE OF CONTENTS

TUESDAY, MARCH 14,1989-Si:00 AM-12:00 N lmpteirncnilion nf Blacxboard Systems in Ada-V. S.
Gran Salroom(SI~h~l andMalorouh Roms) Do~bbs and PA PA Cook. Wright Stite Universily. Dayton.
GrandO Balo -Behl n aloog om) 04....- . 37

OPENING RECEPTION: Yht ANITSc.99 Redesign Eltoff-An Experience in
PISinsl, Sot iwara Engineering with Ada-E, PA Gunderson. D. A.

Mr. John H S1011e. Acting Directuf Center for Sot twato Vaughn. and 0. E, Bostic, ft. Tetos FederAl Systems.
Engineering. U.S& Army CommuniCalionli-Eftcl(OCS Com~ Shmr-abury. NJ 4
mand. Fort Monmnouth. NJ

Greetings:
Dr. William J, M.Wvoli. President. Joiscry City Stte College, Grand Dallroom-fllenheirn Room

Jersey city. NJ
Dr. LeVern McCumminGs. Presidint. Choyrwj University. SSIO 2:PRJTMA GE NT

Chetyney. PA Chairperson: Charlene Roberts Hayden. GTE Government
Dr. Ruth Leventhal. Ptoeul. Penn Stao. Hattsbutg Camripnis. Systems. Notdharn Heights. MA

Middletown. PAPaciaAprahtMthdlgs.A adDD
Dr. Richard Kunt:. Vice President. Montmouth College. Wot Pacia STO.2187A-K t Mehonndol oile. dset DrODu.

Long Branch. NJ 1.1? X SElioanW.J we.jtPoul
Dr. Vets King Fsrrl% President. Stockton SI1 olee Sion Laboratory. Pasadena. CA 51

Pomona. NJ Lessons Learned In the Preparation of a Software
Engineering Exerise-J. P Flu glion and C. Ptavy.

PANEL DISCUSSION I Ada Voicy. Practices end Mtitimtsves Martin Marietta Infotrmtion and Commaunications
(Ck O d* Extcull Offiials]Systems. L'envor. CO......................... 58
(DoDAdaEx~ctiv Of ictts)A Comparison of Methods Which Address the Develop-

Modtfsto(r moint of Rea[-Timre Embedded Systems-IL Guiloyle
Mr. James E. Scheti, President. SOPHSYS. Inc I and It. Pirchn r. Monmouth College. W. Long Branch.
Parrelsts: NJ; L. Von Getilchron. Ml. Ginsberg, and 0. Clarsori.
LTG Bruce R, Harris. Director ot Inrormation System s Teledyne Brown Engineering, Inc.. Eatontown. NJ. 67
for C'. Office of the Screltry of the Army. Techniquos for Optimizing AdafAssembly Language
Washington. DC. ~... .. I Program ltrfaces-E. N. Schacht. Computer
LTG Gordon E. Fornetl. Commander. Electronic Sciences Corporation. Huntsville. AL....... 78
Systems Division, US. Air Force Systems Command. System Simulation in Ada for the Project Manager-K.
Harnscom Air Force Base. MA 2 J. Cogan. Electronics Technology and Devices
RADM Paul E. Tobin. J.,.. Director of Navy Resources Labowory. Fort MonWoulhi. NJ; P. W. Cav.,ly and CQ
Management. Of tics of the Assistant Secretary of the Marine. Jersey City State College. Jersey City. NJ 87
Nvry lot Financial Managtmont. Washington. DC.._. 3 The Adia Software Development Methodology Evalua.
Dr. Rt. E. Lyon (SESt. Acting Associate Director Fot inadSlcinP00s.Fc rhyh-.J c
Enginetring and Technology. Defense Communica. tiough Cnd meletinPoes:cor Teholog Gru. Ld.
lions Agency, Arlington, VA Wasinon, Cmue Techn... log.. ..roup .. td.
BG John 0. Wakelin. Deputy Director. Unified andWaintDC. 9
Specifiled Command C3 Support, Organizalion of ihe
Joint Chiefs of ~tatf. Washington. DC........... Grand Ballroom-Salons A, B, & C (Marlborough)

LUNCH, 12:00 N-2:00 PM SESSION 3: -DISTRIBUTED PROCESSING,
Ocean Ballroom (Rooms A At B) Chairperson: Mis. Dee Graumarin, General Dynamics. DSD.

Spotlight SpeakerSaDigC
MG Billy M. Thomas. Commanding Generai. U.S. Army An Ada Designed Distributed Operating System-Al. 0.
Communications-Electronics Command, Ft. Mcn. .Sedmln. Martin B. Sorkin & Co.. Granada Hilis. CA 100
mouth, NJ.................... 5 PARSIM: A Parallel and Real-Time Simoilator for Con.
Luncheon Speaker current Programs-Al. D. Coletman and R. J. Leach,
Mr. Joseph M. Del Baizo. Executive Director For Howard University, Washington, DC 109
System Developmeat. FAA. Washington, 0C.......... 5 Real.Time Pattern Recognition In Ada: On the Formula.

tion of Neutral Net Recognizers by Ada Tasking of
TUESDAY, MARCH 14, 1989-2:00 PM-5:30 PM Massively Parallel Multlcomputees-W. Arden. Telos

Gran Balroom Salos A 0, nd C(Denis)Federal Systems. Shrewsbury, NJ 114
Oran Balrom-SaonsA, , an C Denis)TASKIT: An Ada Simulation Tooi Kit Featuring Machine

SESSION 1: APPLICATIONS Independent Parallel Processing-Al. Angel and P.
Charpeson Mr JaesE. alkr, etwrkSoltios, iena, Juoizfih, General Dynamics, San Diego. CA 122

Chireso:MrVAme .Wle.NtokSltos ina Ada Run-Time Environment Considerations for '5lmula.
VA lion-S. Shastry. Concurrent Computer Ccrp., Tinton

RAMORA: Reusable Aaa Modules for Optimal Falls, NJ................................... 128
Resource Allocation-S. R. Alackey, Lockheed Austin
Division, Austin, TX 9
GENESYS: Embedded Software Tallorabllity-S. A. Garden Rooms (Longwood, Imperial, Berkshire &
Bailey, J D. L3ird, and Al. Angevine, Intermetrics Inc., Tivoli)
Hu iington Beach, CA 13 SESSION 4: PERFORMANCE VEASUREMENTS -
An Ada Implementation of the Data Encryption Stan-
dard In a Real Time Envlronment-L. Grisberg and 0. Chairperson. Mr. Michael Sapenter, Telos Federal Systems,
Coo, U.S Army CECOM, Fort Monmnouth, NJ 25 Lawton, OK
A Hardware Independent System Development Ap- Benchmarking the Real-Time Performance of Dynamic
proach Involving Ada-T Dale, Unisys Defense Ada Processes-A. J. Lee, W. R. Alacre, and . K. Do,
Systems, McLean, VA 30 Lockheed Electronics Co.. Inc., Plaintfield, NJ........ 132

xA

Establish and Evaluate Ada Run;ime Features of In. Grand Ballroom-Salons A, B & C (Marlborough)
terest for Reat.Time Systems-S. Leliowltz and H.
Greene, lIT Research Institute. Lanham, MD: and M SESSION 7: STUDENT PRESENTATIONS-ADA
Bender, U.S. Army CECOM. Fort Monmouth, NJ 139)DEVELOPMENT ISSUES,
Real.Time Performance Benchmarks for Ada-A. Goel, Chairperson: Dr. Richard Kuntz, Monmouth College, W. Long
TAMSCO, Eatontown, NJ 145 Branch. NJ
Real.lime Ada Demonstration Project-M. E Bender,
U.S. Army CECOM, Fort Monmouih. NJ; av . E. Design Considerations Affecting Implementation of
Grleut, LabTek Corp., Woodbridge, CT............. 154 Byzantinn Agreement Protocols In Ada-S. Hartman,

Modification of LU Factorization Algorithm for Parallel Southeastern Massachusetts University. North Dart.

Processing Using Tasks Supported by Ads mouth, MA 218

Language-S. N. Shah, Norfolk State University. Nor. Upgrading a Lisp Prototype (Advisor) to a System In

folk, VA .. 162 Ada-M. Johnson, K. Robinson, and R. Washington,
Hampton University, Hampton, VA 224
An Implementation of the Standard Math Functions in
Ada-J. A. Frush, University ol Mississippi, University,

WEDNESDAY, BANQUET 7:00 PM-9:30 PM MS .. 226
Ocean Ballroom (Rooms A & B) Decomposition Schemes for Static and Dynamic

Analysis of Ada Programs-&R. Gopal. Vanderbilt
Guest -Speaker D. J. Herman, UNIX International University, Nashville, TN 230

WEDNESDAY, MARCH 15, 1989-8:30 AM-10:30 AM

Grand Ballroom (Blenheim & Marlborough Rooms) LUNCH, 12:00 N-2:00 PM

PANEL DISCUSSION 11: STARS TECHNOLOGY UPDATE Ocean Ballroom (Rooms A & B)

Chairperson: COL Joseph S. Greene, Jr., U.S. Air Force. Direc. Spotlight Speaker:
tor of STARS Program, Washington, DC BG John A. Hedrick, Commanding General, U.S. Army

Panelists: Information Systems Engineering Command, Ft.
James King, System Architect, Boeing Aerospace, Kent, WA Huachuca, AZ 6
J. W. Moore, System Architect, IBM, Gaithersburg, MD Luncheon Speaker:
Terl Payton, System Architect, Unisys, Reston, VA LTG Jerry Max Bunyard. Deputy Commanding General,
(Invited) Research, Development and Acquisition, USAMC,

Alexandria, VA 6

Grand Ballroom-Salons A, 8 & C (Dennis)

SESSION 5: STUDENT PRESENTATIONS-ADA &
EDUCATION

Chairperson: Dr Mary Ellis, Hampton University, Hampton, VA WEDNESDAY, MARCh 15, 1989-2:00 PM-3:30 PM

Learning Ada from Ada-L. Smlthmler, Jr., University Grand Ballroom-Salons A, B & C (Dennis)
of Mississippi, University, MS 168 SESSION 8: APPLICATIONS
Prottems in Using Ada as a Development Tool-A. J.
Mull, University of Mississippi, University, MS 1/2 Chairperson: Mr. Brian Baker, Navy Department, Washington,
An Ada System for the Parallel Execution of FP Pro. DC
grams-N. Graham, Oklahoma State Univorsity, An Object.Oriented Approach to Simulating a Rea.-
Stlllwater, OK 176 Time System in Ad-J. Margono and J. E. Walker, Net.
Transferring from Pascal or C to Ada-J. Scholtz and S. work Solutions, Inc., Vienna, VA 239
Wiedenbeck, University of Nebraska, Lincoln, NE 182 Ada Implementation of Operating System Dependent
Two Approaches to Ada; The Procedural (PASCAL) Ap. Features-M. I. Schwartz and R. W. Hay, MartLi Mariet.
proach and the Object Oriented (C+ +) Approach- ta Information & Communications Systems, Denver,
G. R. Thompson, Morehouse College, Atlanta, GA 185 CO .. 245

Implementation of a Real-Time Elevator Control
Simulation System Using the Ada Language-D.

Grand Ballroom- Blenheim Room Bagley, K. Land, H. Temburro, and M. Vega, U.S. Army

SESSION 6: STUDENT PRESENTATIONS-LESSONS CECOM, Fort Monmouth, NJ 251

LEARNED AND EXPERIMENTATION' ,

Chairperson: Dr. Philip Caverly, Jersey City State College,
Jersey City, NJ Grand Ballroom-Blenheim Room

On Inclusion of the Privatn Part In Ada Package SESSION 9: PROJECT MANAGEMENT
Specification-S. Muralldharemn, The Ohio State Univer-
sity, Columbus, OH 184. Chairperson: Ms. Catherine Peavy, Martin Marietta Informa-
What Is the Object In Object Orlentad Program. tion and Communication Systems, Denver, CO
mIng-K. V. Chan and W. Tsung.Juang, University of Procurement of Air Traflic Control Software In Ada-A.
Mississippi, University, MS 193 C. Chung, FAA Technical Center, Atlantic City Interna.
A Two-Phase Reproduction Method for Ada Tasking tional Airport, NJ 257
Programs-M. M. Najjar and T. Elrad, Illinois Institute The Use of a Software Engineering Exercise During
of Technology, Chicago, IL 197 Source Selection-D. G Montgomery, The MITRE Cor-
Problems Encountered In Learning Object Oriented poration, FAA Technical Center, Atlantic City Interna.
Design Using Ada-G. Carlson, St. Cloud State Univer- tional Airport, NJ 262
sIty, St. Cloud, MN 209 An Approach to Ada Compiler Acceptance Testlng-E.
Quest for Usability In Ada Generics-K. Mlnder, Tren. Amoroso and T. Nguyen, AT&T Bell Labs, Whippany,
ton, State College, Trenton, NJ 213 NJ .. 266

xil

Gard" Rooms (Longwood, Imperial, Berkshire & Tivoli) Grand Ballroom-Blenheim Room
SESSION 10: 'TECHNOLOGY (ESEARCH SESSION 13: -.LIFE CYCLE MANAGEMENT

Chairperson: Mr. Jesse Williams, Cheyney University, Chairperson: Mr. Walter, Rolling Ada Technology Group, Inc.,
Cheyney, PA Washington, DC

Software Metrics Analysis of the Ada Repostory-R. J. The National Training Center Move and Upgrade: A
Lqach, Howard University, Washington, DC 270 Distributed Ads System-D. Ponlinger Science Ap.
Ads Implementation of Sequential Correspondent plications International Corp., San Diego. CA 358
Operations for Software Fault Tolerance-P. N. Lee Softwore Quality Assurance In an Ada Environ.
and A. Tamboll, University of Houston, Houston, TX... 278 ment-S. Barkaraki, California State University,
Ada-POSIX-T. Fong, U.S. Army Information Systems Northridgo, CA: and J. Kelly. Jet Propulslon
Engineering Command, Fort Huachuca, AZ 284 Laboratory. Pasadena. CA........................ 362

Implementing Software First with Today's
Technology-E. J. Gallagher. Jr.. U.S. Army CECOM,
Fort Monmouth, NJ; E. Fedchak, lIT Research Institute,
Rome, NY; and D. Preston, liT Research Institute,
Lanham, MD 368
Lessons Learned In Developing Requirements-G.
Healer, Lockheed Engineering & Sciences Company,

WEDNESDAY, MARCH 15, 1989-2:00 PM-5:00 PM Houston, TX 383
Grand Ballroom Salons A, B & C (Marlborough)

SESSION 11: EDUCATIONITRAINING,

Chairperson: Or. Murray Kirch, Stockton State College, Grand Ballroom-Salons A, B & C (Marlborough)
Pomona, NJ SESSION 14: REUSE

Ada Summer Semina-Teaching the Teachers-M. S.
Rlchman, Penn State University of Harrisburg, Mid. Chairperson: Mr. Daniel Hocking, AIRMICS. Atlantic GA
dletown, PA; C. G. P'tersen, Mississippi State Universi. Tangram.L-A Program Description Language for
ty, MS; and D. C. .uhr, Tuskegee University, Tuskegee, Ada-E..E. Doberkat, University of Essen, West Ger.
AL .. 288 many .. 390
Training COBOL Programmers In Ada-J. C. Agrawal, AdaL, An Automated Code Reuse System-G. C. Har.
Embir Riddle Aeronuutical University, Daytona Beach, rison, Norfolk State University, Norfolk, VA 404
FL .. 295 Reusable Subsystems from a High Performance Ada
Teaching Ads From the Outside.ln-D. P. Purdy, Communication System-T. L. Chen 4nd W. Sobklw,
Manatee Community College. Bradenton, FL 303 E.Systems, Inc., St. Petersburg, FL 411
An IntermediateLevel Problem Set for Experienced
Programmers or Writing Ada Code that Achieves the
Language Goals-R. S. Rudolph, Computer Sciences
Corp., Moorestown, NJ 307 THURSDAY, MARCH 16, 1969-8:30 AM-12:00 N
A 10-Day Ads Course for the Industry-F. Molnian,
Cameron University, Lawton, OK 313 Grand Ballroom (Blenheim Rooms)
Integrating Ada Training with Software Develop- PANEL DISCUSSION III: ,DoD .SOFTWARE ENGINEERING
mec"t-P. Fortin and F. L. Moore, Texas Instruments, PONTRACTOR'S CAPABILITIES ASSESSMENT,
Inc., Dallas, TX 316 N
The SEI Education Program-N. Gibbs, Carnegie. Chairperson: Miguel A. Carrio, Jr., Teledyne Brown Engineer-
Mellon University, Pittsburgh, PA (invited) ing, Fairfax, VA
Evaluation of Teaching Software Engineering Re- Panelists:
quirements Analysis (SERA)-J. Sodhl, Telos Federal Catherine H. Peavy, Martin Marietta Information & Coin-
Systems, Lawton, OK 321 munications Systems, Denver, CO

Hal Hart, TRW, Inc., Redondo Beach, CA
Barbara Nash, GTE Government Systems, Rockville, MD
Paul Mauro, Hughes Aircraft Co., Ground Systems Group,

Fullerton, CA
(Invited)

WEDNESDAY, MARCH 15, 1989-3:45 PM-5:00 PM Grand Ballroom-Salons A, B & C (Marlborough)
Grand Ballroom Salons A, B & C (Dennis) SESSION 15: REUSE

SESSION 12: LIFE CYCLE ENVIRONMENTS, Chairperson: Ms. Ruth Rudolph, Computer Sciences Corp.,
Chairperson: Mr. Albert Rodriguez, U.S. Army CECOM, Moorestown, NJ

Fort Monmouth, NJ Constructing Domain.SpecifIc Ada Reuse Libraries-J.
Ada Abstract Data Types-The Foundation of an In- Solderilsch, K. C. Wallnau, and J. A. Thalhamer, Unisys
teractive Ada Command EnvIronment-J. A. Corp., Paoli, PA 419
Thalhamer, W. P. Lolftus, C. L. Oel, and R. A. Foy, Ada, Hypertext, and Reuse-L. Latour, University of
Unisys Corp., Paoli, PA 326 Maine, Orono, ME 434
A Software Engineering Documentation Environ- Disciplined Reusab!e Ada Programming for Real-Time
ment-T. J. Wheeler, U.S. Army CECOM, Fort Mon. Applications-F. Arico and A. Gargaro, Computer
mouth, NJ 333 Sciences Corp., Moorestown, NJ 443
Documentation Generation System-D. Rodericks, I. The Morehouse Object-Oriented Reuse Library
Rivers, B. Kololske, R. Quinones, U.S. Army CECOM, System-A. M. Jones and R. Bozeman, Morehouse Col-
Fort Monmouth, NJ 342 lege, Atlanta, GA 456
Reducing Software Development Costs with Ada-J. Reuse and the Software Life Cycle-D. S. Gulndi, W. M.
R. Carter, Martin Marietta Astronautics Group, Denver, McCracken, and S. Rugaber, Georgia Institute of
CO .. 348 Technology, Atlanta, GA 463

xii

Grand Ballroom-Salons A, 8 & C (Dennis) Grand Ballrbom-Salons A, B & C (Marlborough)
SESSION 16: LiFE CYCLE PRODUCTIVITY SESSION 18: DESIGNING FOR ADA

ChaIrperson: Mr. Jameb Batbour, Digital Equipment Corpora. Chairperson: Dr. Ronald Leach. Howard University.
tion, Merrimac. NH Washington. DC

A Logic'al Framework (fr Version and Configuration Practical Advice for Designing Ada System Architec*
Management of Ad& Components-A. T. Jazaa and 0. lures-C. 0. Buchman, Allied-Signal Aerospace Co..
P. Brer. ton. University of Kece, Staffordshire, Great Teterboro, NJ 549
Britain 469 Ada Design Tool-K. Tupper. PA. Levitz, J. lielvon. S.
Designing for Chatige. An Ada Design Tutoriai-J. A. Barley, and P. Oavainzo. Unisys S&GSG. Great Neck. NY 557
Hager, HRB.Systems, Inc., State College. PA 47 Objects with Multiple Representations In Ada-K. MA.
A Portabie Ada Implementation col BlockecL-iO-J. J. George. Oklahoma Slate University, Stillwater, OK; and
Cupsk, Jr.. HRB.SystOms. Inc., State College. PA... 4E3 J. Sodhi, Telos Federal Systems, Lawton. OK 567
Developing a Universal Ada Test Language [fo
Generating Sot twareiSysteM Integration and Fault
Isolation Test PrOgram3-J. Ziegler, J. PA. Grasso. L.
Burgtrmels let, and L. 0. Mollard, ITT Avionics, Nutley, Grand Ballroom-Salorns A, B & C (Dennis)
NJ ... 4 SESSION 19: LIFE CYCLE PRODUCTIVITY
A DIANA Ouery Language for the Analysis of Ada Soft.
ware-C. Bymnes, The MITRE Corp.. Bedford, MA 511.Si Chairperson: Ms. Susan Market, TRW. Fairfax, VA
Ada Portability Among Heterogeneous- B. Casado A Software Development Tool Using Ada-Pseudo
and N. Bazzl. U.S. Army CECOM, Fort Monmouth, NJ 519 Code Management System-D. Blau Liu. California

Slate Universty-Long Beach, Long Beach, CA 576
LUNCH, 12:00 N-2:00 PM Data Reduction: An Ada Generics Methods-W. D.

Ocean Ballroom-Rooms A & B Ferguson, C. L. Carruthers. B. J. Carter. Jr.. K. A.
Stap'es. Jr., and C. FA Wise, General Electric Corp.,

spotlight speaker. ESD, Moorestown, NJ.... 594
MG Peter A. Kind, Program Executive Officer, Army A Method of Translating Functional Requirements for
Tactical Command and Control System (ATCCS), Fort Object-Oriented Design-R. Brown and V. Dobbs,
Monmouth, NJ 7 Wright State University, Dayton. OH.............. .589
Speaker.
Dr. Larry Druffel, Carnegie Mellon University, Director,
Software Engineering Institute, Pittsburgh. PA 8

THURSDAY, MARCH 16, 19119-2:00 PM-3:30 PM THURSDAY, MARCH 16, 1989-3:4S PM-5:45 PM

Grand Ballroom- Blenheim Rooms Grand Ballroom (Blenheim Rooms)
SESSION 17: _ TESTING AND EVALUATION PANEL DISCUSSION IV: LOOKING TO THE FUTURE
Chairperson: CPT Sheila Bryant, Marine Corps Tactical WITH ADA.A r1 . - '"

Systems Support Activity, Camp Pendleton, CA Chairperson: Miguel A. Carrio, ;Jr., Teledyne Brown Engineer-
Ada Compiler Validation: Purpose and Practice-R. Ing, Fairfax, VA
Williams and P. Brashes, SotTech, Inc., Fairborn, OH: Panelists:
and S. Wilson, Wright-Patterson AFB. OH 5P Jean lchblah, Alsys, Inc., Waltham, MA
How to Live with TEXT-10.i-D. W. Jones, Ridgecrest, Charles McKay, University of Houston.Ciearlake, Houston,
CA 528 TX
Automatic Test Data Generation and Assertion Testing Frank Betz, TRW, Inc., Redondo Beach, CA
for Ada Program Units-L. Mayes, R. W. Aragon, D. Ter. Howard Yudkin, Software Productivity Consortium, Reston,
tien, and J. Trost, Intermetrics, Inc., Hunt!,%ton Beach, VA
CA 537 (invited)

xiv

OPENING PANEL

ADA POLICY, PRACTICES AND INITIATIVES

Mr. James E. Schell LTC Bruce R. Harris

President Director of Information Systems for C4

SOPHSYS, Incorporated Office of the Secretary of the Army

(Moderator) Washington, DC

James E. Schell is the former Director of Lieutenant General Bruce R. Harris was born

the CECOM Center for Software Engineering. in Sullivan County, Indiana on 13 August 1934.

He retired from the U.S. Civil Service as a Upon completion of the Reserve Officers Training-

Senior Executive (SES) in March 1988. He holds Corps curriculum and the educational course

a Baccalaureate Degree in Mathematics, Physics, of study at Tennessee Technological University

and French from Morehouse College, Atlanta, in 1956, he was commissioned a second lieutenanr

Georgia. lie has studied graduate work in the and awarded a Bachelor of Science degree in

MBA program and Anthropology at California State Business. Ile also holds a Master of Science

University, Northridge, California and completed degree in Political Science from Auburn

several executive development courses at the University. His military education include,;

University of California, Berkeley and the completion of the Signal Officer Basic anr

University of Southern California. Advanced Courses, the United States Army Commanc
and General Staff College, and the Air War

He has had an extensive and rewarding career College.

in both government and industry, lie has held

training positions with the Air Force and Army lie has held a wide variety of command and

Signal Corps; a Soldier in the Signal Corps; staff positions culminating in his current

Signal Publications; a charter member of Command assignment as Director of Information Systems

Control Information Systems in 1970 (CCIS-70) for C4, Office Secretary of the Army. These

Project Manager's Office. From there, he held include command of the 13th Signal Battalion,

positions in Litton Data Systems Division as 1st Cavalry Division; command of the Division

Director of the AN/TTC-39 Program Office and Support Command, 2d Armored Division; Chief

Director of the TACFIRE/TOS Program Office. of Staff and later Deputy Commandant of the
U.S. Army Signal School; Deputy Assistant

lie returned to Government in 1979 in the Secretary of Defense for Legislative Affairs;

Senior Executive Service as Director, U.S. Army Assistant Division Commander, 9th Infantry

Center for Tactical Computer Systems (CENTACS) Division; command of the U.S. Army Communications

during which time he founded this Ada Technology Electronics Engineering Installation Agency;

Confernece. Mr. Schell culminated his government Deputy Commander, U.S. Army Information Systems

career by serving as the Deputy Program Manager, Command; and command of the U.S. Army Signal

Army Command and Control System from 1985 to School.

1986 and as Director Center for Software
Engineering from 1986 to 1988. Awards and decorations which General Harris

has received include the Distinguished Service

le now has his own consultancy as SOPHSYS, Medal, Legion of Merit, the Bronze Star Medal,

Inc. lie and his wife, the former Doris Hunter, the Meritorious Service Medical (with Oak Leaf

live in Ocean Township, New Jersey. Cluster), several Air Medals and the Army

Commendation Medal. le also wears the Parachutist

Badge and the Master Army Aviator Badge.

lie is married to the former Claudia Alley
and they have four childrent Bruce, Jr., Mary

Kathryn Brooks, Tim, and Brad.

7th Annual National Conference on Ada Technology 1989

OPENING PANEL

ADA POLICY, PRACTICES AND INITIATIVES

ii
LTG Gordon E. Fornell General Fornell returned to the Pentagon

Commander Electronics Systems Division in July 1981 as Deputy Director of Development

U.S. Air Force Systems Command and Production on the Air Staff and was

Hanscom Air Force Base, MA responsible for programs that included aircraft,
propulsion, avionics, armament and electronic

Lieutenant General Gordon E. Fornell is combat systems.

commander of Electronic Systems Division, Air
Force Systems Command, Hanscom Air Force Base, In October 1982, General Fornell became

Massachusetts. special assistant for intercontinental ballistic
missile modernization matters. Office of the

General Fornell was born on 18 September Deputy Chief of Staff for Research, Development

1936, in Chicago and graduated from Maine Township and Acquisition, at Air Force Headquarters.

High School, Des Plaines, Illinois., in 1954. ie became the Senior Military Assistant to the

lie received a Bachelor of Science degree in Secretary of Defense in January 1987. In that

Mechanical Engineering from Michigan State position he assisted and advised the secretary

University in 1958 and a Master of Business on the full range of defense responsibilities

Administration degree from the Wharton School, and national security matters. He assumed his

University of Pennsylvania, in 1978. While present command in September 1988.

at Michigan State University, the general was
a member of the 1957 Big Ten Conference His military decorations and awards include

championship swim team. He completed Squadron the Defense Distinguished Service Medal,

Officer School in 1963 and Air War College in Distinguished Service Medal, *Legion of Merit
1973. (with one Oak Leaf Cluster), Distinguished Flying

Cross (with two Oak Leaf Clusters), Meritorious

He was commissioned as a second lieutenant Service Medal (with one Oak Leaf Cluster), Air

through the Air Force Reserve Officer Training Medal (with 11 Oak Leaf Clusters), and Air Force

Corps program and entered active duty in October Commendation Medal. He also wears the Basic

1958. He received his initial pilot training Parachutist Badge and the Missile Crew Member

at Moore Air Base, Texas, and Greenville Air Badge.

Force Base, Mississippi, from November 1958
to November 1959. In June 1960 he completed He was promoted to lieutenant general I

F-86L fighter-interceptor training at Perrin October 1988, with same date of rank.
Air Force Base, Texas. General Fornell is married to the former

Upon graduition from Air War College in Barbara A. Bauer of LaGrange Park, Illinois.

June 1973, the general was assigned to They have two children Kirsten and Eric.

Headquarters, U.S. Air Force, Washington, D.C.,
as chief, Aeronautical Systems Division,
Directorate of Development and Acquisition,
until January 1977. In this capacity he was
responsible for most of the aircraft development
programs, including the F-15, B-1, F-16 and
A-1O, and for technology based programs involving
aircraft equipment, life support and turbine
engines.

2 7th Annual National Conference on Ada Technology 1989

OCINISC PAWL

ADA POLICY. ?XACTfCE AND INI11iATIVICS

RADII Paul K. Tobin Jr. W. Ut.K. Lyon (Z"I)
Director of Navy Resouirce. Namagamut Acting Asociate Director for

OffiCe ot the Asistant Secretary Esgimaeragt Ad Technology,
of the Navy for r[WWmi1ia maniagement befease Comusicatiosa Agency

Washimatom, DC Arlimitem, VA

Rear Admiral raul E. Tobin, Jr. was graduated Dr. Lyon received the Vachellor of Science
from the U.S. Naval Academy tit 1963 and reported Degree in Electrical Engineering froam MIT In
co the USS Towers ulhere het served 4%First 050O. His graduate degrees Include the MS ant!
Lieutenant and Main Propulsion Asiscont. In P'hD degrtes In Electrical Engineering frole the
1968, Admiral Tobin was Awarded a Masitri of Universlity of Maryland, And the professional
Science degree In Computer Systema Managcment Electrical Enlgineers degree from MIT.
from cte NAval Post Craduate School. He* vas
graduated with distinction b~y the NAval War Dr. Lyon io Acting Associat Director for
College from the Naval Command And StAff Course. Engineering and Technology. Defense Communications
Hie was also graduated with distinction from Agency. Among hsis other duties, het ts the DCA
cte Industrial College of the Armed Forces In Ada Executive. His office is the Interface
1984. between DCA and th'e world of high technology

In government, Industry and academia, and hass
Admiral Tobin has held a number of ComAnd the responsibility to promote the transition

assignments among them thet USS TAiTNALL In the of hIgh technology to operational use In the
Indian Ocean and the Persian Culft tile USS FOX C) community. Formerly Special Assistant to
deployed to the Indian and tile Western Pacific; the Dire-ctor, Information Processing Techniques
he also Assumed command of thet Surface Warfare Office, DARPA, and Deputy Director, Defense
Officers School Command In July 1986. Ilis awards Communications Engineering Center, DCAo Dr.
and decorations Include the bronze Star, tl Lyon has been Involved In systems engineering
Meritorious Service Medal and tile Navy of U.S. C3 systems since 1970. lie has 39 years
Commendation Medal (with two Cold Stars). of professional experience in DoD informaftion

and communications systems and has previrusly
Admiral Tobin In currently assigned as held position with thle ISM Corporation and

Director, Department of thlt Navy Information National Security Agency.
Resources ManagemenL, hie also serves as Director,
Information Management Support Division under Ile Is a senior member of thle IEEE, a Covernor
thet cognizance of thle Chief of Naval Operations, of thet International Council for Computer

Communications, a membtr of the Armed Forces
Admiral Tobin La married to thle former Lynne Communications and Electronics Association,

Carter of Shaker Heights, Ohio. They have two and A recipient of thle Defense Communications
daughters: Mary Elixabeth and Patricia. Agency Director's Exceptional Civilian Service

and Distinguished Executive Awards.

7th Annual National Conference on Ada Technology 1989 3

OPlIPN lAWL!

).IA tOiIC'f, rRACTICKS AUD INITIATIVIS

IC Joei D. 114411% AV.*rds and decorations ,,hIch General IValelin
ftpmty Director, "Iffied MW spcified4 has received Include the Aron:e Star WAIel,

CommaW C, Sopport. the iherttorlaux Service Weal (with Oakc Leaf
Orjt&nIXAtIee Of theG Joicjt Chiefs Of StAff Clusctr), And the Joint Service Contoltion

washimatoo, OC AIea. "ae Also holds the Army Cosssendation
Medal (with Oak Leaf Cluster) And Is authorlzeI
to wear the Parachutist %adge.

brigadier Central John C. IVakelin was barn
in San Francisco, caifornia on 12 January MeAs nd his wife Janis (Jan) have five
193CI. Upon completion of the keserve Officers childrent John% Jennifer, Jeffrey, Heiather,
Training Corps curriculum and the educational and Jaclyn.
coursed Of Study At thse University Of San
Francisco In 19S9 het wast commissioned A second
lieutenant And Avarded a Rachelor of Science
degree In Philosophy. His. military education
Includes completion of the basic Signal Officer
Course, the Infantry Adlvanced Officer Course,
the United States Army Command and Ceneral
Staff College, and the National Waer College.

Hie has hield a wide variety of Important
comMAnd And staff Position$ Culminating In
his current Assignment. Immediately prior
hie served AS Deputy Commander for ltseArch
and Development at the Communications Electronics
Command, Fort Monmouth, New Jersey. Other
key assignments hield recently Include Commander
of the 35th Signal Brigade at r..rt Bragg, North
Carolina and Special Assistant to the Commanding
General of the Communications Itlectronics
Command, Fort Mionmouth, New Jersey.

Ceneral Wakelin has an extensive backtround
In the masnagement of communications and signal
resources. Following overseas service as Chief
of Commuications Electronics with the United
States Defense Liaison Group In IndonexlA.
het commanded the 50th Signal Battalion (Airborne)

a t Fort Bragg, North Carolina. General Wakellpx
then served as Deputy Comand#er for the
battalion's parent 35th~ Signal Croup. Following
coupletion at the National War College, he

s erved as Deputy Director for Command, Control
and Counications with the Defense
Communications Agency, Washington, DC.

4 7th Annual National Conference on Ada Technology 1989

COKST SICAXXENS

AD;A POLICY, I'ACTICXS A"O INITtATIVCS

U.S. %ry illy CX.an ThsonM. Joseph P.al salo

Com"Vio Cotacral Extecutive Director (or System
US ryConsuictions-Ilecttonits comodDevelopmet, VMA

rf "ioaaoouth, ILJ VAshaxhings, DC

Major ctntrAl Billy Mt. Thomas was born In An FAA's Executive Director for System
CrystAl City, Texas an 1t' August 191-0. Ile grew Dovolopsetni, Joseph 11. Dal RaxIma ts one of four
up In Kiloen, Texas. Upon completion of tlhe tistcictva Directors who assist the FAA Adisin-
Rteserve Officer's Training Corps curriculum INCTt'Ot In Settingr Agency policy And governing
And the educational course of study at Texas tlio developmenlt And Accomplishment of Agency
Christian University In 19fa2, lit was commssioned programs.
a second ietutenoanot In Clhe U.S. Army and was
awarded A Bachelor of Science degree In Secondary Mr Dal 5aizo is responsible for NAtional
Education. Central ThomAs holds A M~istor of AirspAcI2 System Developimen, Advanced Design
Sciene degree In TelecorvixtnicAtions Operations And MAnartrent Control, Airport System

fromCecrge ashngto Unversty.Development, And FAA's Technical Center In Pomona,
fromCecge WshigtonUniersiy.ew Jersey.

Ills military education Includes completion M.DlDlowsDrco fF' atr
Of 00 Signal Officer BASIC and Advanced Courses,MrDl lzwaDietro AxEsen
%he Army Comrand And General Staff College. Region from November 1981 to July 1987. As
And the Army War College. Director of the Eastern Region, Mr. Dal balza

was responsible for a1l FMA Activities within
In addition to Central Thomns' mAny Important maven states (New York, New Jersey, Pennsylvania,

COMMAnd assignmentt In Germany, Thailand, and Delaware, Maryland, Virginia. and West Virginia)
Vietnam, he has also held a Variety Of Significant And theo District of Columbia.
staff Assignments prior to his assuming the
position of Commanding General. U.S. Army Mr. Del 8alto was Director of tthe FAA
Comun'rAtIona-Zlectronics Command, Among the Technical Center from January 1979 to November
weres Special Assistant to the Dean, National 1981. lie previously served as theo Technical
Defense University; Deputy Commanding Conceal, Center Deputy Director. lie was Chief of thio
U.S. Army Signal Center and Schools Army Staff Microwave Landing System (MIS) Division of the
as theo Deputy Directorl Combat Support Systems, Systems Research and Development Service, Ile
Office of the Deputy Chief of Staff for Research, was rtsponsible for thie successful development
Development and Acquisition, and aiction of the U.S. doaign of the MLS.

Awards and decorations which Ceneral Thomas Mr. Del Balzo began hits Federal career In
hans received Include theo Legion of Merit, Bronze 1958 AS an Electrical Engineer In Portland Maine.
Star Medal, the Meritorious Service Medal and lie holds a B.S. In Electrical Engineering from
the Army Commendation Medal. Ilie is also Manhattan College, and an M.S. In Engineering
authorized to wear the Parachutist's Badge. Management from Drexel University. In 1975,

on a one-year fellowship to Princeton University,
Ilie is married to the* former Judith K. lie studied public policy and International

McConnell of Boise, Idaho. They have four Affairs, Ilie was awarded an Honorary Doctoral
childrens Jon, Kim, Kirsten, and David, degree In Aeronautical Science by Embry-Riddle

Aeronautical University fn August 1981. Ile
is a general aviation enthusiast and is an
instrumentrated, multi-engine private pilot.

7th Annual National Conference on Ada Technology 1989 5

cwLsr 5V.AKE

ADA lOLTC, ?NACTICKS AMS INtTIATtVIS

IC Jo6b A. edrick LTC Jerry kax bomyard
Ceoasmdimg Comeral, U.S. Army tkputy Camm 1g Comeral

Isfatrwtlo ysatem halmetrimg lCommd teearch Develomeat Ma Acquisitiom
Tort Nwacheca, AX USANC, Aleaxmoria, VA

brlgadier Ceneral John A. Hedrick was born Lieutenant Ceneral Jerry Max gunyard Was
In Houston, Texas on 21 January 1941. After born In Altus, OklahooA on I April 1931, Upon
completion of the Reserve Officers Training completion of the Rescrv* Officers training
Corps curriculum, he WAs copissionod a second Corps Cours€ curriculum and the educational
lieutenant on 6 November 196 and awarded the course of study in 195., he VA conmelaioned
bachtlor of Science degree in Electrical a second lieutenant and Awarded a lachelor of
tngineering at Texas A1 Univeraicy. He also Science degree in Aalml Husbandry. e also
holds a Mastera of business Administration degree holds the Master of Science degree in Inter-
in Operations Research and Systems Analysis national Relations from Ceorge Washington
from Tulant University. His military education University. His military education includes
includes completion of the Signal Officer Basic completion of the Infantry Officer Basic course,
and the Armor Officer Courses, the Radio Officer the Field Artillery Officer Advanced Course,
Course, the U.S. Army Command and Ceneral Staff the U.S. Army Comand and Central Staff College,
College, and the U.S. Air Forca War College. and the National War College.

He has held a wide variety of important le has held a variety of important command
command and staff positions culminating in his and staff positions culminating in his current
preset assignment. Following his aslgnmenL assignment as Deputy Commanding Ceneral, Research,
as Optrations Officer in the 9th Signal hattalbon, Development, and Acquisition; U.S. Army Materiel
he served as communications Staff Officer, Command. Other key assignments hald recently
National Communications System; Chief, Include Assistant Deputy Chief of Staff for
Congressional Inquiry Divislon; Office of the Research, Deielopent, and Acquisition Project
Chief of Legislative Liaison: Deputy Commander, Manager for the Tactical Fire Direction
let Signal firigade, Army Communications Agency System/Field Artillery Tactical Data Systems;
Korea; Training and Doctrine System Manager, Deputy Director for Defense Test and Engineering;
Army Tacticat Comunications System Deputy Project Manager, PATRIOT Air Defense Missile
Director for Plans, Programs and System Office System&% and Commanding Ceneral U.S. Army Missile
of the Director of Information Systems for C41 Comand and Redstone Arsenal, Alabama.
Office of the Secretary of the Army, Washington,
DC. Among his commnd assignments are the 2d

Battalion, 20th Artillery, lot Cavalry Division,
His military decorations and awards include Vietnam, Chief, Technical Suppor: U.S. Army

the Legion of Merit and the Bronze Star (each Operational Test and Evaluation Agency, and
with two Oak Leaf Clusters), the Defense Commander, Yuma Proving Cround, Arizona.
Meritorious Service Medal and the Army Meritor-
ious Service Medal (with three Oak Leaf Clusters;, His awards and decorations include the Defense
and Army Commendation Medal, and the Army General Superior Service Medal, The Legion of Merit,
Staff Identification Badge. the Distinguished Flying Cross (v&th Oak Leaf

Cluster), the Bronze Star Medal (with two Oak
Ceneral Hedrick is married to the former Leaf Clusters), the Meritorious Service Medal

Katherine Crain of Childress, Texas; they have (with two Oak Leaf Clusters), several Air Medals,
three daughtcrst Janell, Janet and Jo Anne. the Joint Service Commendation Medal, the Master

Army Aviator Badge, the Office of the Secretary
of Defense Identification Badge.

lie is married to the former Celia Wilkerson;
they have two childrent Mike and Brenda.

6 7th Annual National Conference on Ada Technology 1989

CUIST SFKAKIRS

ADAI MCY, RACTICfS ARM INITIATtVVS

WC Pater A. Kind and Aasistanc Commandant, U.S. Army Signal Center
Program Knecqtive Officer, and School. itort Cordon, Ceorgia. He served

Army actCcal Commd aMd Ceoetr as Deputy Covtroller of the NATO Integrated
Systems (ATCCS) Communications k'yscen Central Operating Authority,
Fort pmo-th, NJ NATOs' equivle|ait to the U.S. Defenal Communi-

cations Systems, headquartered at SMAPE, Belgium,
prior to his apoi ;tmanc as Program Executive

MJor Ctoeral Peter A. Kind is 4 nativ* Officer, Comaand And Control System*.
of Ulsconsin. Upon completion of studies At
the University of Wisconsin In 1961, he vas Cenoral Kind has been awarded C(v Legion
commissioned a Second Lieutenant and awarded of Yqrit, the Vroare Scar Medal (with two Oak
A achelor of Science degree in tconomics. Leaf Clusters), and the meritorious Service

le also holds a Matter of 8usiness Administration Medal (with two Oak Loa(Clusters). He Is *lIo
(rom Harvard University. is military educacin the recipient of the Air Medal with two device
Includes the Basic Officer Course at the Signal and the Army Co.sontasion Modal, the Senior
School, the CommunicAtions Officer Course offered Parachutist Badge avd the Army Ceneral Staff
at the U.S. MArine Corps Amphibious Warfare Identification Badge.
School, the U.S. Army Com3nd and General Staff
College and the U.S. Army War College. He Is msrried to cite former Sandra L. Hanson.

They have a son Lete.
He Van Assigned co the 97th Signal BaCCalion

(Army), 10th Special Forces Group (Airborne)
In CermAny and as Signal Advisor to the 21st
Infantry Division (Air Assau)t) in Vietnam.

Following duty an Assistant Division Signal
Officer of the 82d Airborne Division and as
Executive Officer and S2/S3
(IntellIgonce/Operatinns and Training) ior
the 82d Signal Battalion, Fort Bragg, North
Carolina, he served In the War Plant Division
of the Office of the Deputy Chief of Staff for
Operations and Plans, Ieadquartera, Department
of the Army. lie commanded the 1st Cavalry
Division's l3th Signal Batcallon, Fort Hood,
Texas and studied at the Logistics Managemant
Center's School of Management Science. Ceneral
Kind then served as Chief of the Concepts and
Studies Division, Directorate of Combat
Developments at the Signal Center prior to Army
War College attendance.

He then served as Comander of the lIs Signal
brigade with concurrent duty as the Assistant
Chief of Staff, J6, U.S. Forces In Korea and
C-6, Eighth U.S. Army; as Director of Combat
Development, and as Deputy Commandfng General

7th Annual National Conference on Ada Technology 1989 7

(iiUKST SFXES

ADA "ICY, PRACTICKS AND INITtATtVXS

1
Dr. Larry bruffei lil .Nra

c:arlwyla Nel.. Univetrsity Or~anixing Chairsa"
Director, Softtwarn Ka~tntaring Institu.te 11NIX Internatiolal

Pitalourgh, PA

Mr. Donald J. Hlermasn has been the OrgAntizing
Larry 9. brufftl is 21MrCtOr Of the Sot vAre Chairman of UNIX International since Novtmber

Engineering Institutt. Appointed to that position 1988. Prior to this appointment. he served
Sr. Soptemo.cr 1986, he wwc previously Vice for 10 years with N4CR corporation of Dayton.
president for business development At ptationAll Ohio and most recently As tin, EXecutive Vice
A compAny that Provides advantced of(twa~re President In the Office of the Chief Executive
dQvelopmetft technologies- wiith responsibility far ilha company's Integrated

business units.
DrUffel has been assoCIAted With the A4a program
sinceg 1978. Ito WAS a meatier of the hligh Order Ile holds A Ilachlor's degree In Industrial
Lantguiae Working (4o4p. And bec4ame the first Engineering from thea University of South Daltotai
Director of the Ada Joint PrOgrall Office. 11e he served as A IlAval Officer from 1994 to 1940
was Iater Appointed Director of Computer Systems In the 10ational Security Agency.
and Softwaro In thea Office of the Secretary
of Defense (Research and Advanced Technology), In 1962, he was 4 founder of COXESS. a
A position that Included m1Aagement reSponsibtiitV highly successful software development and leasing
for the Ada program. Hie defined f Irm. During his tenure as its Chairman and
computertachnology research strategies. was1 Chief Executive Officer, C04XESS founded four
thea Initial Architect of the STAR$ program, other computer related companies, one of which
and Proposed the Software Engtineeritt Intt[ute. was CO.'JTE. A computer Communications compAnyt

Hr. IHerman assumed active MAnagement Of CO4TEN
Druffal, who was Associate Professor and4 which Subsequently Acquired COHMRESS.

Deputy Director of thea Department of Computer
Science At the United States Air Force Academy, In 1979. NCR acquired! C011TCR and appoinred
has managed rearch Programs In Advanced Software Mr. Herman As the President and Chief EXecutive
technnlogy, artificial intelligence, and C31 Officer Of the independent Operating SuibsidiarY,
at thia Defense Advanced Research P'rojects Agency. N4CR CONITE.H. Mr. Ihern Was1 later Appointed

A Vice President of N4CR Corporat ion and went
In addition to being coauthor of a computer on to be named ChairmAn, N4CR COXTER, and WAS

Science textbooli and of aire than 30 professional appointed Executive Vice President of N4CR
papers, bruteel it Also a nofrwarolAda editor Corporation.
for Defense Science And Elecironics. Ile holds

a Bachelor's eree In Eltctrical Engineering In 1985. while at N4CR, he became thea founding
from thea University ef London, and A Doctorate ChairmAn for thea Corporation (ot Open Systems
In Computer Science from Vanderbilt University. (COS). COS was one uf thea computer industry's
Ile Is a senior aember of IEEE and a ormber of first open systems consortia, and was primariilq
the Association for Computing Machinery, concerned with establishing thea Open System

Reference Model As A Industry standard.

Don hearman's experience with high technology
companies spans more than 26 years.

8 7ti P* -nual National Conference on Ada Technology 1989

RAMORA : REUSABLE Ad& MODULES FOR OPTIMAL RSOURrC ALLnCATVIO.q

SLoplon I. Mapkey

Lockheed Missiles & Spac= Cor'Sany
Ausrin. TOx4s

TodAy. the tActicAl. roomerafer is confronted with a
high tothnolody battl4lfild that has 0t3"Ificanily
lrteasOd In Complexity. sped. and diversity 'A

Autnmtald derisIon Aids can drtstically rvtdim the
time required for decislon-rekind proceses
necessary for poaInic cWombt Operations, te Iey
problem Associtd with such decision *Ids is
developing methods to employ costly and scare tre1t OPTIMI* ATO"
rcobat resources efclently And effectively C ! -1
VLpgradin current tactia.l coA nJ. control.
toomunications, And intallirrocet (011 syatens or __________________________

the fielding of now C3 . syste s wrrAnti the Tigure 1. RAmom AttusAbla Cs
application of this technology. BY creating
Ada-bAsed prototype decision kid tohnolocy.
devetlopment time and costs for emerging C31 sratems,_____ __

can be significantly reduced The PRA A software
Is 4t deci ion Aid conisti gl of reusable r .onponets pw is A decision aid whtoh autoct:as the
that optimix-ts the AllocatIon of specific r urte currently wenu-l technique of determining the most
twOapOns) Against selected requirements 1riaftsl appropriate weapon systems for pairing Against
for a tactical scenario designated target# A monu-drivwn Interface il."

ior eAsy manipulation of Input and Costraint dAta.
The following processes are facilitated in the
P~kieOO software

• o ovloitnt of A target list

The XeUsable Ad* Modules for Optimal Resourceo

Allocation IW.IW I sytem was developed under Daterminion of the weighting factor
contract to the IXAval Research tAborAtory (IP.LI A,. priorities
part of the Software Technology for Adaptabe. * knual inclusion or exclusion of
Reliable Systems ISTAS$ Planning And Optimization weAponftAwrt pairs
Algorithms Foundation Areas. The purpose of STAR, * Optimization of targettwehpon pairings
was to croAte well designed And docu..nted Ada . ispilay 4 the optimal oution
software for rouse by 410ncis Within the Department
Of D40fnse (DoO) as w ll As defense contractors. Tare~t L,1t

RPAO.M. A Computer Software Configt.ration Itos The user dasienates targets for weapon allocation by
tC.CI). Is based on an objuct-orlented desig selecting from a generic-type target data base. A
ephasizing reusability and portability. At the list of designattd targets is developed In order to
beginning of software davalopment. a reusable Allocate the available Weapon systms. Options for
component search was perforeed on several government developing the currant target list are Add, delete.
and non-government repositories to locate candidate modify, and display (generic or current) targots,
software for reuse. Under the contract, three major For each target In the current tarat list. tht
reusable Computer Software Components (CSCs) ware priority, probability of dam-ge, kill type.
created within the RAIORA software , Effectiveness, dimensions, And latitude/longitude position are
Criteria, and Optimization (see Figure 1). This entered.
paper presents an overview of the WMORA software Wpann List
components folloed by a detailed description of the
ffoctivenes: CSC. Criteria SC. and the I tracks both an available and selected eapor

Optimization CSC. data base. The user selects epons fro the

7th Annual National Conference on Ada Technology 1989 9

available list to be considered for Assignment tc Effectiveness $L4nual 0414M whodol5cy was used to
designnted targets. KMM~t allows for devolopment calculate each WVApin *ffectiveness estimate.
of a current weapon systems list and assVCIatvd single-sortie. probability of damage tSZNI. %hich Is
4ata., Options for daY loping the weapon list Are used to gompute As cumulative damage prnbability. And
add. delete. modify, and display tavAllablo and the number of sorties required to damage x targt to
current) "*an systems. Vor ech weapon system in & specified level OtxvmT). The JUN04 mthodooids
the selocted weapon list. the platform. suniiin. Vora developed And are 04matned by the Joint
forced doploypent. platform ran"e and spsed. cost Technical Corinating Croup for Munitions
factor. scarcity factor. rolvAso conditions. tffectiveness *tC$gi wider thia Joint Chef# of
delivery Accuracies, status, and lit~itudeelangituda 3tAtf to sa-4l mtheaticAlly various *%Aan systss
position are enteredi. and subsystems for weapon affeetivnness w~imAto

va-lehinr retogscotPUations. Two 4)04 swthOdlOOge sire
Incorporated withIn the K'(Am atattw*rs.

Variuus factors are, weighted Into the po~agt Air-zo-SurfAce cJxMiA~i and g1rfaco- to-Sy'rfaca
pairing calculations such as Attrition. cos~t. 1.404,33). Including an adaptation to the JI4DWAS
dOmage, And scarcity of the wapo systems. RVJmM methodology implesmning halicopter deliveories
includes an Interface to allow thei user to sat the 1 =~fr0

weigtingfoctrs.The 4u0VA3 methodologies Art *pen-end methods based
MA d&Srl.ALl on Caussian deliveru error AnM b*listic error

LW4AA allows the user to constrain wvapon.'tsrget distributions for k rectangular target areA element.
Pairs through 0anual exclusions and Inclusions of Assming th4 target elements arei uniformly
wgoponi target pairs. An example of sanuel inclusion distributed throughout the targot arst 'the damagot
Is when a *eapons officer has orders to ptair a functions are limited to rvpresewitations th*,. are
paritular weapo systm against a designated target Intwgable in closed form with respAct to the
or set of targets. khan solving for the solution. Caussian delivery error xA bs.)iIstic error
tht optimixation 0arithm will make the forced distributions. The JU'MJ5 method*ooY
pairing despite the cost or other contrAdIctive consierations begin at munition releas* from tho
foctors. fixed wing airborne plat.). therefore. flight
nallIu.ltatl profiles are not a dtpendlee' factor in t0e weapon

4ffectivanesS estimates,
wmce the target. and wtapon, list. weighting factors. The JxVIAS Sissic Manual describes the derivation Of
and possible manual Inclusions/exclusions Are the logic and mathmetic&l eaprtssions for the
entered, a measure of merit matrix is computed 9hat 04thodologies The *ethodologies are modeled by
represents the 'cost* or criteria Of allocating Vach five computer methods
"0apo system to each desgnatod target. Tho . Unguided VvApOft against 1400-rUtwa.. VVitarY
criteria calculations are based On weapon/target or Area type Targets
effectiveness, platform survivability. wean Cud Vxo agisXnrftY Uiay
scarcity. wean cost, time on target, And the useq* cle Wao gistIoruwe.Intr
specified weightig factors. Weapon effectivene4ss or Ara type targets
estimates are defined In toes of &W.4 sortie . PrOJOcLtRfockoL against lson-runway.
probability of damage SSI'ds and the number of Unitary Or Area type TargetS
sorties necessary to damage a target to a prescribed * Unguided Weapon against Itunway type Targets
level IiNROUT for each weapon type. The * rcuided Weapon itainsL Runway type Targets.
Optimization algorithm. using integer programming
techniques. then assigns wtapons to targets by in addition to the five eceputer methods Is the
minimizing the sum of the associated criteria trajectory methodology that recomputes a more
values The assignment Is constrained by the accurate and representative value for some 0.7 the
Available number of weapons of each typo and the release conditions than what is available In the
requirements for damage (NA4rJI values). tables for various effectiveness estimate
212a af ftaquits computations.

After the optimization process, the solution matrix The JMJadAS computer methods use data from tan files
can be displayed for review and modifications. The Implemented by the Automated Weaponeering:
Optimal pairing of Available weapons to targets Is optimizationa rrocram (AWOPIJMU). 'The files are
displayed In an easy-to-read, color-coded matrix, divided Into the following dependencies;
Multiple solution matricas with corresponding . Wao ytmdpnec ie ltom
weapon/target lists can be saved and then restored muniapon. systmrdpenenitcfs; platforman

for rview.munition pairings; delivery accuracies and
errors: and release conditions.

Effctivees CSC . Target dependency files - target charac-
The Effectiveness CSC Is a reusable component teristics and Interdicted aircraft.
respon' " for manipulating the weapon . Weapon/target dependency files - effective-
effecU. iss estimates. The Joint Munitions noss indices and hard-target reliabilities.

10 ?th Annual National Conference on Ada Technology 1989

UrfaceIr, Sufaim f the *Pon system. and the time for the wevapon

The ,fl'C4/3 vothodolocy Irplgentod In the KigoM sytee to row.-h the target. These baseine vAlueS
*oftw*t'e origti~o frow A manual for 6valuating thn Art nalited. xuluiolitti by the weishting factors.
effectivtneic 0 mnwlcehr indirsct-fire wtapnx and. uhario spopriatiI. wiltiplied by the number of
'A'ist krea thrgetts. - l Th mthgay is wapons required. zcwr. cror opertionsl reasons.
Indepndn. of any delivery aspects of he land onlIy one weapon type !* psired to A, given targoL at
PlAtformt wnj the WeAttOn effuoiveoesa. estimatoz Are sk sp'clfied t'flwI fJUh of those proliaina7
coopPutd. The jw~si methodology Is capable of criteria values tor w~h *vspon.1target pair Is

ccultIrW weapon effeeiveness esti.Ates for normalized by~ tha maximun criteria value for All
Nigh-!xplouive IMI4 W~ proved Convenla,1 weAponewiarg pa Irs And than summed with the
l0ttion (I04) t)"o Wtapo target's priority.

A 4ataj formt was 4eevolmp 7 the ROMS software Prio(riyLLKLij

bUsed On A~J'tW34 dAtak :in* mtv fIles were The priority ratio Is at measure of the Importance of
tevelaped and Are represtnted In th~e follI"~ two priority when determining A solution to the
groups wtapon/txrget pairing problem. The priority ratio

* Wtapon system &"nd1wney Mile - platform Is used wh"* resources Arc insufficient to oot the
and wmnition charaov~ristcs. platform Andi damAge requirements of pill the targets, and
winitiot rAirlogs. 4ud virro-P probabilities ripresents the criteria value Assigned to a target,

* CA'O~tAjftdqrpsftency file - I'qthal when no weapon Is Allocated. The weapon/t~rotet
Argospairing solutions will differ depending on whether

the user desires to maximizae the number of targets
The targe dtat wan CbtAined4 tra the target f1i In destroyed or to destroy highor priority targets At
the AW data base. tkaTmior- no additlona% isorge the expense of destroying Par*, lower priority
files were needed. targets. The priority ratio represents the number

KalleatarOf next, lower priority targets that woul1d be

~%ile A specific JX~ methoclogy do-]s not exist, for 4vac tthhierpoiytrg.

Weicepte delivery for air-to-surface muniios,
the 4IP)(A3 methodology can b#)mplesenV., to ()ps.ilation (c5C
coopt epo n VP teffciveness estimAtes. Decays* tnhe
aunitions types. release condition parameters. and The Optimixation CSC Is at reuable component
delivery aecursos for helicopter platforms are rospwisiblo for optimizing arailable weaopon Symtms
similar to that of fixed wing aircraft, the against lesignated targets. Optimization Is based
Ung"IMe. Cuidod, and ProjectIleRoket JUM/AS on the weapon/targat effectiveness esimates.
methodologies, art used. w*epconftarwe criterik values, the targovs

piriority, and the priority ratio. Two algorithms
in calculating the weapon efftectiveness estimates are Implemented In AWRA branch and Bound Search
for weapon system with helicopter platforms, the Technique and the Transportation Cases Mthod.
AVOOMV* file format used for the J$t'S/A3 Praneh and Holind
calculations can be used. in addition to tne ton
AVO'W= file*, one file was developed to The branch and bsaaud search technique Is similar to
Incorporate present. and postsiblit future parameters An enumeration protedure (computing all
in delivering weavans from a heli'topter Platform. POSSIbIlitiS). except that usualy most of the

nOn-O)PtimA1 poSibilities Are discarded without
boing tested. The distarding occurs when an Initial

Qd1ALjL_=partial assignment Is already too poor A selection
to become optimal regardless of which remaining

The Criteria C5.C Is a reusable co* onent responsible assignments arc made.
for Manipulating the criteria values for the
wiapon/tarjet, pairs. The opti12mitOn algorithms The branch and bound search Algorithm consists of
evaluate the critnria values for pairing Available two primAry compon~ents. branchirg and bounding. The
weapon systems to designated targets. The criteria branching and bounding IS similar to A search of a
valu4% calculations are sensitive to the baseline tree structure. The algorithm branches on the
values. Including the user-related weighting assignment of one of the resikining weapons and then
factors, and the priority ratio. bounds the best answer that could be expected after

MAaaahmn values this Assignment is ma. This is an efficient
solution to the weapon/target. pairing problem due to

The baseline values Are factors relating to the the constraint of Allocating only one weapon type to
characteristics of availaole weapon systems and each designated target.
targets. MWORA uses baseline values3 sensitive to rnotai csgehd
the effectiveness of the weapon system against thn rnotto aqMtn
target, expected platform attrition rate to the Another approach to solving the weapon/target
target, scarcity of the weapon system,. the unit Cost pairing problem relies on the traditional

7ih Annual National Conference on Ada Technology 1989 11

"transportation" problem. rAch target has An
Associated demand for reApons. and weapons hava Ane
associritcd supply. rhe problem is to Assign the
weapOnS tO the targets in a manner that SAtLsflos JWO iS a dacition aid utomating mnua
the demand with the available supply %while tchniques for optlaing alocated resources
minimizing the sum of the asseciAted criteria against designAted requirements. KAMORA is based on

values. the problem with this moldol the using an object-orlented design emphasizing

weapon/target pairing requiremnts is that the reusability and portability. Using objaect-ori nted

demand is atually h function o the weapon type and design. three reusable Co:puter Software Coponentt

is a matrix of values. not one value par target. weridvlop
OPtliation,

A modification of the traditional transportalion
Approach wAs developed by solving A series of
transportation problems with each case consisting of
groups of weapons and targets that can all be hit by Reference
the weapons. This mthod works well when mOst of
the wepon classes consist of enough weapons to 1. Joint Tachn;cal Coordinating Croup for
destroy ill or most of the targets, or when each Munitions Effetoivenoss (Air-to-SurfAce)
weapon class contains only enough weapons to destroy Methodology Working Croup. Derivation of
one or two targets at A tire. for other cases, the Joint MOnltions £EffCtIvOnOss MAIual/Air-to-
computer run time mhy become prohibitively large for Curf4ce Oon-End V4thos (61 JTCOIMC-3-7). MAy
even relatively small (10 wApons. 10 targets) 10.
problems. A result of this Algorithm Is so(twre
for the generic trAnspartktion problem.

CfnitlAf, of Aluftritheft

A complex scheme was implemented for the flAWORA
software that incorporates both the multiple
tranoportation cases method approach and the branch
and bound Approach. rAch of %hese approaches works
best where the other falls. before optimizing, the
NAOICT values, criteria values. And controlling
parameters tsize of proble=, priority ratio. ato.)
are evaluated to determine the number of
transportation cases to be solved It that approach
were taken. if the number of cases is less than
some predetermined threshold. PJ4ORA uses the
transportation approach to optilmizo; if not, RAMOMA
uses the branch and bound technique. in this Stephen ft. ackey
manner. the true mathemt ical optimum As achieved in Luckheed Austin Division

a timely way (see Figure 2). 0800 hurlason Road
T420/30F
Austin. Tx 75744

OrTUMMa r V?
0 RAMN(5 *~ "0" is After graduating from the University of Texas At

AOSgUMS MUMv Austin with a Bachelor of Science In Mechanical
Engineering. began work with Lockheed Austin
Division within the Tactical C3I independent
Resuarch and Development (IRLD) organization
m 4phasizing in Operations Research. While working

on various contracts and IRL projects, have
designed, developed, and implemented software
relating to weapon effectiveness methodologies.
aircraft survivability mudals. and other tactical

Figure 2. Optimization Algorithm Saliction. C3I zwdels.

12 7th Annual National Conference on Ada Technology 1989

GINESYS: EMSED1D SOIVWARE TAILORAIDLITY

Sta;ien Dailey, Jaces Laird, Gary Fulacara, Mark Angcvinro

Intermatric:, Inc.
iluntintton Beach, California

KEYWORDS: Ads Run-Time Support Environment application using tasking viii have included into
(ARsE), its executable load Image the ARTSE code and

Object-Oriar.tce Prograhming, routines necessary to support the multi-taskinZ
Sotware Tailorability, paradigm on the hardware to which the ACS is
Software Reuse, targeted. The intent of such a schie is, in part,
Software Development Tools. to enhance the portability of the applications code

by providing the applications programer a meana to
A recurring predicament encountered In access powerful features without directly
developing real-time embedded Ada software in interfacing to the machine or OS. A major weakness
the inflexibility of compiler Ada Run-Time of this approach however is the inability of the
Support. Enviro ments (ARTSE) to meet specific applications developer to modify or ftailor, the
application requirements. That is, compilera critical components that may impaot the run-time
lack sUpport for tailoring and extending the behavior of their application. An ECS of ten
ARTSE. The second short-coming of compiler requires high degrees of efficiency that may not be
ARTSE'3 is their lack of extendibility dictated attainable with the standard ARISE components and
by their dedication to run-time support for altorittas. Obviously, no Ada compiler vendor can
only Ada language constructs and semantics. In anticipate in advance all of the unique
response to the need for a tailorable, requirements of a given embedded system. Hardeare
extendable run-time support environment for Ada configurations vary widely even where the
embedded applications, Arojet ElectroSystems instruction set architecture remains constant.
Corporation (AESC), Intermetrics, Inc. and Specialized 1/O, mass storage, memory management,
Sparta Inc. have teamed to develop the and co-processing schemes often characterize an
GENeralized Embedded SYstm Specification embedded system architecture. For this reason,
(GEMESYS) tool under the STARS Foundation run-time source code that comprises the ARTSE is
program. supplied with many vendors' embedded tkript ACS's

for an additional licensing fee. This permits the
OI1CKMPIL BAClOMID modification and recompilation of the ARSE. Using

this approach, an application developer can
A principle objective of the Ada language is to incorporate specific drivers, interrupt handlers,
ofer a hIgh order medium for the development of and other critical run-time algorithms into the
reliable, portable software targeted to Embedded embedded systems' support software in place of
Computer Systoms (ECS). A number of features are generalized vendor supplied versions. In examining
provided within the semantics of the Ada language the approaches undertaken by various development
to address this objective that traditionally have projects and research efforts to tailor Ada run
been considered the domain of Operating Systems time behavior, we discovered two distinct
(OS). Ada language primitives offer features such strategies. In the first case, the source code or
as multi-tasking, synchronization, time-based an ARTSE is directly modified without violating the
delays, interrupt handling and others without semantic integrity of the Ada language that it is
forcing the applications programmer to go outside supporting. The second approach is) to bypass the
of Ads language constructs. To achieve this, the predefined capabilities of Ada that are deemed
Ada compiler vendor must provide the necessary unsuitabe via the use ofr applications level
control over the underlying machine to support the interfaces and services (user-supplied). Clearly
full semantic richness and functionality embodied any solution addressing the problem of run time
within the Ada language. This support (ARTSE) is tailoring and extension must support both
provided via a combination of con;.iler-generated approaches to achieve wide application and utility.
code and a collection of external routines that map
the abstraction.% of Ada onto the bare machine GENESYS provides a framework methodology and
(typical of ECS's) or onto underlying real-time supporting tool to facilitate both the
OS's. The ARTSE is not directly callable by the customization and reuse processes. GEMESYS
applications programmer. Rather, the applications provides an automated and orderly way in which a
code is resolved to ARTSE interfaces by the Ada user can easily manage and exploit tailorable and
Compilation System (ACS) according to the specific reusable components. GERESYS will not
Ada language constructs employed by the automatically alter an ARTSE component but it will
applications programmer. For example, an Ada strictly control and manage a set of altered

7th Annual National Conference on Ada Technology 1989 13

components -both ARTSE and applications level- cf a MLASS to build upon the Ada specification
and automatically tailor the construction of the construct. In GENLSYS a CLASS specifies a related
complete executubla progr. IESYS Accomplishes not of visible exportable services (operations)
this by assisting the user in the characterization and/or structures which are represented at the
of the system to be constructed and then by drawing, highest level by a single Ada package or subprogram
upon an existing sat of available tailored ARISE specification. The lowest level Class Is a single
alternative components in strict accordance with Ada specification 14splaented by one or more body
the user's specified requirements. GUESFTS also variations. Higher level class03 can be
provides a lool framework and supporting constructed which are aggregates of other Classes
methodology fn; the growth and Maintenance of a of lower level services and structures. Supporting
dynamic sit of tailored and tailorable components, and Implementing this SeL of high level services
These components co.-i be loth ARTSE and/or non-ARTSE are any number of underlying Ada bodies,
(e.g. applications level). In this sense, GERESYS specificationai for "withedmn units (CLASSES
Dent be characterized as a productivity enhancement themselves) and their sasociated bodies. Within a
tool and methodology that facilitates both program CLASS there can exist any nuxter of variant bodies
construction and ganieral. software reuse at both the And subolasses (withed subprogram units) that
AXISE and the application layer. implement the given class (Ada specification).

Thus, a ODIESYS CLASS is the set or callablfa or
OMF.SYS employs a sat or abstractions that build visible operations and structures contained within
upon and complement the standard architectural an Ada specification as well A the entire
features of Ada to provide more powerful support "Inheritance" tree of all possible Ada 3ubproLzam
for the construction and utilization of reusable bodies and supporting subclasses that implement the
software building blocks. Key to this strategy is top level or "root" Class. Since CLASES can be
t he notion of discrete CLASSES of services, constructed as aggregates Of any rnuber of lower
alternative Implementations of these services or level CLASSES, very complex tree-like structures
INSTANCES, the complete INHERITANCE tree of can result that depict the potential omponent
discrete componants which comprise any given inheritance structure of the CLASS. Any Ada
instance, and the set of quantifiable ATTRIBUTES library specification can sort* an the root of a
which descrite and characterize the behavior of any class and newer more abstract (LASSES can always be
given INSTANCE of a MLASS, built on top of combinations Of lower level

CLASSES. EESYS Manages the context necesaary to
Borrowing from object oriented programming support the building at these moreabstract objects
techniques (37 11M], OJIIYSYS introduces the notion on top of combinations of lower level objects

UAKRT2A UARD 523H1P *23CIP

PC0_ME 1. GE 3SBU LS~&IS ~T -MSAGE

147hAnulNtinlC Brneon Ad Teholg 198

ensuring that the inheritance structure (the Ada INSTANCE or that CLASS. Rieferring to Figure% 1
dependency tree) and associated behavior* are age4n we see that the two Instances ot the Message
maintained. In doing so, GISYS, promotes good Passing service vary widely with respect to both
object oriented programming practice by speed and memory utilization thereby allowing a
Tacilitatinr the reuse of well designed CLASSES for user to discriminate betwten them and make a
inclusion in other yet-to-a-dev eloped hi9oer level selection based upon these two important behavioral
CLASSES, attributes (assuming the communiction hardware has

not yet been selected).
Construotion of a semantically correct executable
program obviously requires the selection of a Key to the GEIIESYS concept is the notion of a
single Aft body for each specification. An SESSION. The GEXESYS SESSION contains all of the
INSTANCE is the path within the tree where choices CLASS DISTAIICE selections that a user has made In
have been made at each point that a body order to support the construction of a compiled
alternative (and its Inheritance of withed units) and/or executable (linked) system. Once created,
is available. Figure I represents a hie'. level the SESSIONS are managed by GEIIESYS and can be
CLASS or services -- On Board Message Passing-- saved, recalled, copied, modifitd, or deleted fromj
with two very distinct implementations. Instance the sytteti.
MESSAGE%_0VER IS232LA is comprised of those lower
level units which implement the message passing~ The followint sections discuss tht installation or
services for a hardware target which communicates classes and instances, how a proramer would use
over an RS-232 bus while instance GERESYS to select class instancen and build a
MESAGES OVVETHEAVE7TD Implements the ame set of session, and how GERESYS fits into the software
higi level messaep services for an ethernet based life cycle.
architecture. The notioa of an INSTANCE definition
and its associateb inheritance structure of 7111 L3UAIM'S NG.K:
components insulates the user (a prormser) or CRATIUG & NAITARIM CLAS3S3 AO IW3T*US
such a service from the details of its
Implementation. It also provides a convenient In order to use GDIESYS as a tool to assist In
method of managing differing versions or relaes tailoring and reusing Ada components, it is
of software services. The user discrininates necessary to first place thoa. components, and a
between Instance* based upon behavioral and other variety of information about them, in the GENESYS
relevant attributes defined for a given CLASS and database. This is the librarian's role -- to
the variable empirical values assigned to those collect components and ;tlace them in an organized
attributes for each separate INSTANCE that has been fashion into a library where users will later be
defined. The attribute characterizes the CLASS able to find them easily.
while the attribute values characterize each

QwnTe th ibrary PasswrdCraaa NW. Clanx
Create a NewSeio
Delete a Clan
Delete a Sesion
Edit a Class
Edit a Sesion
Exit WEESYS

Standard.iao.ssinf
Mark .Sesuion

FIGURE 2. INK 00331S IXT19RFACE IS EASY TO UNDERSTANID

7th Annual National Conference on Ada Technology 1989 15

G999SYS provides a simple, menu-driven user a Deleting Ada components from the
interface to assist in the librarian's duties. Thbi database.
user Interface is based on the X windowing system,
a standard packets of routines for manipulating Each of these operations in accompanied by a series
windows, icons, souse and pointer (WINP). Figure 2 of dialogs between GERESYS and the uiser with
Illustrates the opening screen of ODIESTS. In the GDIESYS rectrictint the actions the user can take
upper left of the window is a "selectable list" of to ensure that inconsistent or tirrontou3
commands that can be invoked from this window, Installations cannot take place.
C~licking the mouse while the cursor is on one or
these commands will cause the command to be To install a new class in ODIESYS, the uner select*
invoked. If the rirst command in tho list (BROWSE) "Crtate a New Class" frm the command list on the
is selected, two now elmerts appear on the screen: main screen, shown in figure 2, and thon fills in
a messaee box (in the lower right.% and a new the necessary information in response to queries
selectable list (in the lower left) (see figure 3). from GENESYS. In particular, the user must
Ths message box instructs the user to make a provide:
selection in one of the lists, and to press the
"CONFIPM" button to cause the selection to take o The nae of the now class,
effect. This sequence is typical of the dialog
between the user and GESTS for all command o The location of the source code file for the
functions. The use of the confirmation via the class$ Ada specification,
message box, plus the general avoidanct of commands
that require the user to type a response is o The location of a help file dencribing the
designed to minimize user input errors or class,
ambiguities concerning acceptable InpuLs.

o The names of the attributes that will be used
For the librarian, there are four basic opqrations to distinguish the various instances ct the
that need to be performed in ODIESYS: class, and locations of attribute help files

that describe the meaning r1T the attributes.
o Adding new components (Ada specifications and

bodies) to the database, Next, the user must describe the relationships
tetween the new class and existing components in

o Creating new instances free. existing tho database. One simple rule dictates the order
components, of installation of new components: Betore any new

specification or body can be added, all package
o Deleting Instances, and specifications that are owithed" by the now

t aryasur
Create a New Class
Create a Now Session
Delete a Class
Delete a Session
Edit a Class
Edit a Session
Evit GEESYS

OnBoardSimulatorSession Click the Left Mouse Button in the User
Standardi Class List, Select a Class to RMWS
Mark..Sesion I] with the Middle Mouse Button, and

then select COWN with the Leit
____ ____ ____ Mouse Button

Nessage-1 Jt.Cin

FIGURE 3. GINMYS WIUKS USE R OUGH10 OPEATIONS

16 7th Annual National Conference on Ada Technology 1989

component must already be installed in the protect the coherency ef the database. Setsions
database. In other words, inatallation proceeds can be deleted at any time. However, an Inatance
from the bottom-up. Low-level packsaes must be can only bo deleted if It is not included In any
present before hihaer-levol ocponents that are exiting session. Deleting an inntance currently
directly dependent on the lower level components In use would leave at least one session in an
can be added. This is necessary to avoid an) inconsistent state. Removing sessions and
situation where an Ada specification or body In the instances does not cause the removal o any actual
database will not compile becaube it lacks Ada components from the library. To delete bodies
supporting units. Likewise, when a class in to to and specifications, further prerequisites must be
removed from the database, it must be at the top of met.
its "dependency tree" -- It cannot be removed If it
is xvithed" by any other component. OEXESYS To delete a class, it is necessary to reverse the
assures this component closur property at all process or adding components, and to delete from
times maintaining a consistent database, the "top down." Defore a clans can be deleted, any

instances rooted in the clans must first be
The final step In the dialo; for adding a now elsa deleted. It the user is able to delete all such
is to indicate the connections to lower level instances safely, the class itself may be deleted.
components. GOEMSYS asks whether there are any When this is done GENEYS automatically delete.s the
"subclasses" to the installed Classes. These class speciFiation and any set of available bodies
waubclasses" are those packaie specifications that In the database (since they are meaningless without
are "withed" by the class being Installed. The the specification).
librarian must enter the names o all subclasses
that the class directly "withs." OVIESYS checks to Individual body components can be removed at any
ensure that the subclasses have already tedn time, but only If the body is sot the last body
installed. This establishes the links within the present in the database to support it's class
database that will be used when components are specification. If there are multiple alternate
retrieved, ensuring that all supporting components bodies, then removals are permitted. However,
are also retrieved for compilation Into the proiran removel of the lost body would leave the
library, corresponding specification part In an unusable,

and therefore erroneous condition, and consequently
After a collection of ccaporents are placed in the is not permitted. The specification and the last
database, it is necessary to create Instances from body must be removed together.
the classes o these comolnents. To define an
instance, the librarian first chooses a class in By using this dialog framework for the librarian's
the database. GENESYS then asks for soe general basic chores of entering and deleting body and
Information about the new instance to be defined: specification components and defining and deleting

instances, the consistency and coherency o the
o The name of the instance, GENESYS component library can be safely mainzained.

Another technique to assure safe database
o Location of a help file describing the modification is to minimize the numbe of accesses

instance, and to the database. A group of related additions or
deletions is held by GDIESYS until a complete set

o The values of the attributes for the instance. of modifications is accumulated. Then the entire
batch of changes is sent via SQL to the database,

Recall that attributes for the class In gneral thereby decreasing the chances of an interruption
were defined when the class Was installed. The in the process (by systeW failure or other causo).
attribute values are in the form of a numeric range
(1.10). These values are used to assist the user BUILDING APP ICATIONS VITOll MS3
In slecting a specific instance or the class that
best fits their needs. In the grand scheme or reuse (rigure 4), GDlESYS

provides library management and application build
The librarian next proceeds down a "dependency capabilities. It permits a user to piece together
tree," and must make a selection of a single body an application by concentrating at the level or
to support each specification encountered in the abstraotion expreased by the class specifications
tree. CENISYS leads the user through the tree and he or she wishes to incirporate into the deilp.
lists the available alternative bodies at each In other words, GENESYS's library mansEent scheme
branch in the tree. When this selection process is encourages a building block approach to software
complete, the instance definition is entered into developeent, where the user sees only the jagged
the database and now represents c complete, edge or the block to which his application in
coherent suite of compilable Ada units able to intended to connect and the build capabilities
provide the services defined by the class. insulate the user frca the actual structure during

the process of source code compilation. Thus the
For deletion of components from the database, class specification literally specifies the tip of
certain rules must be enforced by OEESYS to the iceberg to which the user wishes to attach

7th Annual National Conference on Ada Technology 1989 17

Application

Analysis

3ENESY

71003 4. TI 3L. OF OUeS N M321.

(figure 5). Since such class specifications composition may seen somewhat uncomfortable
represent the mbodiment of the reusable portion of (especially given the iceberg analogy). To
an object and no more, GDIESYS strongly embraces alleviate this, GEMESYS provides the notion of
the iWfware engineering principle of ir!nraaticn class attributes which can be uLsd to express the
hJding and encourages the use of abstract data concerns or constraints of the user regrding the
types in designing classes. icoberg he or she has just selected. Is it too

large? Is it fast enough? Is it hardware specific
There are six distinct steps in building an or is it portable? It is this procens of
appliuation through a GEM2ESYS session. The constraining the choice that becomes the second
following pAragraphs detail the steps and provide step in the process of using GENESYS to build an
an example of a GEMESYS session, application.

Step 1: Identify am Application and Select a Step 3: Select an mplmentatioa. The next step
Component to Rem. The process or using GENESYS is for the user to choose an implexentation of that
is a multi-step process that first involves the olass that best fits within his applicatIon
sel ection of a class specification to use in constraints. Attributes permit the developer to
building the target application. While GEMESYS perform this second step without resorting to a
provides a capability for browsing through the primitive and time consuming source code analysis.
component library, it is limited in aiding the user GENESYS, using a scoring technique similar to
in making this selection (i.e. it has no true Intermetrics' Reusable Software Library [INNTST],
domain analysis capability). This is because makes recommendations basee upon preferences stated
GENESYS does not taxonomically olassify its by the user in terms or attribute values or permits
components or provide a user tailorable knowledge the more knowledgeable user to select an instance
base to help a user decide which classes to use. by directly viewing a list from the library.
There is no inherent reason why such capebilities
could not be added to the tool, and indeed, as Step 4: Sae the Selection(s). Once the selection
future funding and time permit, these important is made, GENESYS performs the fourth step which is
capabilities will be added, to record the user's selected classes and instances

into a group known as a session, where the session
Step 2: State Vow Constraints and r.oreaces. represents the entire collection or class/instance
Initially, the restrictive vision of class pairs that the user has chosen for his application.

18 7th Annual National Conference on Ada Technology 1989

The session is versatile in that the user can can be performed in a development enuironment where
create one or more sesions for each application, the GIESYS host systm (a Sun workstation running
thereby keeping a stored variety of implementations X) and the target environment are separate but
fr a single application that can be called up and connected (by a network or RS-232 link).
built without having to rewrite application cod*.
This capability permits a user to create an Let us now conuider an eample using OGIVESYS to
application and test It with several different select alternative mesaL& passing algorithms.
versions of a reusable component in order to Step 1: Identity an Appliuition (i.e. Create a
evaluate the performance. Session) and Choose a Component to lew*e (I.e.

Select a Class). Let us consider a case in which
Step 5: Generate a Representation of the we wish2 to employ a simple string message passing
Selections. Having a session, the user can then scheme in an application that will reside on
perform the frth step, or creating a Vendor distributed hardware. First, the user creates a
Interface File (VIF), which is a textual session which will hold the specification for all
repreaerat"n of --"l tho zotrce coda modular, kain or tho ocaponenta that will be used froo the
to the library that amo needed to build the GENESYS library. This Session is named
application according to t.he user's specifications. Messagek Test. The class that i* selected is named
The VIF is automatically created by GENESYS by Messag* and basically provides a simple scheme in
analyzing the session class-instance pairs and which each task has a single queue to contain its
information stored about the instances within the messages. These queues can be addressed by using a
GENESYS databiLse. Thus, in this fifth step9 the unique TaskID that must be assigned manually (and
User's abstract specification is turned into a carefully) while d83i1inp, the appliCation(s).
script by which a compiler can build the Class Message is represented by the following
application. In the initial version of GENESYS, we speciication:
attempted to incorporate the User's code directly
into the VIF but soon realized that the process Of package I'.ESSAGE i
specifying a large user application could be quite
tedious. For this reason, the current tool only MAXIMUM MJESSAGE..LENGTH : constant POSITIVE :x
addresses the source code modules needed to 4-096;
construct the Classes selected from the GENESYc
database. The VIF can be used, however, as a a ub ty peo MES SA 0E-T Y PE is3
compilation order script to compile Lhe source code STRINOCI. .MAXIHJM 1ESSAGE LENGTH);
into the users working Ada library or as an Ada Run
Time Support Environment (ARTSE) reconstruction typo TASILJD TYPS is new INTEGER range 1.-255;
script frm a Custom Build Tool (MET) to use to
alter the content of an ARTSE. procedure RECEIVE(

RECEIVER :in TASK ID TYPE;
Step 6: Place the Selected Components Into the SEDER : out7& TAS IILDTYPE;

sear's Library. This step in building an ARTSE or MESSAGE : out MESSAGETYPE);
compiling code into a local library is the sixth
and final step in using GENESYS and due to u procedure SEND(
special tool called the File Transfer Tool (ITT) DESTINATION : in TASKID TYPE;

7th Annual National Conference on Ada Technology 1989 19

30JRCC :In TASKW.IDTYPZ; Step 4: Sa. the Seleotiom(s) (i.e. Sewe the
M39M :~ in)fZSAOITfl); Seasiom). ThA user then Instructs GENESYS to

accept the recommendation and save it in the
end =S~AGE; session Hessagejest. This information i-j updated

both in memory, where the user works, and in the
Step 2: State User Cometrints s&d Preferemees database from which it can be later retrieved. At
(i.e. Set Attribute Values). Cisa Message has this point the session itself corresponds to the
three simple attributes, nely Speod, Memory and application being developed and contains the
Reliability where a high Speed value reflects a specification of a class (Message) sad an
fastamessage passing instance, a highVAnory value imapIeaamen t at ioan * f t h a t, cassa
reflects the usage of a larget amount of memory hy (asat-Wfferedjlessages) needed by the application.
the instance and a high Reliability vale refletn
an instance in which messages have a high Step, 5: generate a Representation of the
probability of arr-eying cti their destination Soetin (i.e. Specify the Sourt Code by
correctly. The user or cur hypothetical class Ofteratiag a 117F). At this point the user is ready
expresses the following preferences (.zn a scale of to begin the build process for his application. To

acomplish this a VIF in generated at the request
of the user. The user is free to view (or -even

speed Ni 9 (Kish Speed) edit) the VIF, bitt need not do so. This file is
tMs~ory a 5 (Koderate Memory the primary Input to the Custom Build Tool. In our

Utilization) case, the VIF will contain the file identifiers for
Reliability a 2 (Lew Reliability Tolerated) MessAgEOSPeO, HekSSageBOdY_, BUffer.M1gr.3pec,

5 uf f arH rBo d yI, Faa tBu sMgr-Speca,
Fast_us)1,..Body_..I Router_pec and Rlouter .ody.j

SteP 3: Select am Implaentatise (i.e. Ask for an In cospilation order. The fact that the user is
Instance Reommndation). Assuming that class not necessarily aware of the contents of this file
Message has several Instances as shown in figure 6, is important and cannot be emphasized enough. The
GENESYS recommends the FASt_ Utffrd-M*esage user need only be aware of the class Message and
instance over the ftaltizedMesagsithjeatries the abstract notion of the instance
and Unbufered Mossaps instances. This instance rest Buffered Massaes which is fast and does not
is recommended by the tool because of Its speed and utilize a great deal of memory. When the VIT is
moderate mffory utilization, generated from information contained in the

FIWUK . 3 ~Ome~ssge

20 7h Anua Naiona Co 6e2nce o AdaTehnloy98

library, the details on how to construct the of the software dtvalopeent pirces annotated to
Instance are ateczatically filled in for the user. show the offacta OENiESYS can have on the

development process. The follewing raragraphs
Stop 6: Place the Selected Components Into the discuss the change: to the software developeont
User.'s Libra-y (i.e. Invokce the CUT). The CET can process required to tace full advantaLe cf GF4FZ.
either provide the atility to rebuild an ARTZE and
compile user classes in the case Or A cross Figure 7 shows that during the software
com.pilation nyol.to tarolt or Jum campiler user requircents dtiriton tsae, G11,l:YS Moiuld be
classes for a host-host coaplatfon ayatta. The considered within two contexts. First, when the
CU? parses the VIF &nd 93norAtos the ACS specific requirements fo~r tha software :tyztcz are tving
invocation necessary to insure the ccmplation Into defined, the Analysts must also consider the
the appropriate Ada library of all Coda specified requirements of the Ada Run-Tine Support
in the VIF. The user need only inform the COT? of Environ~ment (ART). Issues of potuntial
the tareit Ads litrary. Once the MUT has boon Importance Include Ads Language Reference Fanual
executed, the user can cempllo hi: applicaticn code (LRIS) charter 13 support And alcorithoic
against the now Installed classes or link his performance characteristic* cf the ARTSE. Tho
application in orer to creste a rrogrA* containing ARTSE roquirmtritt play a Icey role In tne seleCtion
his tailored ARTSE. In our example, running the of the production Ada compler for the lystem.
CBT will simply copile all of the specificationi
and bodies needed to Implement the Second, while deining the rcquirtnant* for the
Ftjlffordycssaces3 Instance Into hi: worltine system, the analyst., should b* able to identify the
library. Cur 3sample user is then free to write the availability of GENESYS classes that already exist.
application code that will use the class Hessage With the cncwloeg of these existing clmases, the
specification and compile against it. When the analysts can specify the requirmenti in a =anner
applicatiun code is done, the user can link to that will not later preclude their reuse. To
obtain a load modulo containing the prevent restrictive requirmeents definition, the
Fastj3~ffro4djAssaa instance, analysts should follow an iterative process of

Identifying the requirements, reviewing available
GEWESS AND THlE SOPTWAXE DtVLOPHt2(PROCESS classes3 and specifying the requircments. If the

analyst find: one or more classes that may cmtiofy
As was soen in the prior sections, OIIESYS is, in the requirements Of the Zystee, the require-zents
general, a reuse support tool and, specifically, a should be defined such that use of any of the
tool supporting the tailoring, As Well as, the classes is not precluded. Depending on the
reusing of ARTSE and application cmponents. To perceived closeness of fit, the requirtments can be
properly utill-.e GENESYS In a software application, defined in such a manner as to, in fact, ancourata
the developsent team should supplement the normal thej use of available clwase.
software lie-cycle process as early as the
software requirements phase in of roco~nition the During top level do3Lip~ -- definition of *)eftware
potential impact that GMESYtS may havet on analysis, Interfaces -- the designers will identify the ncv
design, implementation, testing and inteeration. ODNESYS classes required for the application. As

Figure 7 presents a trad-0tional "Watorfall" diagan figure 7 't-4ictz, there are tWo tzsic ty;es oC

FIUE7.GIYSIPMf I11KtVLRET R(S

FtonulNtinlgnseceo d ehnlg 992

classes: ARME slid USER. The new ARTSE clatsss to determine what affect substituting one Instance for
be Wined are for those parts of the stlected Ads another has on total system performance. GMEMS
compiler's ARTSE that require tailoring and for manages the software configurations for the
which no existing ARISE classes currently exist. different class Implementations (instances).
The me applies for USER classes -- classes that
Implement system level or application specific but Zf your typical software development projects
not ARTSE functionality. Once these USER Classes better fit the Spiral Model (900M, where the
have been defined, their Interfaces can be pahss depicted in the Waterfall Model are iterated
apacified. Interfaces for ARTSE classes are X times, then the OGERMS tool &hould prove even
already defined by the Ada compiler. However, the more valuable. An iteration through the spiral cn
classes of run-time support which require tailoring involve cDIysT at tary different levels. At the
muat to aeded to (installed in) GMESY3. (A common least, GDlESYS will be used to re-intetgrate the
interface .andard for Ads run-time systems Would various software components. In a more
eliminate the need to install new ARTSE classes comprehensive iteration, the selected Ads compiler
each Lime a different compiler is used.) ARTSE may have been replaced with another -- requiring
classes can initially be installed with only their redefinition or ARTSE olasses and instances to
default (vendor supplied) instances. Tailored match the now compiler's run-time system. It is
instances can be added later. On the other hand, anticipated that the most frequent utilization o(

USER classes can be new and therefore require OEMESYS in iterations through the spiral
specification of the interface as well d development process would be the implementation or
installation cc the class. (Class installation Is modification of alternative instances and, less
discussed above.) frequently, the definition of additional classes.

Once development advances to the design phae, the In a-mmary, 01E1YS supplements the traditional
designers are required to define the instances of sortware development life-cycle in much the sme
the new AR73E and USER classes. This process is manner as other reuse support tools with one very
genrally no different than the detailed design of important addition. Although, soma additional
other software components. However, the effort is requirad in the early stages, GENYS
development tes zhould keep in mind that, zince the should payoff over the entire life-cycle through:
OERESTS USER classes tend to be system level
(executive) or utility routines used by many other 1. ?roductivity increases through rouse, and
software components, the interfaces for these
classes should be implemented early to provide the 2. Reduced development risk through multiple
basis for designing other components. A final instances.
point in the detailed design of class instances:
multiple instances for a class may be initially The potential for risk reduction by supporting
defined. The reason for the development of multiple development paths for the same general
multiple Instances is to provide alternatives with class of functionality, makes GEMESS a unique
different characteristics that, depending on the software reuse and tailoring tool for Ada
actual final system and environment, may be development.
optimum. This approach reduces the project and
component development risk since It is likely that L3S LEAID AND OS INATIO S
one of the developed instances will meet both
component and overall system requirements. An Our work on GENESYS has resulted in lessons and
example would be two instances, one that optimizes observations that can easily be categorized as
(or speed and one that optimi:es for memory development support systm issues and GENESYS
utilization. If memory is constrained in the technolog issues. First a discssion Or the
system and preliminary analysis shows that some letter.
components may need optimizing for memory, it may
be desirable to design both instances. The Doal STANDARD ARTS INTINFACS. Because run-time
would be to use the speed optimized instance unless interfaces are not uniform across different
memory dictates otherwise, compilation systems, a Custom Build Tool (the part

of GEMESYS that performs the Compiler specific
Implementation prooeeds normally with one small application build) must be developed for each
addition. As class lnstances become available, unique get of ARTSE interfaces. Acceptance of an
they need to be added to GODESS in the manner ARTSE interfacing standard such as the proposed
defined above. Once installed in GEMESYS, they AtTFWG framework mould be a big step in, not only
become available to all programmers for unit increasing the utility of GEMESYS, but c opening
testing. embedded systems to greater tailorability,

portability and reusability.
Since OEMESYS actually performs the build process-
- compiling the source code for the session IrST*C$ 1LZCrIU CLLISIONS. Because the GENESIS
instances into the user's library -- G£NESYS class-instance structure is very flexible, it is
directly supports the integration process. GEMESIS possible for more than one instance to utilize the
also facilitates the testing of alternative same Ada package specifications and body
implementations to assess their impacts on various alternatives. It is possible that two different
system performance characteristics. By using body implementations from separate selected class
different class instances the development team can instances may be included in a uers session.

22 7th Annual National Conference on Ada Technology 1989

Tl;is would result In a system that doto not X VIXWVS AVD T119 X RAY TOOLKIT. The X windowing
r'mouton as expected Ainm the last body coapild uneirorzaent providas a portable vindot and grathlo
would be the one used Vj both classes. Currently, environment. However, the X 11.2 distribution from
this lsuu Is not address.ot 1*1 ODSS. P'otential MIT suffered from porforanc protloms. Th: X
solutions Include: pronr.3rr the user to select environment i* made casier to pRogram through a
only one or the bodies o~r nodification or the toolkit. Ve ampicyad the X Ray toolkit. since we
source codot to allowd uze or both Instances. The had available an Ada binding for it from SAIC (also
former aolution Is obviously the caster of the two. a STAL'Z Foundation product). The X Ray toolkit had

poor documentation and the Ada binding had several
CLASS-193TAIICK HOIC SUFFORY TAJLORABILITY AND bugs. (It should be noted that SAIC did an
1131t3. We quickly discavore4 that the class- excellent job In making the binding available
inzsnce nodal we structured to support AMCS quickly for the reot of the STAPS community and In
tailorabilty was equally applicable to support the supporting other STAP~S contractors.) FirAlly, the
tailoring or any donain of software. In X Ray Loolkit did not provide widpts for the types
retrospect, this should have been expected since or w.'n v/graphical objects that would have been
one of the derirable atwrl'bues of object..oriented better suited for the GE2~rjYS user interface. If'
prograing Ianr.%Vo*, such. &3 Suamltalk, Is the time permitted, we could have written our own
Inheritance mechanism which supports tailoring widgats.
while encouraging reuse.

REATIOEAL DATADASE M*AGT~f S!513 - ORAGLW
CLASS-INSTAVCI MODXt. E11COURACKS 1XTERFAC9 Use of the Pro#C prornzrtz Interface to the
STANDARDIZATION. Dy using tho class concept to Orazle RWWJ VAU suOcOcful. The only problems
encapsulate abstractions, CIVMTS helps to enforce encoutered ware the usuAl ntances associated with
the staneardisation a? act~wore Interfaces while a nlsundarztarnding between the docunentatien and
permitting flexibility in Inploentetion. Using the prorasser's inter;cetation. -Ourpriziflbly, no
abstract data types an an example, a standard serious problcus ware encountered In uir% tbe
intarfacz to a stack class could be defined. Creole ROM, C subroutines and the Ada ru±n-time
Several instanced for the stuck would then be anviroment.
Implemented followinE Booch's taxnomy (9OOCO7).
The different instarnco*, implementing bounded,
unbounded, concurroat, nonconcurront, ae. RZFU~Cts
variations on the stuck data typel would all have
the sane inteirface fur users of the class. [11012186) Both=, L.W., OA Spiral Model or~ Software

Development and Enhancesent,U Prcedlnrgs_ IEE
CLASS-ISTANCK HOD. CAR HOLP REDWCK RISK. Dy Z;acond Software Proceas WorkrJlop. ACMI Sot tw1~g
conctrrently dtveloping multiple solutions to the Enil~ror.~ Notes, Aug 1986.
a=e class of functionality, projects can reduce
the risk of any one solution will fail. The class- (300C87] Dooch , 0. , 043oftware Ccaponents with Ad,"
instance model emplcyad by OLVESYS, facilitates Grady Bauch, Donjazin/Cumiflgs Publi:*hing Co. Inc.,
this risk reduction by supporting multiple Menlo Park, CA, 1987.
instances for the saeClass. If at any tiMe
during development, any one instance is usown to [M~rT87] Burton, B.A., Aracon, L.W., Dailey, S.A.,
fail, one of the rtmainine Instances can be used. et al, "The Reusable Software Library,'"
During final testing, the instance that best Software 4(7), pp. 25-33. July 1967.
provides the required functionality can be
selected. This paradiem encouragEs the developsent (FALABB] Falacara, Gary, AnCov~rn4, hgrk, Dailey,
of Innovative solutions in conjunction with reusing Stettn, end Laird, Jib,, "A Tool for Ada Run-Time
tried solutions or developing customiz-ed versions3 Tailoring,' Procaedinrsj AdaFxpO 188, Cot 88,
cf tried solutions without placing the project at
unacceptable ri.sk. (STROO8 Strouatrup, B,, 'What is Objee.t.-Griented

Prorysing,' IEEE Scttwaro, Pay 1988, pp. 10-20.
The devolopment support syst(0s issues include
three specific areas: Ada compiler and support
devolopsont tools, X windows and X Ray toolkit und
relational database manaeezent system (Rr8IS).

ADA ODKPILER. The Alsys Ada compiler for the Sun 3
family of workstations3 Was jyrerally adequate. An
Interesting observation was that larLe source files
that were compilable with the Al.sys compiler on an
IBM PC-AT were too laree for th~e Sun version.
Occasional probloms with the program libraries
occurred. The problems resulted in an unu~at'lo
library which roquirod the recospilation of all
code. It was noted that if' a cupilatios% was
aborted by the user (ccntrol-C), the user took the
chance or corruptinL the progra library.

7th Annual National Conference on Ada Technology 1989 23

DIOCRIK!m

SWUMIi' A. I5AILLY CARY N. FALACARA

lnterastrics Inc. Spar.a Inc.
Dovolopmont *yztQz 0r.q P.O. Box 909

4733 flt.oaeA Avenue suite o15 Ow6nk, CA 91503
Ilotheada, PD "60014

Gary F3lacara I a senior aoftvaro aleciallst
Stephen aley Is Manager ur Environment enpod in the Cwelopment of .. athodoluglez and
weVlepir.t and IntvEation. !lin reaponzillites teola for orwfaro engineering and in Ada ooftuare

include research, devolo.oent, integration and devololntnt for real-time syatons. Ils interests
productiation of =cftuaro developsont tools and Include operating 3yotto, dictributed system,
rvirormantm. Specifi ara ofC Interest Include computer architecture and softuware engineering

=oftuare reusability, productivity, methodologies. Pr. Falacara received a D.E. In
graihicaI/vIndcvlng uzer interfacts and distributed ApSllod Mthematics from N.C. State Oniversity and
* nvirrauormt. P. tailty rocalvoe his DBS. and a F.S. In Computer cienco from California Stat.
V.e. In Computer Science frm Chapman College. University i.t Northridco.

JAM, L. LAIRD PARK ANCEVINE

Zntetatrics Inc. Aerojet Electro-"y5twas Caupany
Aoros.ace Syotcm Group 1100 West Hlollyvale Street

5312 1ol3 Avenue Azusa, CA 91702
Huntington Beach, M. 92649

Park Angevine Is a programming staff specialist
Jim Laird is the business developneut manager for enpEad In the research, development and evahatr
military space 3ystCs. He is responsible for of softvare developsent methodologies and tools,
applying state of the ar, Ada technologiOs to Ada. Ilis intere3ts include 3oftware engitreer"
embedded, spacebourne, real-ime systMS. His parallel programming methodologies and compiler
interests include operating Zy 03, distributed technology. Hr. Angevine received a B.S. in
Systems and real-time softuare angineoring ioloEy from Yale and a Ph.D. in Population Biolo~y
methodologies. Hr. Laird taceived his Bachelor of fron Cornell.
Science from the University of California at
Irvine.

24 7th Annual National Conference on Ada Technology 1989

An Adka Imp4main cC the Da~ta lncTypl ion Slandard in a Rtzal 1ittxVnvirontncen

Mr. Larry Grosberg 6 Mr. David Coe

AdvancodSofrtwairo Techoogy Area
of the U.S. Army. CECOM, Ft. MAlnmouth, N.

AHSrRACr
2. J',.*e: Senaurio

Many studies Involving the Ada propi~n.
Miglanguage rely on simplistic cxaniplc$ to Incor. I h otx fti toteOL ylupo(ntc a solution spxc. The givcn study is based on wil trvie clontet hi s pn th ner fS 'int-data security, consliere to be a high priority with mnany ~ tlPO~Ccvtfpi UP~ O3ttl~ fsn

WSatrc inc og arceers. The DES Mal~a rncryp. flight" rockets (vla a DES integrated chip). The dirtction
tion Standard) was the major focus of the, analysis. and position data or each rocket Is icquireui to be secure

fromt eavesdropping by the potential enetmy. In addon,
the DES system will incoroate. a software support

I. Introduction mechanismn, whereby the Integrity of the DES systcem can
be verified. This requires that the DES software SUPPMr
tlchaflismf provide eccypti~niecryption operations in a

The necessity to use cryptography In order to .stand alone fashion wheni svere hardare failurcs oc-
proect storcd and tansmnhted data font Intruders and cur duting the comniunication linkage of the 'in-flight"
eavesdroppers has beent recognized In miany applications rocI$.
such as clcctrontc funds transrer, automated clear.
inghouses, and securing non-officil computerized miii. 3 CP

laydt.In 1973, the U.S. National Bureau of Standards 3 cp
repndn to ublic concern about the confidentiality or DSsytitasipentdnthAd
nels. invited the submission or data encryption techniques programming language. T1c hardware and software 1w.
as the firsi step toward an encryption schemte Intcnded plenchtktttions focussed upon an 'Ada only" philosophy
for public use. throughout the development life cycle of the prject. The

T7he method selected by the bureau was goals of the project include:
dcvoloped by IBM. researchers. Known today as thc Data
Encryption Standard, it was issued in January 1977 as the 'Verify the design imipact that Ada
Federal Infornmation Processing Standard Publication ha npotmdvlpetusing the(FIPS PUP) 46. It is also known as ANSI standard DEA Aao ipicroin o h DSAo

proose asan SO(InerntioalStandard Organization)

Federal agencies and departments needing such apprsse iationedfor theprotection can purchase commercial DES implmenatinsan1cmoAd ilvedin the-that have been validated by the National Bureaui~n of Adan realimeprodirds as conforming to the standard. Butwreu at Stacn.
tations do not comply with the standard and are generally
inefficient as compared to the hardware versions. The ' To Incorporate an Ada in-line codesoftware Implementations can still provide adequatc sup- emulator to understand how it can bepart to many hardware systems in the cases where prob- sdi h eeomn rAadslems with the cryptographic unit results in a loss or in- tiused n tems.elptta dadstegrity of the encrypted data. It is clear that although thetrbtdste.
stcp-by-step DES algorithm is available in the public
domain, the mathemnatical reasoning behind the DES algo. To gain insight into the hardwarerithm is considered confidential by the NBS. implications that pertain through- out

Ada project developments.

7th Annual National Conference on Ada Technology 1989 25

4. Arna!isfs oif The DES Algorithmn S2 Hlardwre Development 1)ackgroum1

The DES is a singlc key system in which data
Is both encrypted and tkcrypted with the same kcy, a sc- Th agtsscm Is an Iitl Integrated Circuit
qlite of eight numbers. cach betwcen remo and one. 13mulator unit ME 1). where the Ada code is generated on
twevnty-seven. The algorithm divides a bit message into a MileroVax It using the DDC-l 8OSG Ada cross-compiler.
blocks of cight characctrs, then enciphers then% one after The ICE unit was sclcctcd as the target to fa-
another undecr the control of a sixty-four bit key. The cilitate the optimizing and debugging of real time Ada
letters and numbers of each block are scramibled no fewer Code. The Di~ltal Encodinig Chip (WD20CO3A) IS Con.
than sixteen tinecs resulting In eight characters of cipher neeted to a serial port on the ICH unit.
text. The Wester Digital device will be profrmmcdl

The Drs is immune to brute force attacks to use thec Cipher Block Chaining mode to provide secti-
since It would tnke a machine computing one million tri. it to the system's transmissions. Once the Digital En.-
alts r second over a msillenrnium to cover all or the 72 coing chip has been Initialized, the system Is then rcady
tqoadrillion possibla keys. IBM and the National Burea to encrypt or decrypt messages. The Western Difital
of Standards warn against emiploying around 200 of the Eincoding/Decoding chip necessitates that Its data register
DES's keys since those keys are considered scnml.wcak (including the application) rtceivec one byte of data at a
keys. A scmi-wesk key Is any key that might create ' inic in groups of eight. This requiremnent is achieved by
clues In an crncry;pted miessage that could lead to Its dcci. the use of the function UncliecdConversion whic
phermemi in less time than a brute force attack would convert the bit pattern of the source to that of the target
Consume. (utilizinF the same anmount o(memiory). These messages

rmy onginate froni the rocket sibsystemn or fromn the
rocki comandsubsystem.

5. Developntn RackgrosimI

6. System Development
The development method utilized in this pro.

ect Is that of the "BltomUp" method of software
dsign. In this methdology, the lowest level miodules are The development of the DES system incor-

the ones to be desgned and coded first in the devzlop- porates the hardware and software implemnttations of the
ment. Succeeding moules are then designed in a i)ES standard. The duality betweven the hardware and the
hierarchical fashion until the progression towards the software DES subsystems allows the overall system to an-
main module is complete. This methiodology was chosen ticipate a high degree of integrity. Thus a task BIT (Built
because of the abundance of independent low-level in Test) will check the operationa! integrity of the pri-
modules (without much up front design overhead) that mary modec of the DES system (i.e. hardware) to that of
were required to be implemented in the early phases of the secondary mode. (i.e. software). Obviously. the
the DES'systzin project. software mode will offer the custotmer (i.e. "in-fliflht"

rocket) a decreased throughput that is directly proportion-
al to the number of customers that ame requesting service

5.! Softuware Development JRockjgrountl in the given time interval.

The software DES subsystem is bascd upon the 6.1 Software System Development
standard DES algorithm for motivation in its imiplementa-
tion. The most important cryptographic function em-
ployed by the DES algorithm is the product transforina. 'ile software subsystem consists of four Ada
tion. it consists of succssive applications of substitution packages (about 900 lines) providing direct and indirect
and transposition ciphers. Transposition ciphers involve support to the application DES module. Th)e software sub-
an encryption procedure that changes the normal pattern system is designed to handle words (i.e. 16 bit values) in
of the characitrs in the original plain text mcssagc:. Sub- the range of -32767 to +3V/67 of bam..type. (arbitrarily
stitution ciphers on the other hand, replace blocks of classified as bam...type but identical ton th integcr type
characrs with substitutes. found on many P.C implementations) All data must be of

the said type (or convened), before the given data can be
processed. The encryption key, External or Internal, must
be incorporated into the system before the key can be

Srocess-ed, and thus before any encryption can occur.
ote that the dita to be encrypted is considered to be

processed in a sixty-four bit envelope (i.e. tour words)
with zeroes being employed as padding if the submitted
data envelope falls short.

26 7th Annual National Conference on Ada Technology 1989

The sortware DES subsystem provides an cn-
crpion itm of 0.679 seconds for sixty.fousr bits (four

6.1.1 Dcvelopmert Sructr wds) of data. Encryting the position data for five rock.
cis tookc 3.46 secens, and encrypting the guidance data
for the ive rockets took 3.67 seconds. (Thc MicroVax It

Package Rockci-Typcs *> (50 Lines) defines the maJor and the DDC-l compilers were utilized). P.C. versions
data types that arm to be employed by the rocket were also impicnienitd which resulted In a n.casc In

scenariomodel. rforiianft levels as expected. (22%A slower on the PC0

Package UtilityJ :kaigc m> (83 Lines, 2 procedures, 3
Functions) consists of specified DES types and atonile
modules that are to be employed by the DES archirec. 7.2 Status of lla rc Development
tuc

Package SW..DES-.Paekagc a> (201 lincs,4 procedures) A fcw inconsistencies with the DDC.I Ads
the uppr level pxck2*c that provides cncrypiklecrypt comipilcr have resulted in the hardware being untested.

DE unctions In a vAriety of envelopes.

6.2 lhard wre System Development These inconsistencies amc:
1. When the code for a certain package was en.

closed in a sinle file, the compiler stated that the library
The first module to be designed was the pro. was too niall and that a new sub-library needed to be

cedure responsible for the Initialization of the created. This error nessa*'c occured when wrthing the ot-
WD2QCO3A.The recciveing and sending of information to jeer code into the library. lte same code with thec
port addrsses %%as accomplished through procedures in modules in separate files compiled successfully into the
the DDC- I's Low.LcveUO package, Rcceivc-.Control library.
and Send...ontroil. (Since theme arc no built-ln-fearurts in If. The use of Ada generics resulted in the Ina-
Ada to handle bit manipulation, a procedure was desi~ned bility to compile certain procdures needled for the termi.
to handle this requirement using the Ada Machine.(.ode nal drvrIsiiyto tistinguish genetric packages of
package) overloxded procdures). Compiler stated the second pack-

In the n~xt level of design, there is a task which ages poeures alray exsted In the librsry.
allocatas the DES resources (or either guidance or posi. Ill. D DD.1 ccmie dfines "Byte" to bea
tion data. After insuring the first call to the task is for an "new integer". which states tat "byne" will take up two
encryption, the task loops indefinitely allocating resources bytes of memory instea of oebyte as expected. This
for either encrypting or decrypting. caused polems with soe of teprocedures in the

The next level Is the B~uilt-in- Test, BIT. This Lowj-cvcl..lO package.
level supplies the integrity testing of the hardware Digital
Encoding chip by verifying the hardware's results against
those derived from a sortwarz emulation of the As a side note, since the target system did not comec with
hardwares algorithm. At a pre-definedi interval, BIT will a moitor/keyboard (or input/output during program cxc-
test hardware integrity. If an error is detected, BIT will cution. a terniinal driver has been wrten using the
switch requests for encryption / decryption to the software DDC-l's Ternninal..Driver package.
croulation package.

8. Conclusion
7. Status of Development

Once the system is executing as designed. the
7.1 Status of Software Development current tar~et system can become a test bed (or more ex-

peraments in the rea time arena of Ada applications. The
attitude of this group has been to unravel these unrore.

The Software DES Subsystem has been tested seen problems rather than by-pass themi. This attitude al-
against a detailed step by siep example (see Katzan,86). lows proprmmers to observe the limitations of Ada in
The time and effort required to develop "In-l louse" multi. the real time environment. Obviously this is the inception
pie test examples was found to be too costly in both of this project, the real significance will conic when the
respects, instead a simplification in the testing process systemn is ported from a single processor system to a mul.
was implemented. Many variations of the sixty-four bit tiple processor system with minimal restructuring effort.
text and/or key wvere tested. The assumption being that if
the software subsystem can decipher the revious cipher
message, then the system can he deductsi to have sonic
degree of integrity (only if the system was proven to be
working against a known example as is the case).

7th Annual National Conference on Ada Technology 1989 27

9. Further research Lakwrence Grosbeig Is a member of the software engineer,
The area of porting a pMrogAM Strctd for A Single Ing staff for the Advanced Software Technology area of
procesorc system to one of multicple ocssors ha the U.S. Army Communications Electronics Command
numerous possible utilizations In Ih real time fiel. Fort Monmouth, New Jersey. I1l holds a B.S in Electrical
Also, the Inconsistencies in the DDC.1 A4 cross. Engineering and a M.S. in Software Engineering from
compiler can he analyzed for definitive causes, at nlord Inierational University, Miami Florida and Mon-
present there can only be suppositions as to the actual mouth College. West Long Branch New Jersey.
causes. In addition, th software encryption modiuls can
be utilized In the fiel of Ada benchmtarking. The com-*
plexity of the DES algorithm does incorporate many basic
and complex Ada features. The vision of standard bench-
marks that rates certain Ada enivironmecnts by their
respective DES throughputs in cps (encryptions/sec)
can be of a valuable asset toward the evaluation of such
environments.

Rkfcrcnces

United States Department of Defenrse, Reference Manual
for the Ada Programming Language MIL SlD 1815A,
Ada Joint Program Office, March. 1983.

Katman, Harry. The Standard Data Encryption Algorithm.
Prentice-I fall, 1985.

Bosworth, Bruce. Codes Ciphers and Computers. H ayden
Book Company, Inc. Rochelle Pak Ncw Jersey 1982.

DDC-l Ada Cross.Compilcr Rceteence Mlanual, Appendix

Acknowled!gmrnts

Dr. Thomnas Wheeler, AMSEL-RD.SE-AST, Ft.
Monmouth, N.J.

Mr. Toni Griest, LabTech Corporation,
Mis. Judy Richirdson. AMSEL.RD.SE-ASTr,

Ft. Monmouth, N.J.
Mrs. Mary Bender, AMSEL-RD.SE.AST,

Ft. Monmouth, N.J.

Blograpides

David Coe is a memiber of the software engineering staff
for the Advanced Software Technology area of the U.S.
Army Comnmunications Electronics Command Fort Mon.
mouth, New Jersey. Ile holds a B.S in Electrical En.
gineering and a M.S.in Software Engineering fromt
Widener University, Chester Pennsylvania and Monmouth
College, West Long Branch New Jersey.

28 7th Annual National Conference on Ada Technology 1989

FIG. 1 DES CONTROL SYSTEM I.2DSSYT1 OE

I- - i 6

L i

La =/1

FIG. 3 DES-SYSTEM STRUCTURE DIAGRAM

71h Annual National Conference on Ada Teclinology 1989 29

A Hardware Independent System
Development Approach Involving Ada

Tom Dale

Unisys Defenst systems
bMclean, VA

SWi cunf"tly investigates message, handling environments
to Identify "recurring poblems." These recurring problems
arc evidenced by assigning functions to threads of control
mid noing those functions repesented on m~ore thin one
thread.

Ahslrad This paper descnibcs an independnt industil attempt to

This paper presents lesson$ learned from a C-11 projcct develop a mcthodoloty for quickly delivcring working
cmployinj rapid prototyping and object-oriented r~I into the marketplace. In 1987, Unisys Defense
programming. The pjeer gol, to develop a hardware- ysteM O~iflted an MRAD (lndepcndcnit lRcsearh and
independent prototype implementation of an advanced text Devlpmnt prjc odvlp tehooyfokucl
(aka message) handling system, necessitated a software asembling text handling environments to suit a wide
development strategy consisting of X Window, rOSIX, vaiety of users. Messagc handling domain cxpcrts felt
N-srCP/lraherrnet, SQL, Ads, and C. This paper there existed a better way to develop message, handling
Yclatcs lessons learned about rapid prootyping, reusability, environments. Thec pro~ect's intent was to quickly develop
attaining hardware independence, designing A distributed ai working prototype satisfying military requirements, not to
architecture, using Ada in a multilin;ual environment, produce a strictly Ada solution. This work may be
tuning the performance of Ads application code, and characterized by its implementation emphasis on 1)
Integrating COTS/ND! within an Ada environment, eroIc wth system requirements developed "from the

usrintrfce on back" in an integrated application
cnvironment and 2) developmnt of reusable components
designed to address specific implementation concerns
regarding performance, scalibility, and configurability.
The scope centered on providing a modular design that
could incorporate emcrging technologies (i.e. permit easy

1. JflroWduCflof technology insertion).

Ada has gained increasing acceptance for usage in non-
embedded mission-critical applications. H owever, Ads is
not the only "standard" currently receiving Government
acceptance. A plethora of other standards have also 2. Business Rationale
received certain notoriety, such as Network File System
(NFS), Structured Query Langua -, (SQL), Portable This IRAD prject is aimed at effecting technology

orting System Interface (x) (POX), Ethernct (I11111 insertion by developing text handling components capable
82.3), along with others. of incrementally replacing existing components. Unisys

Defense Systems based its rationale on the fact that the
Non-embedded mission-critical systems, in attempts to prototype must be integrablc into an existing system, and to
reduce system costs during these times of lean budgets, will provide better service, for ess cost. A supenior product
employ commercially-available hardware and software (working prototype or not) satisfying mission needs not
where feasible. Attainment of hardware-independence only enhances business perceptions, but also provides users
further requires adherence to a strict suite of interface a greater capability and user project managemnt a success
standards. This ppr describes the engineering approach story. Tighter budgets pressure the military to replace
of an application in which *ea functions as one element of obsolete, expensive to operate systems with modem
a hardware-indcpendent yoih.hardware and software which will increase performance

and cut costs.
This paper addresses concerns arising from developing a
working prototyp text handling environment consisting of Unisys Defense Systems realized the importance of a
Commercial-Of-The.Shelf (COTS) software and newly comprehensive strategy for integrating different
developed code written in both Ada and C. This limited components. Open Systems are software environments
domain description parallels work underway at the comprising products and technologies that are designed and
Software En~inecring Institute (SE!) regarding domain- implemented in accordance with vendor-independent,
specific architectures but differs in origination, intent, comunonly available standards.
emphasis, znd scope.

30 7th Annual National Conference on Ada Technology 1989

Ada will chage the way c ompanies do bsincss with DOD Innovations pomising big payoffs are also accompanied by
because th languag is the sae from one System to a certain degrec of risk. To sell management on the
another. Acrss.tho boas use o p' A provkids the bcnctits, you must also be In a pition to spell out
conpeitive edge to the company with the best overall precisely how you intend to control and minimize thos
englrsecring soluon. Sparate initiatives within DOD to risks. A distinction should be made b.t-wen change
use COTS products ad industrial standards whcrever management and configuration management. Change
po ibk: also rcduccs the potential fo unncccssarily managcment tracks the changes to each individual
restictive compeitin. It seems reasonable to incorporatc component of a svstem. Configuration manatcment adds
strengths fron both nitiatives. the capability to oganlze, manatc, and track all pieces of

an application as a unit.3. Approack Only one proyped function could not become parn of a
Unisys Defense Systems utilized an approach predicated final system. One function was prototyped using
upon the devclopment of a hardware lndcndcnt toolkit of SUNVIIEW since at that time a requircment existed for a
text handling components. window.based application and XI I was not stable enough

to use.
Text handling conforms, to a larle extent, to a datflow
paradigm. Problem decomposition, a central design feature Protlp elements havc been evaluated to idenbfy
of any large system, whether prototype or production, polential difficulties in deliverable versions. Statistics
ykdd a top kvel functional dccomposition (ala the concerning the firing frequcncks of the pro e's
structured analysis school of thought) which provided a components identified potential performance bottlc l%.,
system view of the Interconnecting bulleing blocks. The
system's working scenarios then provided system User freedback helped to evaluate the appropriateness of the
requircments, operations concept, and an initial thread pototype esignconcep.
design. Those threads capable of utilizin; rcuszblc
components were sclectcd first for prototyping. This 3. R C m pnt
stratcgy focused the prototype effort on succcively
denonstrating implemented threads. A different perspective on rcusabil'ty permits design of

paameter.driven functions as reusable software
components whtch nod not be strictly Ada eKnesics.

1.1 Rapid Prowlyping Geneics arm uscd where ap&plcabT to effect 'AGA' euse
(e.g. dou' .jlinked lit gencric): however reusable sotwam
components reduce both dcvtlopm.t and maintenance

Dynamic and transaction processing oriented systems risks. These reusable software components correspond to
involving extensive user dialofues tend to be the best operations performed in the system and reduce both
applications for rapid prolotyping. A rapid prototyping development and maintenance risks.
methodology allows iterative refincment of system
mquirements and embedding as many of these Dataflow and control flow are two popular decomposition
requirements as possible into the uer interface to build the criteria. Components of a dataflow decomposition are
system from the user interface backwards. The system's independent sequential processes that communicate
objects resulted from this iterative prototyping of the user through buffered data streams (essentially FrO queues),
interface, while the components of a contol.flow decomposition are

procedures that are called by and return to a main
Two major types of life cycle models for prototypes exist. procedure with a single control thread.
In one, the prototype Is regarded as a throwaway to be
discarded when the real production system is implemented. lligh.quality reusable text handling components are
In the othe., portions or all or the prototypes wind up as the attainable. It is important to have a relatively complete set
end product, actually becoming the final production of gencral-purpose components to pedorm the functions
system. The goal of a prototype typically differF from that common to many systems, such as managing displays,
of a production software system In that effective use of soting and searching, parsing input strings, and managing
designer time and rapid user feedback have greater look.up tables. Many of these functions can be effectively
importance than efficient use of machine resources, encapsulated in a small set of abstract data types. It is very
completeness, and robust operation. Ilowcver, giv.,n a important to provide generic versions of the reusable
competitive business environment without de luxury of components because it would otherwise be impossible to
tme, business strategy dictated development of a prototype design with abstract data types while relying on standard
system capable of replacing existing production systems. reusable components for performing common utility

No sensible manager would commit to rapid prototyping

armed only with third generation compiled languages and A strategy based on reusable software components is a
some batch data management utilities. To put the "rapid" in promising, practical approach to rapid prototyping.
the prototype, be prepared to evaluate, select, and purchase Modularity is especially important in prototyping because
some software development tools that could be quite of the need to make many changes in a short time. A
expensive, systematic method for protoiyping is necessary but not

sufficient for the rapid construction of prototypes for large
real-time systems.

7th Annual National Conference on Ada Technology 1989 31

"ie engine concept (atrikity) evolved. An cngine is not Standads reduce the risk of obsoescencc and reduce costs
machine-specific. A specialist works on an engine which because th're supported by multiple vendors. They also
allows creation of new feato rs without having to split reduce ta-.se- rvice n dsupport costs. Costs associated
work w a multiple teams. This method avoided the with $oflt . re-writing, staff r.training, and loss of
trackinl of canes required should a layering approach acee* to .formation am monumental when users arc
baud on differet operating cvimrnts have been used. reqare4 to novc from one popricay system to another.

in fact, the likelihood is slim that a user can even maintain
3.3. Didributed Architecturt and ruse ali his or her information -- years of collected

data - after a mao change in hadware.

When dsigning a distributed architccture, top kvcl
functinl decomposition allows a designer to obtain a Users have demanded sunddization to hook together
system view of the interconnecting building blocks heterogeneous computing environmcnts so that application
describing functional (servie) requirements. Rulting programs can move between different operating systems
modularity incrcass productivity by reducing debugging within a single network.
effor and Improves undertandability, rcliabili!y, and c s are accepe, hardar comparisons
maintainability of developed system software, fbaeores e s tandard zation rde proc
especially |mporurt In rapid protopmin . become asir. Sundadixtion rducs product

uniqueness; it can also increase the retun on research and

The number o modules affected by a change is limited and dcvclopmmnt Investment. As the software-hardwarc
can be determined by a straghtforward mcchanical interface becomes more standardized, software developers
analysis of the protoype's dataflow structure and thrad do less work to ;et more money. Fewer channels will be
delineation. Distribution of computational pans among needed for muketing, and the marketability of many
several processors becomes easier, since ImplicIt software products will b enhanced as software
interactions, difficult to implement in a loosely coupled applications begin to run on mor types of hadwar and
architcture, have been eliminated. become makcted through wider distribution channels.

The trend exists toward distributed applications based on Softwar should be purchased from vendors who am viable
the client.stervr model. When multiple users access a for the long term and have solid migration strategies. Since
cmmn resource, perforwnnce becomes a critical issue these vendors provide a migration path as standuds evolve
Distributed processng Is key to maintaining top server through multiple rermuttions, they can spread the burden
performancc. The processing potential of each network of migration rewrites over the entire customer base.
node should be exploited instead of ktting the server do all
the work. One solution to this problem is to use a Both purchased and inernally.developed software should
distibuted environment based on low-cost workstations. be vnftten in languages that arc likely to continue as
Rapid advances in computer hardware have allowed sundrss. In addition, code generators should be selected
networked PCs to become an alternative for many military which genecrate standard languages.
applications once reserved for mainframes or
minicomputers. ligh-speed 80286- and 80386-bsed PCs This rush to provide users with the standards they demand
have the raw computing power of minlcomputcrs. such as POSIX, SQL, and Ada does not in itself provide the

foundation for viable open systems. Vcndoms must provide
Interproccss communications also allow applications to these standads in an integrated and common fashion that
send messages to each other based on the results of spccific assures consistency of implementation. Standards am
actions. Servers were connected (whatever their source defined with allowances for implementor-dcfiesd options,
language) by communicating through files. rwo processCs portending different "standad variations.
must agree on the interchange protocol which adds
complexity but allows modularity. Eventually, such 3.4.1X11
integration code will be performed by knowlcdge.based
engincering tools. In distributed environments, the X Window System, or

XII3 developed at the Massachusetts Institute of
3.4 Standards rllnoloty (MIT) and supported by the X Consortium,

. "ng most workstation manufacturers, offers network

Standardization and openness are taken for granted in transparency and unprecedented portability of applications
telephones, telecommunications switches. televisions, programs. Applications running on central mainframes,
radios and compact disk players. Whoever the minicomputers or other workstations can display results on
manufacturer, all these devices can "talk to each other' and any vendors' local workstations running the X I I server.
freely intmonnect. In X I, the connection is made over the network. As long
Standards allow users to move forward with technology as an application is capable of issuing Xll protocol
innovations while protecting software investments and requests over the network, it can display output on, or
minimizing training time. Standards allow software obtain input from, any device on the network that is
developers to concentrate on writing applications and running an XII server.
solving problems at hand. Standards provide
transportability across various platforms, thereby protecting Since the major workstation vendors have committed to
a software developer's investment, supporting XI I, system integrators can avoid being locked

into writing their applications for a proprietary windowing
system environment and can choose workstation hardware
from any vendor to support their applications requirements.

32 7th Annual National Conference on Ada Technology 1989

The XII client application is made of several laycls: he Ilic I "lE standard offers some options nndated in the
Xlib programming Interface, which Interfaces with MIT 1:1S. in some instances where the full.use standrd offe
toolkits, which can inlcrface with high.level graphics (c~g. a choice for implementations, NIST has selected one
PHlIGS, GKS), from which a look and feel can be choice to ensure application portability. The resulting FIPS
devloped. XII doesn't specify the louk and feel of the requires vendors to meet a more demanding specification.
user interface; it simply provides a sct of tools with which This unilateral move by NIST on POSIX is a departurc
to build one. The X Toolkit, which includes X Toolkit from its tradition of waltinlg for vendor to adopt standards
Intrinsics and X Widgets, contains software tools for X. before drafting federal versions of those specifications.
based applicions development. The look and feel consistsof h -the grphics and ions align on the screen and how NIST has another effort underway. With the help of
the ioolkit g s called. Ultimately, a user nterface needs to XIOpen, it has developed a proposed family of next-
be intuitiv to be valuable, with "intuitive meaning menu. igne on standa ds called the Applications Portability
based or kon.based. The comfort factor of the uscr withn' Pinroic (APP). the APP addresses POSIX bindings, or
interface is what detcrmines acceptance. links between applications and POSIX specifications, for a

host of functions, including: database management; data
The client requests graphics, and the server provides them. Interchanges for document processing, graphks and
The server can he local oron a different type of CPU on the irodUt data; nctwok services for data communications
other side of the building; the user doesn't have to know. and filc management: and hooks to support different
This allows applications to run on platforms whem they can computer languages (C, COBOL. Pascal, FORTRAN and
run best, rather than being restricted to the workstation. Ada).

3.4.2 POSIX The IEME iOSIX committee has recently formed a
subcommittee, called the P1003.0 group, chartered with

The term POSIX is an IEEE trademark. POSIX alms at defining a Portable operating environment, similar to the
making the inde nt part as large a = ion of the NIST cffor. P1003.0's objectiv is to intcgrate vaenous
whole as pomsible. Mc aon 0IJ p1ovkde an excellent application standards (wlndoing systems,
compendium of POSIX, parts or which have been communications, Programming languls, database access,
paraphrased freely and included herein. Most vendors will graphics and user intcrfacc) with POS IX and cach other to
meet POSIX standards, albeit Some grudgingly. create a public domain open systems environment as robust

as a proprictary system environment.
The issue is not whether we will reach POSIX compliance
but how quickly we will reach POSIX complance. POSIX P1003.2. Shell and Tools Interace, defines a progrmmatc
attempts to effect software, hardware, maintenance and interface for shells, tools, and some commonly found Unix
training savings. The Government has assumed the kad in utilitics like awk, grcp, Ip, lace, ctc. The command set
open systems which will return value as new applications was frozen in March 1988 with the standard shell and tool
and technology become available. The Govement desires interface expected lite in 1989.
,* computers to work in multivendor environments. "IV%
goal consists of three parts: poaluility, interoperability, P!003.5. Ada Binding for P1003.1, will develop language-
and scalability. Portability enables systems - even those independent representations of each service described in
from different vendors - that meet POSIX specifications to P1003.1 so that Ada representations may be established.
use the saipe application software. Interocrabilty allows P 1003.1 is based on C.
the computers to work together, and scalability means that
different sizes of computers - from personal computers to Other POSIX efforts Include P1003.3, Testing and
supercomputers - can exist in the same scftware Vrification, P1003.4, Real Time, and P1003.6, Security.
environment. POSIX and the System V Interface Definition (SVID) test
The POSIX IEEE 1003.1 standard Is a Unlx.based suite for Unix System V compatibility overlap. Roughly
operating system interface designed to provide portability 30 rcent of the SVID specifications are not included In
of applications software at the source code level by POSIX, while about 50 percent of POSIX is not found in
producing a System Services Interface standard. P1003.1 the SVID. AT&T plans to make release 4.0 of Unix
defines a set of system calls and library routines, some of System V -.which is due late next ycar.-POSIX-compliant.
which am optional. It does not address operations such as
user comn'.ands,. 3.4.3 NFS

NIST created the initial POSIX Federal Information NFS provides transparent, remote access to filesystcms.
Processing Standard 151 (FIPS 151) to give government NFS uses an External Data Representation (XDR) to

describe its protocols in a machine and system independentbuyes a set of specifications to use bfore IEEC formally way. NFS s implemented on top of a Rem1ote Proceure
adopted 1003.1 from which POSIX FIPS 151 differs in Cay. NPS ackmpe toplf arotoc de
small substantive ways. Many of these differences are Call (RrC) package to simplify protocol definition,
enerational since the FIPS is based on Draft 12.0 of implementation, and maintenance since RPCs are
1I003.1, while the final standard is based on Draft 13.0. synchronous. NFS uses a stateless protocol to facilitate

NIST is now committed to revising the FIPS and bringing crash recovery. NFS does not support all of the Unix
it into line with Draft 13.0. P1003.1 is expected to be semantics.
adopted by ANSI and ISO making it an international
standard in 1989.

7th Annual National Conference on Ada Technology 1989 33

It's not uncommon to find a nctwork with 10 to 12 Ada indrg allow data sharing among programs and
wobkstations oi Er ng slowed down due to prvideintrfaces to procedures witten in othr languagcs,
bandwidth limitations, making suitable NrS perormance such as Fortran, C, or assembly. This .lAbility gives users
qucstionabk. An thercnet can be divided into smalkr access to operating system facilities and supplies a
dcpartmcntal systems with a faster, broadband or fiber convenient method for incorporatin; real.time features in
cable connecting them these communities of interest. Such an Ad& system. At the same time, this methodolo ,y fulfills
"internctworking" will be a key issue for netwock managers the letter of the Ada language requirements but maybe not
in the near future as well as long term. A liber Distributed the spirit.
Data Interfacc (FDDI) network has transmiuion speeds of
100 Mbps and, since the token is rleased immediately Ada suppliers now provide other methods to dcal with real.
after transmission, suplOrS circulation of multiple time programs. These solutions include ln.tine
mcssages on the network simultaneously. environmcns that mect real.time requirement$ but stay

within the limits of the Ada language. Usually these
3.4.4 SQL cnvironments provide access to the operating system or a

computer through Ada packages .. construts that definc a
SQI., developed for relational databases, rpresents a related group of type definitions, data declarations.
mcthod to manage and query relational databases. SQL is functions and procedures.
Implemented on personal computers, milnkomputers, and
mainframes. Most vendors have developed SQL supcrsers. Concurrncy is possiblc but difficult to achicve in Ada.
More recently, vendors have implemented distributed Users need a way to dcefim tasks that are divided across
versions of their SQL systems. Essential integrated multiple procsso. To do this, programmers must
development tools have been implemented by virtually all determie the kinds of objects each Orocess can *ccess,
vendors to support relational database management system set up communication betwecn processors, and identify the
(RDDMS) application development. data that must be accessed by each procssor. Ada was not

dcsigned to meet this complex programming requirement,
Dr. EF. Cobb invented RDBMS over 20 ycrs ago at IBM. referred to as the definition of share groups. One ,olution
In 1985, he published 12 rules defining RDBMS In an to this requirement is to provide a mechanism to sham data
attempt to keep the term "relional from being corrupted between Ada programs, reliving the user of the lowlewvl
by database vendors. The ANSI SQL standard falls short implementation that normally occurs with shared data. A
of recommending a RDBMS as defined by Dr. Cobb. For pragma defines this package as a shareable data pool.
example, ANSI SQL does no offer any recommetnid tions
for a catalog or indexes although most vendors do offer this Ada places operating.system functions in the language.
capability. Ada task manalcment is the responsibility of the Ad& run.

time environment and may or may not involve UNIX
Most vc.'don are working on extensions to their RDBMSs prcss management. The Ada task schcdulcr sits on top of
far beyond that envisioned by Dr. Cobb or those th UNIX process scheduler which tends to slow thlmtr
recommended in the ANSI standard. Vcndors arc now down.
Implcmanting commands for the manipulation of complex
databases Includin& digitize voice, bit.mapped graphics, 4. LuOm LAernd
MCnIMAnda, AM Others.

4.1 Rewability

3.4.S Ada Customers Merely desire fewer defects per system. Reusedcode Is Invariably better quality than new code because it
Ada has been mandated for use in developing new systems, has already been "proven." Reusable software building
The term "Ada" includes not only the Ada language but blocks give better quality, a unified user intcrface across a
also the environment, software cnrfincing, good software multiproduct line, and better sped to market.
tools, confguration control, ctc. Ihowever, anticipated cost
savings from the use of Ada am not being realized. Recus can be defined it a broader levl than just Adagenerics to create "Softw'arc-lCs" 13].
Ada packages are a good means of implcmenting standard
components. Ads packages allow a superior design We (the royal "we") are close to providing building blocks
approach since packages can encapsulate both data nd for a user or applications.providcr to easily assemble as if
procedure resources required to implement a client/scrver they were a single integrated application from the outset.
mechanism. Reuse guidelines are needed including definitions,

The Ada tasking model determines how and in what distribution mechanisms, and Iegallicensing critcriLa.
sequence program tasks are performed. This model was
designed on the assumption that one executable Ada 4.2 Rapid Prolo(yping
program would simultaneously execute many tasks.
Weaknesses of the Ada tasking model am well-known (2). Prototype code must be easy to read and aalyze because
With the Ada tasking model, users cannot clearly specify the prototype must support analysis of the intended system
particular times or priorities in a program. Although this and document an initial design. The prototype must be
operation can be theoretically achieved, the implementation easy to modify because it will be subject to many revisions
typically creates a large system overhead that slows down before the user is satisfied with the requirements as
performance, reflected by the prototyr's behavior.

34 7th Annual National Conference on Ada Technology 1989

tI' imo ton decide in advance how the software COTSINDI software should be considered an instance of
devlpmn pfOccss will be managed and controlled. rapid prowoypn whc rvdsa.nta prtn
Unix directory structure and rouatines provides a shl script capability. fCOTSINDI software runs In a system-high
hierarchy permitting different segregated prototype environment then scurity considerations diminish.
Instances.

.4.3 lult~gualA transition plan based upon incremental changes to
4.3 Multilingual "eisting ficld sf ar systems can trniin(one
A mltiingal Moah povied n Iitil oeraing function at a time) from euriern source languge(s) to Ads.
A mutilngua aproac prvide aninital peraing During the transition, the sywam must be supporte by two

capability: existing user Interaec software. had been software crnvironmtrir, the one currntly in use and Ada.
written in C but new functions wer Implemented in Ads.

This concept is based on an established pilosophy of
The use of Ada in a multilingual environment required sysicm te" engineering: "whenever possible limit the
intcsprocess communication In which two processes aigmt number of unknowns to one" During the transition phase,
on the interchange protocol via iles. This approach added the system remains fually opertional. Only one function at
complexity but preserved modularity, a time is added or modified. Thus only the interfaces to

and performance of that function neecd to be considered
Unavailability of Ada.SqL and Ada.IPOSlX bindings and during the software updates.
precocious Ada.,X bindinps led to use of C as the
titegration language. A strictly Ada software environment 4. nrpralt
is desired; howecver, it's still premature to expect Ada Yo be
used exclusively when rapid prototypicl; since all bindings Full rilec path names wer used to accommodate NIFS.
have not been definitiaed an disseminatcJ. E:g. pragmai
ime. race rovided a C interface to POSIX for scandir During prototype dlevelopmnrt SQL wit decouple from

client applications to avoid the necessity for licensing
Particularly problems can result in multilingual agreements when demonstrating the prootype on diffeet
environments word boundaries from the manner that Ada hardware Corporate bureaucracy Indeed a fects software
compiler vendors Implement type record. Not all vendors development since the bureaucracy is not primed to quickly
contiguously alloate space.: embedded nulls :and record process licensing agreements.
layout differences hsle been uncovered when moving the
prototype from system to system, Ada compiler to Ada S Conclusion
compiler. The Unix od utility his come in handy. Non.emtedded C31 systems must be scalable In terms of
4.4 Ada capacity, storage, and physical size to satisfy site

requirements without adversely affecting system
Per proper Ada usage, system dependent code was isolated functionality and response time capabilities. Phre design
In packages. andl Implementation of configurable software components

assist these aims.
IT.XlTJ1 proved exhorbitantly expensive when doing text
processing. To get better performance (reduce the number What Unix gives us is an architecture In which we can
of ITEXT.10 function calls), an entire mecssage was read integrate multiple architctures. Despite Unix and X
Into an intrnal buffer using Gil' LINE Character at a Windows, there's still dependencies that an application or
time reading in Ada was not fcasibl;. systems supplier writes into a system.

ASCII.LF was used to giean end-of-line character similar Program masnag must enforce software discipline and
to C. gieplanning.

UNCHECKED CONVERSION or ASCII trxt characters Prototyping and reuse constitute a more productive
outperformed'FS mj~aproach to software eniginering. Using that method,

design moves away from a traditional top-down approach
41.5 Integrating COTSINDI Software to something mome iterative:, wvhere engineers rhfie the

product until it meets specifications.
There is a significant difference in cost betweecn an Item Rapid prototyping is particularly effcctive for ensuring that
uniquely manufactured for a pro ram that will use but the requirements accurately reflect the user's rea needs,
small quantities and a commerciallIy available equivalent increasing reliability and reducing costly requirements
whose standard manufacturing process includes testing to changes.
ensure the reliability needed (or a tactical or strategic
application. Rapid prototyping is not the univers:l panacea for thc

One shortcoming of off-the-shelf software is that it is vexing software development problem. Successful
generic. Users would prefer to make the software adapt implementation of prototypes is highly individualistic.
more to their needs. T7his is quite a challenge to us Attaining hardware independence (i.e. portable software)
developers, to try and anticipate the many different ways requires disciplined application of software engineering
our programs may be used and then build a core tehius
architccture that will support that. t~hius

7th Annual National Conference on Ada Technology 1989 35

Some of the mwnageM lessons learned r gading Ada
include; raable/portable systems cont mome so develop,
Ad projects have longer design Oaes, but shocw codingand tegraimon phaes

Distribuied architccturc Implementation neccssitat s if not
avoldatce the judicious use of Ad& tasking. If Ada is
used like older programming languales, the fults arc
qutionable.

Proper use of Ada yields reuse, potabity and maintenncc
benefits. Shoricominl incluec the lack of a complcte
invnto y of Ada softwar or Ads prects, lick of a
coordinated effort to dcrmin the benefits of Ada and the
poor disscminadon of compleed msearh on Ada
dd',- Inclcs.

REFERENCES

1. McCarron, Shane P. D X 1 Through The Layers.
UnirRtvlc%. July 1988, 62-.

2. Zuckrman. Susan. Problem With The Multitasking
Facliies In The Ada Prormming Language. D#fkmt
Cormucaiont EnmirierimS Cervwr, Technical Note No.
16481, May 1981.

3. Cox, Brad J. Object Oriented Progra ng: An
Evolutionary Approach, Addison.Wesley, 1986.

Toni Dale is a member of the Research Staff at the Unisys
McLean Research Centcr. Ills background Includes work
in data communication connectivity, use or Ads in
multilingual cnvironments, and development of advanced
text handling components. Curtnt research Interests
include hyperrext and data fusion. fe may be reached at
Unlys Defense Systems, 8201 Greensboro Drive, McLean,
V.4 22102.

Phone: 703847-3335
E-mail: dalc@mrv.unisys.com
FAX: 703-847-3305

36 7th Annual National Conference on Ada Technology 1989

ImpIlemelntation
of

Blackboard Systems in Ada

Pamela I". Cook

Verlylidt S. Dobbs
Deprtnt(of Coipurcr Scietim antd Etiginerintg

Dytott, Ohtio 45-135
61t3-S73-2491

2 Blackboard Model

This papar otmroats ots thoe Isptwin A p;Whcit WvIiug inoid Is a sclittine thait constplcts It solts.
of blaitborid systms In Alli. it JticribiW tkv 644,k tim 4- orpiaitt fteaingii steps andl dontlail kllowktlp.
hwa. coAt ral moi o~ pto~im toving, 3k K i apt A sotk Prov~ides A coIScItU41- framewomrk for- orgAniaing
pmoac). to the 4?Ag#, 4114 Impksntasimio 4f a blak. kliowktlmt anait str.%Iqv for Aplying thsat Illsowkolge. EX.
boga. couttol smm 444 thit %pplicato Ia acls"Ic moices Ott Probicil Solving w1ws4ets idutio roforw ing
Mite pfhlm ,nod.Cls bacliwaril rAsolng aowlr. evetst dliwil :nsols,

Iloaol dfrvers Iodcls. ctc. III A. frard rmming Iodcl,
time iniresrict steps are applimd frolt n inlitial mtato towara aI
goal. lit A bacwattl mma idug iodel, proll1cm solvinig begism
bjy reasoning backward front A goal to 4o achklveil towardl An
inlitial state.

Tile blackboard odel INUOiS 6 :1ii~), whliel wastc~j
apsed lin tile 0970's And hmas unit cgon e ry fcw cimanges lin

1 Inti-oduction Owm last tenlV" yerUse all o;portumislic reaonling toodle. III
All opportunistic reasoning mnodel, pieces or knowledge Art,

Thmr is Inceased imtepst, lniti lminigatical Applied eithmer backwAril or forward At. tile tiwsm. ppartur
gonce applications lin Ada. Hlf ors ins thisarea cnoanipas ex. time. This iaode) was first abstracted front time learsay.
pert syst-els (AdkSG.LxPSG1jW.'S, *istribnuted knowledge 1 ICI sinecs immrStandimmg systemJl (NIi'lj and4 applied to thle
base systelms (llraSG'VraSGj. r.%ttcttl directed proc(%uing drsigmi And izpemettomof the HASP systen: for ara::
(RKW54 scinamitic networks ISPA46), recusabli heuristic surveillanice (kRlftl.ls8). .Mtally appliationm progranis ha4Ve
xsarlm A1orithins IMobS) and others. This paper concn' Subsequently beni upIeset (usually ill Lisp) using tile
trates ol ohw inmpkmntation or blackboard (lii) systems in, blackboard mnadcl. Thesc include system for intetpreting
Ada. It dcscrbeo tile bslackboardl control model or problem MAc.ondn It $ s IAps. lmilg eArranS, understanding miii-
solving, a gentric Approach to the design And inlknenfta. itary signals, And undcritamiding isliages.
tion or a blackboard control systrin, And tile Application uf TMe Waic blackboard amodel is urually desribed as cona.
thle approachs to a classic defense problem. sisting of three major compjonents -thle knowledge sources

the blackboard data structure, and the control - As shown lin
thle figure Onl thle following page.

*rhis rescarda it sponsore4 by tht Air Force Office of Scitntific
Itcseatch.

7th Annual National Conference on Ada Technology 1989 37

The hIsrithoal oirhictu*rn xp :oi unrov an IrA-
Knowlrdgo d4itionalt exWiiif la)51r111 for solinug Il.rt rufdjoblcIMi in

OWe folloalng WA)*. Flt the 11lac)i'4 APirOXCh rIiits

P14116mn Oft d0 flot hv a p d ct d~elteirloft pull1
to A Wl'ilst, the seltio of What to do nt tust be InAtfe
while tho ptolilis bAlring soilved The CAPAbility to dio tis
is proid il nwakbaard Aystritis by tilt intllihal ;ttol
opalturinic Probliot solving aptoa'ch. &-vis"J, eagoe in"

forsonIof %nd knowledlge, which h rill -istructutiA
prohlktt, #CV4 to bW 11Md conctrii inl the p;fces-s of findills
x souion to the problemo. The I'lckboard n*40 is Ali e'cel.
lent tool for this Itnowkdlge ritiiering taivity. During the
ilitiall int%tAfcliot with ml erre a knowledAge ensineeTr Wres

t=l=%Ixt nlow) to find Aa pliroprimte concrpluall itiod for the tas~k wlhil
trying to U1ttstm~~id tile dislatt ai thv naxturn of the tlsk.
Tih atclJAibvd %pptat 4i46 In tilt prohkin, forniulaitiou
b'caus., it ;rovifics soteora 1 ala priiple that arn
both powerful and flerxihile Tht blackboard appro.%ch is ailso
ani cxcrlk#L tool for explorator~y propgrAlinlintg, x u4#f4l Itch.'
piu for d&Vdoping solutionsi to comoplex ;Ind ilstructuredI

The douii ksoarla sourreiivAe patitiions (formed froll prolems.
the totalti otnain Iuiowltilgo thxt cant We u"e to slv thle Although bI ckboxrd systvits are irseul for niatl calls-
pohlktt. These knowkdgc sourcol are. lolically indsdependent plVX, ili.Atructurctl problemS. they are gorally expotnsive
andl kept sepAratt Tilt 410111411 4648 11t 441141 sArltfmr is it) build and to use. Thcrefore tile blackboard APjlroxch
a global data base that Ii1014 tile probsto solving stlte datx. shmould not be IIK4 whle" lower coxt mnecthods ;Ire suiliientt.
The stion sace is orgasetliInto one or or diaon A problvit whidth iis souse camibinstatl of Ole follow-
dependent hierarchies. Iformationf t Catch levl of 111k hi. ing characlerics Is x good randidate for thlt blakboard
erarchy m~pfcrliets parftial solutions and is associated with %pisach:
h untiqute vocablar-iy that., desiK still rho nrtion. The
knowiceito soorcc% produce changecs to tilt blackboArd thatx I. x large solution SPACe
leaid Increstlntally to it solution to it prob,4:1m. Consutant,
cattiol Ant! interaction amlonlg knowledge sources take jilaco I noisy anid untellable infrorlAtionl
slely through thle blackboxttl, There 1*110 prc'et11tiiiid 3. a %-Afrty of input datiaul ai nutd to initegrate nlittrs
flow of colntrol. Tf, knowledgec sources; frspoi oppottuis. iforilAtionl
ticailly to changets its thlt b~elacoad. Tile kitowiedge sources
tralliformn, imiforovition ol oite kvl of tilt hierarchy into iii. 4. the mwie for inany imalcunnet or 511.ItC~li~
formation oss thle sant or othe-r kevea using algoritimil pro. pieces of kilowledg to coptrAte its fotifg as solution
Collure or htuiritic rules that generatteactu-Al or hiypother.
icall traitsformoa tins. WVhich knowledge source to Apply is S. tile need to use loulriih.~ reasonling Inethods or lilies of
dettennimmed dlynamuically, cite step ait a time, resulting ill thlt reaoing
iincrenental generation of partial solutions. The choice of 6. thet need for iti evolutionary solution
at knowledge source is bamed Oil thle solution state And Oil
the existence of knowldg Source* capalek of Iumprovinmg thle A Poposed appllicattion should be carefully autlyaedl be-
currentl state of tile Solution.toeadcsotoilpeveia likba ssins ale

'Iflitte are at least two difrerclnt aipproaches to hatidlimig freadisoitimpenitAbabadssti imd.
t control. Thic first has control residing in a iet of p)Wct-

dures which nionitor the changes onl thle dosain lasckboard 3 Application of BB Systems
anld trigger approp~riate knowledge souirces to impromv thle so.
lution state. If% the second approacli, control is achievedl by Thle following sections describe thle domain analysis, fulic-
placing thet strategy 00 a control blackboard. The decision tional requirements, designi, and inmoleintatition of thle pro.

then as to atat to do next is mnadte by control knowledge totype systemn for a classic defense problein.
sources using the control blackboard where daita describing
the state of the current strategy exists. Strategies cant be en.
Abled onl thle control blackboard to reflect the current state
of thme problem solution. This second approach is referred to
as a blackboard control architecture 11111851.

38 7th Annual National Conference on Ada Technology 1989

3.1 Domain Analysis 3.2 Functional Recquirements
Fncion* of a classic defense system include 4clasing of the Thme functional rempienactts; for the prototype include:

eniviron"mn; In triarctation of conflicting, incomplete or cor.
rupted alnsory data; integration of aensory data; Overall sit. 1. I'rocs batcics of input data At regular intervals; of
"Ali"assset planning)and Fral-timev decisions for til. 4 ltme anits. Input data can be either signal data or
sio aind survival Aclikvenit; Andi control of wcapo #)-$ttal intelligence reports. Signal datta Consists Of three emlit.
functions. Thkactivitiela, whe-_- cuirtntly pertformedl ter characteristics -frequency, pulwe width And piulse
by the crew, would Itivally bW provided by a ground Anti/or repetition frequency; A location represteld by a posi.
oood computer sy-stemo. The qyste would be Ablk to tion onl a grid; And a signal detection lintl. Initiligence
functionl in All environmen1t Containing VAst. amountS Of raw report data, which is for threats only, Consists of the
data where the data1 m"ay he unintentionally mfriteld via location 41nd sighting report tilmw.
natural plitenoen or intentionally corrupted4 via friendly or 2. Oetcroic type of emitter from characteristics of each

enetny~~e ofmin and ecepionmissons
Electronic warfare (EW) proessing san many differ. eofsgadt.

toit discipline (passieo radlio frequency (ltF) And infrared 31. Identify eaich emitter ais threat or nonttral, bas1 onl
(Ift) senskir interpretation, Active 1WF And lit countrn-A. thle capabilitics of the esnil ter (w.
sure* t dui!qual, ctc.) wherte the sensors operate In different
enviroolinwns witl$ different requiremenlts for information ex. -I. Post to tile current situation b)oard (CS!)) thle loca-
traction, imtilmretton andl rreaction. Tilt EW system must tions of known thre-ats and4 nonthreats and tile!tOuse of
respond to A dense Andi dynamtic environment. A priori in.* sighting.
formAtimi is usedl to distinguish trats to the Aircraft. iottt 6. Miliale duplicate sightings but kmep history infor.
non-threats Andi Also Contributes to thet system response AndiIlto o ec oain
IesouceacAtionA0 strate-gy. A priori information often (toato frechlcain
not repIresent tile true statcof thlt elivirollnatot bcauseofen. ($. Keep A list of known friesully locationA to deterinent
viro"nnt noise, Intenitional deceptive: emissionss jammning, whether any emnitter ictirld as a thret is a known
etc. friend.

Front this description it is easy to see that EW exhibits
several*f tilt-criteria thatmiake agood candlitlattefora.black. 7. Output CSI1 at regular int~rvab; ofr1 tittl units, in.
board systeml. It has a large solution space that immludot cluding location of sighting, threat or nonthireat, his-
knowledge concerning static throats, limited resources, p. tory inormaxtion, And confidence.
sive sensors, terrain data, platformi data, Active countermnwa. S. Output SOS nwssrge ittimedtiately When possible threat
sure*. goals to be Accomplished, etc. Somile of tile data is is dettectcl.
noisy and unreliable. T1here is a variety of input data and
a suml to integrate diverse informationi. There is Also the
need for mny independent pieceA of knowledge to cooperate 3.3 Designl
in, forming at solution. Thse ditrrmo types of knowledge re. -wv dtrifet desigui methods were considered for tilt system
quire different vocabularies anti different lines of reaoing. bet oriented Andm ncini ieaoc rfntoa e
inpsut. o evlWltnwpee fifrainAesne, Sign was based Oil thle fact that blackbo~rd systems and thle

n ti derived fromt existinmg data. blackboard control :architecture have beeon described func-
One: EW defense problemt is the monitoring of a hostile tioniall3' (1111SOj. As the systemi is decomposeCd, the functional

environment by a moving platform for tile purpose of deter. design approach identifies major tasks to be performecd. Sub-
mining the platforin's best path through the environment, programs (program units) become the building blocksi of a
Emissions Are delected Antd locations anti types of emitters functional decsign. Thse system, is described in, termis of thet
aire determined. A map is produced which represents a snap). funictions that process thle data. Functions receive input,
shot of the current .-k ledge about the environment. This transform input, and produce output. The functional re-
map) canl then We used as inlput to at prograin that will deter. quirements define what needs to be dlone. The functional
mine the bet. path for the platform through this environment design inclusies the requirements as well As the data flow.
[Ds)IS. This monitoring proben was chosen for thle pro- Pictured below are the various levels of a functional design.
totype of thme blackboard control system in Atda. Tile domain
blackboard will contain the current situation board with re-
spect to thme environment while the control blackboard will
contain data that indicates strategies and reasonings to be
employed.

7th Annual National Conference on Ada Technology 1989 39 J

At the highest kvvl, a block diagrmu of the systemn show. 3.4 Implemeintationi
ing ' npuits And outputs wouldi look like this: nric blackbioard control architecture mnodel definecs two black.

boards, one for the domain anti one for control. A set of data
structures and a set of kniowklge sourtcs %tareaciated with
each black-bo..rd. Thle data structurc for each blackboard has

CokCSII display its own ierarchy. Fach of these components is (dfned below
for the monitoring problem.

signls - j moitoing3.4.1 Domain B)lackboard
systeillThe hkrasrchy for the domain blackboard contains three lev.

els of Abstraction: signals, emitters And sites. The domain
iittlliggence elierg.cy knowledge sorfces Art: listed below:

* JKS0. Inlitialixes table of locations of known friends onl
domain blacekboard.

* KSLIt eadt input data, creates siduAl node4 Onl signal
level of dom11ainl blackboard or creates expectation onl
site level of domiain blackboard.

o KS2. Ceneratecs emlitttr nodec onl cmitter level of do-
The mnajor function of the monitoring system canl then imin b)4lacbord bas" on characteristics of signal node.

bW broken down into aidse of fuctions, each with inputs Andi
outputs. * KS3. Generates site nodec on site level of domain

blackboard based onl characteristics; of emnitter nodle
11iXINalS updated andi other information onl domtain blackboard.

ISignals -> domlainl s KS5. Hiandles duplicate amitter nodes onl emitter level
clock blackboard of domain blackboard, updaiting history information.

9 KSO. Illitiates termlinationl of systeml.
domlainl Interpret Iupdated e JKS7. Prints SOS nmage when possible threat is

signals -pdomlainlsgtd
blackboard blackbo~ard sgtd

* KS8. Outputs CSB And asociated information.

intelligence Get updated Execution ')f thle knowledge sourct- reflects changes in the
report Intelligence -Idomlain environment. Both forward And backward reasoning are uised
d ock Report blackboard onl thle domain blackboard. Forward reasoning takes signal

input data, creates emitter types from the signal data, and
generates threat or nonthreat sites from tl~c emitter types.

domai Chek upatedBackward or model driven reasoning occurs when intelligence
dobi Chec datedi report$ indicate A threat At a specirIC location At a Specific

blackboard I'hreats blackboard tiy-. Ilie site call then be verified based onl the intelligence
report. Discrepancies at this level result from noisy or unre-
liable dlata.

clock D~isplay 3.4.2 Control Blackboard
dlomain CSB CS 1

blackoard'I'ime control blackboard contains three levels of abstraction
that define the strategy used for handling events that occur
in the system. Thes levels are policy, tactic And step. Policy,
located onl the highest level, (determines which blackboard

domain Output SOS is effected - domain or control. Tractic, onl the next level,
SOS -4message specifies the category of event to process. Thme lowest level

blackboard Message of abstraction, step, differentiates between the two low level
event types.

40 7th Annual National Conference on Ada Technology 1989

Trhe control kntowledge sources toggle bctween Possible D11*i Control
value on each Icv'ei or Abstraction to iluittklCt tile choscu

swg KS iKS

,3 1(10. lnitj~lizes the systelni with problem descriptionl Dolal oto
frotti ucr. II)li

a KS 11 Initialixes control blackboard by *adling u "iol Contro
icy, tactic anti step level (or policy big used. lKSai KSnr

* KS 12. GcocratrA evnt to change policy if policy is 01
not "control,. Ato

* KS 13. Toggles tactic setting, List

* KS 14. T1ogges step selling. Triggtr
List* 1(520. Toggles policy setting. 4

Tlhree Additional doanidjnctprocedures U5) up-vocAlc
date trigger list, choose XSA R, and execute KSAR - Ilf
drive an iterative control strategy that operates Around three
event lists - Action, trigger And invocable. Update trigger __________

list movcs KSAlls from tile Action list to tht trigger list. -____________

Choose KSAR inxtches conditions of control And the cenvi-
ronmnti with the KSAIL andi moves the KSAIL to tim invoca- 4 Use of Ada
bit list if the conditions are imet. Execute KSAR executes Teloltrn yii a e~lIi txAao athc kntowledge source of the first KSARt onl tile invocable list. 11/7m ruonigtVSoicing system. Tae deslpe iofa Ada a

3.4.3Opertionfor this prototype presented no major prob~lenms. Thle re-
3.4.3 Opertionsuiting system has time structure shown below. (Thm arrows

Updating tilt domlainl blackboard creates events that reflect indicate required visibility.)
tile updated environmctnt. These events arc recorded in
knowledge source Activation records (NSA I s). A KSAILcon.
tains inforination onl the triglering cycle, triggering event,
precondition values, condition values, trigger weight, knowi. Data
edge source importance, event type, rating andi priority. Thm andi
KSAR is initially placed onl tilt Action event list. The action Utilities
event list contains all HSARx generated by the p~reviouls cy-
cle's execution. As HSAIts onl tile Action event list are moved
to thie trigger event, list, the events Are given a rating based 1 nit Dual oto oto

of thle associated knowledge source. rTe KSA~ls are placed KS K ,SK
ott thle trigger event list in descending order by rating points.KSA~~~~~~s~ arOoeuo h noaleeetls bsdo h
current control strategy. The knowledge source of the firstCotl
KSAR on tlt6 invocable list is executed. If no knowledgesource is triggered Onl A particular cycle, An event is created
that will cenable a change in policy, tactic or step level onl the
control blackboard.

Trie action, trigger and invocable event lists contain both
domain And control events. The p)olicy, tactic and step set-
tings determine which KSARs get moved to the invocable Several of Atla's features greatly facilitated thle imple-
list. Only one event activates a knowledge source (KS) eac inentation. The package concept facilitates data ecitapsi.
cycle,- the event that is first onl the invocable list. The exccu- latiomt, modularity, and locality. Operations onl a particular
tion of a knowledge source onl a cycle generates itew KSARs object, for example an evenit, are contained in a package with
on tle action list. A general diagram of the system is shown the implementation details hidden from users of the pack.
below, age. Chantges in tite implemntation will not effect the con-

trol structure or the object's interaction with otlher objects.

7th Annual National Conference on Ada Technology 1989 41

'rhe lmdul~rity feature ot tile package clcourages ru-lfliI References
ity As basic opevrAtions can be rmused anti not rtprogranuned.
PNekagcs wcre uitd to contain: (AdkRG) M. Adkins. Plexible data And control structurcs

" b~kbords ithAmc~klcl pocedres(d~A An Wal. in adA. lit NJ Annual Confircce on Artificial
blckbad withv associatedic arcdrs(dt n tidH, Ada. 1986.

" prtocedures to execute cyclv for control (control) (l~raSGJ 1). liriter. AdA andi knowladge-based systor'ns:

" kowledge sources (Kss) A prototype combining thle best ot both worlds.

Tile datA Andi utilities plackAge contains All global struc 9mtinui Li~qug Applications for Ac NASAI
tures And uitilitims The control And dolmin ldackboArds Are S1mice Station, MSG6.
defined in this package along with procedures that delete (IS) V ob,1.Dvs i .MU l l)
intorinAtion tromt tile domain blackbo~ard as wcll As creAte, [lpl~ .lobbs. of. luris an sc.r telics to ap.4

Adand deleto nodles traont thle Action, Itrr, And invocAble problem ot flight path generation lin A iilitAry'
evenlt lists. M~uch at this package is rclisable since it mnip. hostile cnvirounient. lin 1st 1nternsitional Con,
ulates the structures tor a blackboardl control ardtitecture. ecitonIdsraadRnneigAplit

EAChI knowledge solirt - is conitainled inl at *cparate pak. fcrcnc o Arduficial .Intli)cit a~ngnd cri Appi.
age. New knowledge sources canl be added And existing olc tlins ofAt1iill9dicc8ad.pciSs
chianged without recomlpilingi the entire syriteml. (Inlsteadl atofnI9
ptackages, kniowledge'y sYurces could be contained lin separately (DobSs) V. lDobbs. Ileusable ad& u:odules tot artificial
comlpilable procedure 1Mdule0S.) Xm~liuig these kuiowletle Initlligence Applications. Its 61h National Call.
sources separate will Also tacilitate the introduction ot con. e c nAi *cnly 98
currency into tile systemt using the tasking teAturr. MtorefrrccoAd lcnlyIS.
thlat onle knowiledge source could theni be executed inl a cy. (RAIIIlIIlSO) L.. Rrmnai, P. llaycs-.Eoth, V. Lesser, and
dCi. I). Ileddy. Tile hecarsay-ii sprech umdcrstmndings

Other Adai teatures were Also usetul lin thle developineni systeml: Integrating knowkdtgr to resolV unlcr.
ot this system. Variant records were %ifred to represet black. tainty. AOI Comptiting Surveys, 12:213-251,
board nodes since thle nodecs onl thle different levls ot thle do. June lOSO.
main blackboard contained different intormation fields. Us.
ills variant, records maide it possible to manipulate thle nodes 11'raSfi) M. Prank. Using ada to implement the opl.
onl All leveli with the samne procedures. crations management system as a coumnunity

The one disadvantage that we encountered resulted tront ot experts. lin First Intenaional Confrce
changes lin thiestruictuireor informa.,tioni that was on one atthe on Ada Progruumming L.anguage Applications for
blackboards. Any changes lin thme data And utilities package lifc NASA Space Station, 19SG.
made it nlecesary to recomlpile all other units. Changing thle (I I IISO B. Ilayes-lath. A blackboard architecture
tables tront static to dynamic Andi initializing thenm tront iles tar control. Artificial Intelligence, 26:251-321,
would eliminate muany at thme changes that were required.MS

5 Conclusions [Jl 'tS71 A. Jaworski, D. LAWNlce and D. 'Loch. A lisp.

A prototype monitoring systemj based oin the blackboard con. Aacneto o xetssetdvlpet

trol model ot problem solving was successfully ilemenHC~ted Inte n Ana, 1987.c n riica nlli
lin Ada. Blackboard systems exhibit several characteristics 9,C mdAa 97
that parallel features at Ada. The independent knowledge [IaVSGJ 1). L~aVallee. Ani ada inference engine tor c-x-
sources canl be developed As program units. P'ackages canl pert, systems. lin First Interunational Conference
encapsulate operations oil specific types of data. The task- on Ada Programmiing lAnquage Applications for
ing mechanisin can pirovide the dynaimic property required, the NASA Spae Station, 1986.
by tile control mieclanism. The use at Ada tasks will al-
low A natural mlovemnent, to mul ti processor systems. Tnese (NiiS2J I~LR Nii. Signal-to-symbol transformation:
teatures, Along with thle capability to illcremiut ally build a llasp/siap case study. Al Alaya:inc, Spring
solution, make Ada a good choice tar A blackboard system. 1982.

The incorporation of AlI techiniques into solutions at real N8a .PNi BckbrdApctonstesni
world problems has been hampered by the usc at spedalitY [a knowedg eingineaebrn apeplictinsemsA Aand
languages tar their implemnentation. Ada provides the vehicle a knoedge4) enginerin pespctve AM.
tar moving thes techniques out at thle researci laboratories. aie (IAgs 96
Successtul integration at artificial intelligence techniques into (NiiSGbl hI.P. Nii. Thle blackboard model at problem
Ada will create adaptable software packages that are highly solving and the evolution ot blackboard archi.
suitable tar solving real world problemns. tectures. Al Atagamune, 7(3), Summer 1986.

42 7th Annual National Conference on Ada Technology 1989

(RK 8]1 ,. Recker, J. Krcutcr, and K. WVichope. At.
tificial intelligence il adi: 1'atticrn.dirctcd
proecesing. 'TedldnicAM fcport Ati..'riwt1,
ArHllLh, M ay 19M..

(SPASG] 1). Scheidt, 1). Preston, and M. Armstrong.
|llmplclclnting cSantic I10works ill ada. In
2nd Annuul Canfcrnce an Arlifcial InIdli.
9ctc and Add, 19G.

Pamela Cook reccived the M.S. degree in computer sci.
ence from the Uivrsily of J)ayton in 19T and has been
wIrsing a ih1). in computer science at Wright State Uni.
versity. Site has held computer scientist positions With Ford
Motor Credit Company, Ceneral MotOrs, and : dcral.MuOguIl.

Verlynda Dobbs received her PD. in computer sci.
ence from Thie Ohio State University in 1985. 1ler research
interests are in tire areas of software engineering, artificial
intelligence, and Ada for artificial intelligence. Dr. Dobbs
is currently on the faculty of the l)epartmnent of Computer
Science and Engineering at Wright State University, Dayton,
Ohio 425-135.

7th Annual National Conference on Ada Technology 1989 43

The AMITSC-99 Redeolgn Effort -
An Experience In Software Engineering with Ad*

E. Peter Gunderson Nvid A. Vaughn Gordon E. Bostic 11

Tclco Fikrol Storo Tolos Federal Systems Telc F- rl S yt

AISTRACT interfaces, especially operator key-

This paper examines the first board e and isplys

attempt of a smAll development team C. Provide hands-on softwgro
with no experience I Ada or Objec- engineering traiing using Ada to
Oriented Design, Lo design a real- explore timing and responsiveness,
time system utilizing Ada. The memory, sizing, and multi-tasking
developed software controls radio designs
communications equipment. IL will
replace the existing software used to d. Evaluate program support
send and receive digital messages and environment Cools and compilers
allocate equipment on a timed through operation and benchmarks
schedule. The success of this devel-
opment proves the viability of e. Prove the viability of
extending the useful life of aging using Ada to control the ANITSC-99.
systems by replacing software and
upgrading processors AL a much lower 1.0 THE SYSTEM
cost than developing a now system.
This paper relates to both now users The AN/TSC-99 is a computer con-
of Ada, who will possibly encounter trolled, High Frequency (HF) Radio,
many of the some problems; and to the Burst Communcstions System. It is
experienced software designer who may contained in two shelters; the
avoid similar problems. Receiver Group Subsystem (KCS), and

the Transmitter Group Subsystem
(TGS). These shelters can be seps-
rated by up to five miles. The CS

INTRODUCTION processor controls four 1IF trans-
mitters, five receivers, and one

The U.S. Army Communications- satellite transceiver. Normally, the
Electronics Command (CECOM) Center system is controlled by the RGS
for Software Engineering (CSE), Fort processor. In the event of RCS
Monmouth, NJ, tasked Telos Federal system failure, the TCS can operate
Systems to conduct a feastbility at reduced capacity in the off-line
study invol. p the redesign and mode. RCS software also controls
rehosa of Ah SC-99 software. The other devices such as paper-tape
objectives of Jhls task were to per- punches and readers. Device inter-
form the following: faces are serial using RS-232 proto-

col. The current fielded version ofa. Provide a working under- the ANITSC-99 is written in ROLH
standing of Ada as it applies to assembly language and targeted to the
equipment control ar.d real-time military computer family equipment,
scheduling functions which includes the ROLM 1602B proc-

essor, ROLH 2150 1/0 chassis, and ab. Provide a test bed model DATARAH disk emulator. The system
for requirements analysis of system configuration is shown in Figure I.

44 7th Annual National Conference on Ada Technology 1989

FUREi. SYSTEMCONFIUtTION

1.1 THE SOFTWARE PROBLEM another processor with minimuu ffort
if required. Meridian's 80286 Ad,

The AH/TSC-99 could no longer compiler was selected because it
support changes in operat~onal could run on a standard PC and was
requirements, primarily duq' to a lack validated by the Ada Joint Program
of mnemory. Developing a paging Office (AJPO). The hardware con-
scheme was considered but deemed figuration of the prototype is sh|own
unacceptable because of the cost of in Figure 2.
development and the expected tegrada-
tion in performance. Other conuid- 2.0 DT.SIC COALS
erations supporting a redesign effort
included the elimination of obsolete We entered into this Feasibility
peripherals, incorporation of modern Study with three separate design
communications security equipment, objectives: (I) to develop software
and adaptation of software to dif- th~at would lend itself to easy
ferent hardware configurations. upgrade; (2) to maintain the same

basic user interfaces, using an
1.2 THE TARGET PROCESSOR extension of the existing AIIITSC-99

Users Guide as a functional specifi-
TELOS intended to provide a cation; and (3) to make the code

rapid prototype of a functionally portable and reusable to the greatest
equivalent system written in Ada and extent possible.
capable of running on a modern high-
speed processor. Zenith Z248s uere 3.0 PROJECT ORGANIZATION
chosen as both host and target proc-
essors for the prototype. While The project was organized under
there were drawbacks to this configu- a System Architect who performed the
ration, this solution was chosen duties of the Chief Programmer. The
because Z248s were already in inven- working organization is shown in
tory and we wanted to keep develop- Figure 3. Two software engineers
ment costs to a minimum. The ports- worked under the System Architect,
bility of Ada would allow porting to one concentrating in peripheral

7th Annual National Conference on Ada Technologyl199 45

ROS PROCESSOR TGS PROCESSOR

FIGURE 2. ANITSC-99 PROTOTYPE CONFIGURATION WITH ACL CARDS

interace programmed in assembly
language. The second devoted to the
overall design and integration of the
Ada programs.

3.1 PROJECT DEVELOPMENT PLAN

Development (ollowed the planned
schodule highlights:

a. We estimated one year would
be the required to complete the
project as the requirements were
clearly undertrod, target equipment
was in place and, with the exception FIGURE3. TEAM ORGANIZATION
of the new computers, fully inte-
grated.

b. Pour enginears were to be
dedicated to the design of the proof
of concept prototype. If the
prototype proved successful the staff
would be expanded to six engineers.

C. Ve would train on the job,
teaching ourselves both Ada and
Object-Oriented Design techniques.

46 7th Annual National Conference on Ada Technology 1989

3.2 FACILITIES AND SUPPORT SOTARt. 3.3 CONNUNIICATION

One office was to be used AS A Host communication within the
softLWare development lab. This tean WAS verbal. Design Changes Vero
office would contain three Z2481 And discussed And Agreed to during design
one printer. A separate office would reviews. The team WAS managed by a
be used as A test facility, It would chief programmer who coOrdintetd 411
Contain two Z2A5s and three INH XTs. Activities and facilitated direction
The Z248s would be used As target And eontrol. This Approach was
processors Cone RGS And one TCS). chosen to expedite development.
The XTs were to be used to emulate Documontation WAS kept to a minimum
equipment In the ANITSC-99. Tesit tAlthough skeletons of most
facility layout Is shown in Figure A. 000-STO-2167 required documents were
Much time was spent on the develop- generated, Including A software
ment and maintenance of our facili- requirements specification and top-
t iesa. Software was written to level design document.
emulate radio Interface cards And
paper-tape readers, create message 3.4 CONFICURATION MANACEHENT/QUALITY
data, And monitor data lines. Addi- SSUxAxC.
tionAl Software VAs written to auto-
mate compiling And linking of Ada Configuration ManAgemN01t (CH)
programs. C, Assembly, and Ada were WAS Applied to two Ada baselines, one

used In writing this software. In TCS And one RGS. Once developed,

ton. The development spanned faur The moving baselines were continually
versions of the Ada compiler. Maintained And completely Updated
Installing And recompiling with each after each Integration test. PC-
now release was time consumisng AS based Metrics software was used to
complete compatibility between ver- monitor program coding technique%.
sions was not alwAYS maintained.

INAMO~t5t PC
A

Wig INMIM T1 so s

FIGURE 4. INHOUSE SOFTWARE TEST ENVIRONMENT

7th Annual National Conference on Ada Technology 1989 47

3.5 INTERCATION AND TESTING 5.0 DESICN IMPLEMENTATION

Existing ANITSC-99 test proce- We decided to first design and
durds were used for system level prototype s skeleton of the TGS side
tescing. Unic-)evol testing VA# of Cho system. The idea was to provepertor.d by developing engineers. tht viability of our concept. This

Inttgr;:lon testing provided full model would simply load, schedule,
string transmission of pessages And transmit a digital message over
through the system. OFp radio. The message would be

captured in the ACS using existing
4.0 APPROACH software. If successful, the

paradigm would be expanded.
4.1 PERIPHERAL COXTROL 5.1 TOP LEV.!

Knowing the limitations of
implementing a real-time syste A -oubination of Structured
running under tS-00S, our first con- Analysis and Design and Object-
stderation was how to handle inter- Oriented Design techniques were usud.
rupts from 16 serial ports. We The static structure of the system
decided to use distributed proces- s developed And Interpackagoe depn-
sing, purchasing off-the-shelf dencies were loosely defined. When-

Advanced Communication Link CACL) ever possible dependencies were
boards annufactured by Stargate incorporated into the package bodies.
Technology. Each ACL contained eight This was done to reduce compile tites
user-configurable serial ports. c: new dependencies were identified.
Ilardware interrupts were handled by Data structures were written for
an on-board Intel 8088 aicropreces- peripheral interfaces and displays.
sor. Information was passed to the
Z2A8s through a 32k window of dual- Rapid procoypin was used to

port memory. Assembly language develop the framework of the system.
routines were used to service the ACL The top-level design Was revised.
board. These routines updated a Writing of package specificationa was
service table, begun.

4.2 SOFTWARE 5.2 DETAILED LEVEL

Ada-tasking was used to monitor The paradigm gas further
the service table, instantiating expanded. The unit-level Interfaces
other tasks as required. The exist- were fully defined. rackage specifi-

Ing system-level specification gas cations were completed. At this
used to determine requirements of the point, we found the top-level design
software. We coded a few func- often required revision.
tionally equivalent procedures in Ada
in an attempt to get some rough 5.3 CODINC
sizing data. We estimated the Ada
implementation woulO be about two to After testing cite proof of con-
three times an largt, as the existing cept model, implementation proceeded
Assembly language Implementation. from two directions. The log-level

(Assembly) modules were tackled by
4.3 TIMING one team. The high-level (Ada) pro-

cedures were coded top-down by

All critical timing (I.e., hard- another. Engineers were provided
ware interrupts) gas handled by with the specification for each pro-
existing embedded firmware, 80286 cedure. The procedure was then coded
assembly languale routines aed the and tested at the unit level. When
ACL boards. Ada tasks were used testing was completed, the procedure
where timing was less cricital, such was integrated into the package. As
as allocating equipment and packages were completed, integration
scheduling outgoing message traffic. testing was done at the Interpackage
Equipment allocation began five level. Emulation softgare was writ-
minutes prior to message transmis- ten for several devices, in order to
sion. A one minute windo w as lessen the number of trips r quired
allowed for transmission. The ser- to Tobyhanna Army Depot, Tobyhanna,
vice table used to activate these Pennsylvania, where c complete

tasks was nonitored once every
second.

48 7th Annual National Conference on Ada Technology 1989

ANITSC-99 cest bad Is located. Full We found that changes to the
system tasting VlAS Accomplished using Top-Lovol design were being driven by
thq system at Tobyhanna. detail Iplementation. The problem

WAS caused, In part, by never getting
6.0 ACCOMPrLISHMEN4TS out of the rapid prototyping made. 1f

automated design toals had been
The resulting exacuiable syston available, this would have been less

io Approximately 2.3 times the Aito likely.
of the old system. We still have a
S5i1 naeory reserve in the AGS And 0%3 C. Follow aitthodology And
In the TGS. Source code I* approxi- enforce coding standAvdsi.
mately 28,000 lines. The old system
contained Approximately 204,000. While our source listings Art
Much improvement has been realized In easy to read. their format varies
maintainability. System response Is throughout the system. Using Petrics
comparable to the old system. Ve to monitor development contr~buted co
(ool We can improve this slightly the RAInrtAinability of code, And
under the current operating system. helped us to identify code that was
A Pulti-tasking real-time operating Loo complcx or lacking In comments.
system would probably provide #ub- As a result, procedures were kept
stancial improvonent. About 40i2 of simple And contained, or% Average, 4.0%
the code wait roustd between the TOS comments. The point Of mai(ntainA-
and Kgg progru.ms. iNo conclusions can bility was; brought home by observing
be reached As to portability as we how quickly now members asstgned to
have not attempted to port to another the team became productive. TF.LW has
processor. Produ~ctivity Averaged now Instituted formal methodology tor
Approximately 28 lines of code each use In developing systems Implemented
day per engineer. This was affected in Ada.
negatively by the long learning curve
and poxitively by the high reusa- d. Emphasize reusability.
bility of code within the system.

Reusability saved time And
7.0 LE.SSONS LE.ARNED effort. Since the TGS raqu~rcmentx

were essentially A subset of the KOS
As A result of this Feasibility functiong, much 7ousabiltty came

Study, we would like to suggest rho naturally. Handling of incoming and
following: outgoing messages In the KCS shared

many common qualities, which allowed
a. Users should fully under- reusability by design. Having spent

stand the Design Hethodology being more time on identifying reusable
used . functions could have eliminated

Understanding Object-Oriented duplicated code.
Design techniques was one of our nost e. Share files/packnaes during
difficult tasks. Fey books on the development.
subject were available And nany
questions went unanswered. Host of Wie Initially believed that We
our knowledge came from papers could develop code In our own direc-
written on the subject. The methods tories and port the finished product
used generally followed structured to a package In A central directory.
analysis and design, however, Top- We had hoped that the use of A
Level Design of the Ada programs Iseparato" clause would allow this,
Attempted to apply thle Object- but the compiler filed to support
Oriented Design for package construc- this feature after 100 separate pro-
tion. This gave us good data flows cedures had been completed. With a
for procedures and minimal package staff of six engineers, this proved
specifications dependencies, but very to be an inconvenience. Had the
larg~e data structures as well. system been larger, we would have

developed major problems. Proper
b. Use rapid prototyping (or utilizdtion of Configuration Manage-

evaluating design approaches and ment during development stages would
requirements analysis but stop short have helped to avoid the headaches
of full implementation, caused.

7th Annual National Conference on Ada Technology 1989 49

f. Select A mature compiler. r. Vaughn is currently a Scion-
it~ie Programmer with Internatianal

Our compiler was th VAudes of Tolophnnn and Te lgraph. i@ ha
many probleng. In early releases yorked in both hardware and softwore
many (eatures did no. work correctly. engineering, and has eight ye4rg of
As the compiler matured cost problems experience in military sysians.
were corrected. In tho current
releae. version 2.2, the only major Mr. Vauhn is working toward his
doftfrtry we've found ts the corrup- IS degrat in Computer Science At
tion of heap storafe when using Thomas Edison College, Trenton, Nev
string concAtinAtion. This problem Jersey.
hao been overcome by using slices to
construct strings. Mr. lostic is currently a yam-

taus Software Developer with Computer
The problems we encountered are AssociAts Internatlton-. He hA5

not unique to eridian. Ada o the experience In both Real-Time and
most conplgx language ever developed Operating System Software Design.
And all Ada compilers have suffered Mr. houtic earned his NA dogr@
the sane growing patns. In fAct, In Social Science from JAmes 44dison
IteridlAns compiler has many valued University, ItArrisburt% Virginia, And
featuros. It interfaces easily with his hastoro degree in Computer
Assembly and C code. Several support Science f rom raritigh Dickinson
packages such As the DOS environment University, Rutherford, New Jersey.
and utIlities packages are 4lso
available. we feel heridian's con-
piler represents a goo:1 value for the
money.

ACKNOWLEDGHENTS

we would like to thank
hr. Walter Lucas of CECOH CSE for
giving us the opportunity to Attempt
this study. Without his support and
faith, this project would not have
been pomxible. We would Also like to
thank the other membars of our tea=
who all worked so hard to bring this
design to life, as well as the many
people at TELOS from whose experience
we drew.

ABOUT THE AUTHORS

Hr. Gunderson is a Sznlor Soft-
ware Engineer with Telos Federal
Systems. lie has worked as an
instructor, consultant, and engineer
in the computer industry. lie has
design experience in business sys-
tems, automatic test equipment, and
systems software, and has been
working with military systems for the
past ten years.

Hr. Gunderson earned his AS
degree in General Education from
Ocean County College, Toms River, New
Jersey, and is working toward his BS
degree in Computer Science at Thomas
Edison College, Trenton. N ew Jersey.

50 7th Annual National Conference on Ada Technology 1989

A PRACTICA. AITROACHi TO MLUliODOLOGIMI, ADA AND DOD.SID.2167A

KCAr S. ilson, Ph.D. Wid Willint J. o

Jet P'ropulsionl 1-4'or cy. Callfom4i Insttuic of Technology
Pat;kna, Cali(orna 91109

AMMAMThe rm pan of pmitiay deoagn pcovides tracc*thy
to the SRS and trinsionM (tona rciutraw vkiw of

Thit paper prexets :1 compkic Metihodology (PC the th c 1a I*kroc"K iat VieW. a"d the
design phase of a large fcal-ltoci software Ptoject. It jwrlitninuty design wid detiled design phases awe
atftums the project is being aecvclope4 under DOD- iWI~rICMI 4"1 steps which telate to th* r. iiftrng
S'D.2167A' wd will be i cmeiaed in A". In DOD- proces. Eh tep c.tninato in doumeing ,he design
STU.2167A kant, both Ox prliminay design nd :a that point i p" I €p timc *eiWn or the So(twar
tailci design pha e aC covered. Bccausc the Design Documck. Thc: So(Iwxre Deign Docwnt Is
mthodology ptscmecd n this paper porates ideas thecsdoc kcrenally developed and tevk'wd U the
(rM "o" of the n dioglc currently In voggc. Rt Is lvfleeing Is dowc Wi "o in a uihi hAonly Weort
called the Hybrid Methodology, The Hybri dtfivry.

kthojology h" two papoes to providc 3n outline Or
the engineering step reqired by a tczrt or software T11e hIYbr 'ethodology Is prectetd asiwnins :1
devlopes to design a real.tlm sywn, *nd to rMate: sys e consisting o(: single C pter SOAtwar
the cngi ering proces to the Softwarc Design Coftfiguatikm tetM (CSCI). However, h can A: be
Documet (SDD) requited by DOD -STD.2167A. applied to a sygcm coWsisting of multipic CSCIS.

Usually the p,,tkioning of .kiyscm iWo multipil CSCIs
Ctakes pA*c before the SRSS are written. The CSCIs ae

tsaily defined on functional (iaind pikisibly haidwci
Therm has been much written on softwar cngicering bounidii, The Hybeid kthodology in this casc would
ttcthodologic, especially with the advent a(Ada. begin by writing the uchitcture cocepts p,"r
Scverd are %pecifically gc:cd to developing softwuc in dcscribed belaw for the sy srnt as a whole. SecttOn 3.1
Adal' . ScvcrA address developing rcal.tini systmcns ' . of the SDD fAr cich CSCI would then be described in
Sonic dcal with the transition front rcquircno-nts tcms or -hce cc pts in thc architecture cowcep s paper.
definition to design". Noose relatc the design process to
the DOD-STD.2167A prodcts and i-s. in fact, ,l ex (or Prel ar tksign
Donald Fircsmith gives lcctures on Ada ifojcet
management' telling managers that Ada and DOD.STD- Prclini'tnty design consists of four steps. Each step
2167A do not fit. rcrlnus the design produced at thec previous step.

Products are developed which serve to docutent the
11w hybrid %fer!I-2jlM *ornplctc design at ea:h mcp and to serve as 3 vehicle

fo. infornal review. In addition, some of the products
The Hybrid MeKdology provides an approac to serve M enginecring wotkpapcrs which will l.e
dcvclopntg the Software Design Document as a natural developed into deliverable documents. 11i€ four steps
by-product of the cnginecring proccss. It takes :we:
advantagc of the expressiveness of Ada to present the
design infomation so that it evolves naturally into an 1. Identify top-level CSCs
inpleicet2tion. All aspects of designing software for a 2 Identify sub.lcvcl CSCs
large real.tinie systcn arc taken into account. including 3. Produce fonnal documentation for each sub.levcl
early design or tle imtplementation frainewoik of the CSC
system (die sofiware :uchitecture concepts). support of .1. Describe abstract algorithlun of etch sub.level
discrete event slinulation of the system, and traceability CSC
to requircuents.

Dcsign Pl. , The description of each step stams with an overview ot
the step. If there are concepts which help in

The Hybrid Methodology is presented in two pans: understanding the products to be developed during the
preli nary design and detailed design. The paper step. they re presented following the overview. The
assumes that the requirements analysis phase has been products of the step are then described. Finally a list of
completed and that there is a Software Requirements klivcrables or sections of deliverables whiclt are
Specification (SRS)'*, and a system data flow diagram. :omplcted by this step is provided.

7th Annual National Conference on Ada Technology 1989 51

the symm~' be lCrninated SrxCctll Will
functions be able to be gmaatcrninatetl

Topkcvti Cm~ are the major fitmtiooal entitles of the itidividuallY? Will functiolu tequltecntries
Sygtettic hy wre tktived by atialyxiog the system kvcl w ich cani be called by Monkrc' &%I
dakaflow. FPC :1 gealitti sa ft an s at the Control to Stan up or' tihXC7
e,%tertial itertfaces nd wntks in. identifyi the major
pfoeestmg done 10 handle ch interfACe. here $11041l4 b. Fault declcticovcry
be no mnote than 5.7 topkvel MS for
un~mdsdaily. 'Wha faults mnus the system dtect? From

whot faults "lugk Itcrcovery? What are
Afer the topkvcl CSCs are ideniiekd the so06watre thc mcchatisms by which the fauts will
arciteture frmmwotk of thle %Pc Is dosged "is Ne dctced? How will efro be reportd
will be documntted In a SotaeAlcliiectur Concts to thc operaor? Whag action will the
Papecr Which will be reaervd In the CSCI Software "Iera*o be aWe to Ia-e to recoyry (Tonm

iolopnient File (S1)l--).fals

Wilic IndivW"Idal tn Cat begIn dtksgning thik top.-
lVCve CSOs. they mous understan how rhel piece rits W a e the possibl conigulation of
into the System fromt no Iiple eniaron Point of View, the system? [low* will lte system be
This reqires a top~down desgn of the mechanisms reconfiguredl W41 the systemn ran ins
whc te th S~C (O~hf deg ICI01MCrltcraded! modes? Blow will th" work?
appilkatoone front the underlyIng oprAting. system vdAn~i1 Systm serVices are WeOW to

hardware. This; (gansewotk al povids the top down Provide coninuml ways of passing ines"age5 accessing
design or tchianbiss which control nd detect errotrs 41 djata, toxgig. andi rforming alsorithm cornso to
tile system. Once lthee loechanismns havc beat several applications of the SystemI.
engtineered on a systemn level, therte will be dertived
reqiremnt* levid oN n h s(jwAte Cantl poss~ibly a1. Message passing

liaiwar) II unir t itpicncolO~ktoccanbtu.Appilicationt functional ctitlies which May
SP lhej 11 softwau be lementwned On different; processors.

architecture of thle systeml Is descibed for two areas, or Which mtay mlove front Ofe Processor
'thle first Is Monitor andl Control. Concepts mlust be to another doe to a reconfigittation, or
develope-d top down for how thle symtem Is to be which shiould be deccoupled (or fiesibility
contolled, and what Is to bec mtonitored. 11x focus III configuring the systeml Will
Sho)Uld be On thinking In tcnils of keeping lte operator commounicate via a system servic. Thecy
Informed. and 1 In trsOf 'AlhA the operalor MUMt will sead a mecssage to a fu!,clional
control. 111e seconid area is System Servicr. Thlese address Tbcy will receive mecssages by
services are used by tie "aplcataons" of lte systeml to identifying theinscIves as a particular
CtontunkiCM Willt: ea c e 0 t access C011t1110 data, functional address. Ilic list of functional
and perfon functionas In a syotem-dcruxcd way. Thex addresses Ilust be established. '1he
intent Is to ikk the specifics of tile opecrating systcn tocchallisilts; for routing dlata using thle
from, thle rest of the softwate, andl to provide a conuton fwnctioaal addess 'oncept and for
framenwork for thle software. reconfituration mlust he :Ccvcloped.

Moninnr aoLCeontrol. Monitor andi Control toust b. Database
takeC a systentl view. Concepts ntitm be developecd which
relate how indl'idnAl comnponenits of the- software work *fhe operational needs for data musm be
together to perforin stanup, shutdown, fault detectiort deteniined. This includes adaptation data
aind recovery, as well as data generated during operationi

of the systemn. Whcrr the data will reside,
a. Startup/staztoverlshutdown how it will be ditributetl, mechanisins for

mnaintnining consistency and validity of
Concepts mnust be developed for starting the data must be determnined. Mechartisnis
the system. restarting In case of a crash, for updating, leading the data must be
and shuttin~g down thle SYStemI. What designed.
applications cart be restarted? What state
data must be maintained? What C. Logging
inechanisims will be used for recovering
data before thle system restarts? how will Requirements for logging data mnust be

52 7th Annual National Conferunce on Ada Technology 1989

dketitied. What data should tc logged, ocdl;mmbMiptw aly
IXYW will it Ne logpcmr Onl a distributcd l f
system am one ot decide if loggig will be 2. Object otiented design: Is this entity an object
done Oil osic ptoccssor or oil cacti which contains state data anid jptvides ttliut5o
pfocessotr, Ce. control of tossitig musit tic on that data? Is this mn entity which canfot tic
ticslgiell. Wilt categori or data Ix accessedI sioultancowly by concurlent pcocesscs?
eniabled~isAbled for lotging? What are
the categories for this symtem? What will 3. lcplainand information hiding: Is this a
the Inechatlisnt be for eniabling/tllsabling service which will be used to itAkc applicationts
the 11*A7 independent of the specific opecraing system or

of(ic-shcl(software: being used lIn the -ystem?
d1. Utilities Note that these do not usually show up on a

A first step at identifying conutton r, -fi fon bt~cxx k ar n rei lurctt or ipuae aricari
utilities Is (sone at this luie. Standlard data ont~l barwar o paticla
tylrcs wec identified.

&LXWJJiLQL.Se1_LL. l11e following products will take to "recast" the t)FI fronm thc requlrenecns nlysis
be generated during Step 1: phase:

a1. Grouping of maicinns' In the system level a. Show handle(% for exicima hardware
data/low. Th'lis may be by drawing Oil the iterfce. If an external inaerfacc Is rull.
dAtaflow or by a list or top-level CSCs duplex (sending mid receiving of data weC
andj ft- proesses of the system level indepenoden), one #my want io show a
dalaflow allocated to cabcti. scparate handlr (or eacth.

bi. Requirements allocation matrix front SRS bi. Make data stores into objects.
to top-level CMs.

c. Raisc processcs fromi tower levels of thme
C. Data item alocation imatrix misgnig data dataflow if they arc necessary to

items fromnile SRS to iop-lcvct CSCs. wmldcrstatid majr ptocc$sing tequimd. The

d. Sftwae Achitctur Cniccps ~product of steps a,b,c is called a
describing tie software architecture plmayctt igai
framicwoik or the systcui. d1. Collapise processcs into ixAks by working

iniward fromni e external interfaces:

Ddiv-mbkQ. SDI) entries 1.0. 3.1 and. 3.1.2 1. Can pocsses on tbc data flow be
wilt tic written. SDD 3.1.1 will be started.1Thc Software done sequentially because there is
Architecturc Concepts pap.r and derived requirenmcnts tinic to do it before ifme next input
wilt ho kcpt in file CSCI SDP section 2.12. Thei arrives?
requirements allocation miatrix wilt ho part ot SDD
section 7. Thei data itemn allocation matrix will be pan ii. Should a data store become ike
of SDD section 5. state data of a process already on

the data flow!

Thec product ofthis step is called thet final
Sub-level CSCs primarily show the coocurrcncy requiredeniydam.
in the system. Constraints due to hardware anid thme ett gai
environntr Stant to play a pant here. A sub-level CSC
miay also ho identified to package services. The data
flow diagrams; (DFDs) front the functional analysis
phase are used in this process to determine functions Pwut To tp-.1he (allowing products are
and entitles that should ho sub-level CSCs. 'The process &eveloped as pan or step 2:
at transitioning the fun~ctional analysis into a design is
called "recasting" the DFD. Sonic ot thfe criteria that a. The final entity diagram for ca!~ top-
determine what constitutes a sub-level CSC include: le-4f CSC showing the Ada tasks. The

entity diagram may also show
1. Concurrency: Must the processing ho done as a services/utilities, it they help tell the

separately scheduled process? This is usually story.
required to handle external events or because

7th Annual National Conference on Ada Technology 1939 53

b. lDescription of ctnvirotntt assumled. T11& I±.Liak d.crie: are two types
will Include any ope-rAing systeml services or sub.levcl CSCs. hM frst is all objct. T"he
or offrthe-shlfi software you arc assuming documnctation or anl Object sub-level CSC will include
ill til design a description or that object lin tcos or alt abstract

dkfinitio or its state data, :uan description or its
C. Outline oontainiiig cat top-levCl CSC opertions Olt that abstract definition, or tile state data.

and its sublcvcl CMC. T'his will be kept
inl tin Software lDeclopmuct Folder Thc second type of sub-lcvcl CSC is process. h ki
(SIM. For cacti sub-levcl CSC. best described as a classical (input. proccssing, output)

enity. Usually thle I/O Ls via systmmi calls rather than
1. List of functions tile sub-lcVcl CSC proccdure or task entry calls. T hererore, it cannot be

I to pertrono. This should be described as operations Olt an object.
taced to thc- SRS. and to tilc
derived requirements front the A suh-lcycl CSC may be a cotobinatiogi of thc two
Software Architecture Concepts types. It may have some processings which i best
Paper. dkscribed int cll~s; of (input, processing, Output) and ill

addition, encapsulate sonie state data upon which a user
ii. Rationale for Inaking thle %ub.lcvcl can operate via procedure calls.

CSC a tsk or ascrviL. WK f Ie i. Following is a discussion
iii. SRS data items "allocatcd" to this about objects as viewed during pral'nlnary design:

sub-levcl CSC. Thewse should rele
directly to data flows onl thse DM~ Ani object is a data type (or a collction of data)
and track where these data flows together with operatiois: on that data. There are two
are in the design. views of thle object: lte conceptual view Wnd thle

Itipletnentation view. At preliminary design we wre
iv. Special processing: initialization, conccmecd with thle conceptual view. At detailed design

recovery, shutdown and error we arc concerned with thle Implemntration view. Thei
hanldlings of this $uh-levcl csc. cooccptual view is a descriptioni of the object as viewed
E~rror h-uVdling hasL two wipcts. by thle user of the package. It must provide a clear and
One i% to imlesttenrl thle fault comiplete description of thle object, and thle operations
dectectioni and recovery mnechanistus on thle object. Included Int that description are any
described in thle Software consistency rules which help describe the concept or the
Architecture Concepts documnrt. object in tens or data dependencies, uniqueness of
The other is to begi designing the elements, etc. The operations are specified as procedures
Ada exception logic, and/or functions, together with a complete description of

the effect or the operation on thle conceptual view of
V. Interfaces: Th1is will show which thle object.

interfaces will bx by Ada
rendezvous (and heceC Show up1 as Commnon concept(ual views used are sets, queues, stacks,
procedure specifications) and which database tables. Often an object is not completely
will be by systemni tmssage passing described by saying it is a set or a queue, etc. Thecre
services or 1/O services. are usually conditions that must be maintained to

provide consistency. Trhese are either interrelationships
WJ glo1k. SDD 3.2.xt will he written for each or limitations placed onl thle data. 'This infornation miay

top-level CSC. Thec final entity diagramn will be included affect thle design or the user of object. We will call
in this section. SDD 3.1.1 will be completed. these conditions consistency rules. For example, an

address book is a set of (name, address) pairs. A
The enivironment description and outline will be kept in consistency rule for the address book object may be that
thle top-level CSC SDP section 2.11. As design for a given name, there is only one unique adress.
progresses this paper may not be maintained since it 'This limits the use a user may make of that address
serves as thle precursor to inforniation kept in book object. For examnple, if a user wanted to put both
deliverables, a home address and a work address for each name, fie

would have to design some way of making the name
iSp Docunennunmse of each-sub-level CSC unique (possibly by appending ".1,".W", respectively).

The purpose of Step 3 is to formnally describe each sub- Products for Step 3. The following products will
level CSC using Ada as a Program Desigr Language be developed during Step 3:
(PDL). Much of the infontnation will be found in Ada
connentary. The PDL will be comnpilable and will a. 'This information will be documented as
establish thle interfaces to each sub-level CSC. Ada specifications and accompanying Ada

54 7th Annual National Conference on Ada Technology 1989

commewntary, complentetd by text in the design, we must msake sure the designs will work. We
SIMD therefore make Aunplistic assunsptiomi about the

imuplemntation of each package so that a worst case
scenario cars be modclet. Modeling can help Identify

I. For entiti which are objects the a~s; of the software that must be carefully
conceptual view of the data will implemnted. Modeling cast also verify decisions about
he described with Ads commetntary allocation of the software to hardware, and will help
in the package prolog. The develop the resoure allocation inforistion for the
operations on the data wHi be Ada SDD. 'nie abstract algorithmn is oriented towards the
specifications of procedures and/or processing required per input for each operation of tive
functions. l'aranscrers of the object, or for a typical input to a processing entity.
procedures will be docuntensed ill
type definition packages%, using the ' *lsc following products are
TIID" type definitions package produced during S-c) 41:

whet reruwalct of the data type
Carl be postponed until detailed a. Describe implementation assumptions. It
design. The effct of the is asswssedl that systems engineering has;
operations on the conceptual data ptrovided modeklerN with frequency of
will be described in the extnmatl inputs.
procedure/function Jprologs.

b. E1stimvate number of Ada statenments per
li. For entities which are (input, step in algorithm for each operation of

process"ing, output) entities, the the package. This includes expected
conceptual view of that processing numsber of times through each loop. This
will be described with Ads estimate may be per reference if step is
cosismentazy in the package prolog. to be performed by calling on an

operaion of another sub-level CSC Note
iii. For entities which arc a that there may be a "background" task,

comsbination, botlh types of not specified as awt operation, but
commientary will be present in the necessary to imlpilmn concept. I-or
package prolog. example: a garbage collection task which

runs periodically to delete old entries in% a
b. Trhe data dictionary will be updated with database.

the mapping between SRS data items andJ
their location in Ada packages. Note thsat C. Esimiated somre lines of code.
they nsay isap to Ada data types, Ada
dlata packages, or even functions or d. esrinsated nmnzory requiremnents.
paaieer of procedures. Somse msay evens
not appear in the design if two processes LJ ixnikZi SDD 3.1.3 will be written. Trhe
are combined into one Ada procedure. algorithms anid sizing estimates will be kept in the top-

level CSC SDF.
C. Tl1c requiremnuts traceability matrix will

be updated to show which sub-lecl CSC.s
imsplemsent each requirement in tise SRS. Nicslodolossv for Detailed Desiets

&Lycura. SDD 3.2.x.y will be written for SlnI-Rtbihtr seet uco aljA
eacls sub-level CSC. The preliminary PDL for the sub-
level CSC will be included in thsis sections. SDD 5. and Trhe first step irs detailed design is to outline ste logic
7. will be updated to shsow traceability to thse sub-level to be used ifs tlse "select" statement of echd task. The
CSC. concurrent enstities identified in prelimninary designs are

expanded upon. One sub-level CSC in preliminary
Str 4 - Describe- abstract algorithmn of echd sub-level design may sum into severald tasks in detailed design.

Tasks msay be initroduced for functions which are
performed periodically, or to queue data to provide a

This step supports development of die hardware looser coupling than the Ada rendezvous. Decisions as
resource allocation infonsiation, estimates of source lines to whichs entities are callers and whichs are called are
of code and modeling of slse system using a discrete reviewed. Thsis requires examining she entity diagrans
event simulator. for tasks tisat communicate with she sdbject task, in

addition to tlsu abstract algorithm of tlse task. The
Overview of abstract algorithm. Althoughs we relationship of execution order is also examined between

concentrate on the abstract view during prelimninary tasks thsat interact in order to determine if thsere is a

7th Annual National Conference on Ada Technology 1989 55

potential for deadlock, or starvation. 2. Dcfinc life implemnrtation of the Operations by
~~~kL~dl.~.be olloingcidscribing themi in termns of their inanipulation of

I. Is Ownrc a cycle in tile usage of taks (Potentia ~tae ce Itua1 i ve'i s inapron incude ho
for deadlock)? itializaon conditions or the object will be

imIplCUmIcnt aIXd how the consiStency rule$ Wilt2. For $elect$ with guarded entries: will at least one be mnaintained. There: may be limitations; placed
guard always be true (if not. Oil tile itflpictflettatiofl view Which Were IoM pan
PROGRAMJ3RROR will be raised)? of the abstract view. An example of thi would

be adding a nmxhinuin size to an unbounded se3. Are task eny calls iddien by encapsulating abstraction.
procedures withn the same package (to protect
logic front user)? If nIM, will the use Of timned 4. Verify that thie inapping is consistent xnd
entry calls, Or 311 abort of thle calling task, cause: comIPlctc:
problemns in this task's "Select" logic'?

4. an he alu ofa gardchage etwen heA. For every state of the linplemnnation or4. Cn tle alu ofIt uardchage etwen ilethe object, is there a corresponding statetiflc it it evaluated and the correspondiing of the abstractionl
ret eavOUs? bt. Do huinmcrtatiott initialization and each

insplinicid function mnaintain the5. Will a steAdY streamn at onec entry block other consistency rules of the. abstraction?
entries of task? C. Is tixhe iplnictation initialization

etjuivalcut to initialization of thle
conceptual view?~IS fSiLIS 1. The following products will d. Is each imiplemented operation eq~uivalentbe generated during step 1: to the corresponding conceptual operationI

a. Updated entity diagramns reflecting any EMulqLp2 The following products will
changes in the caller/calling relationshlips, be produced durig Step 2:

It. Ada package diagramn of the internal a. PI)L for package bodies, procedure
relation~hips of the CSUs within the sub. bodies, and task bodies.
level CSC.

bt. PDL for the select logic in the task
bodies.Dcliverables. SDD Section 4.x will be written

for each sub-level CSC. lite Ada package diagramn will
be Included in tis section. MJjhjh. SDD Sections 4.x.y will he written

I ~for each CSU. Section 5 will be comipleted.18s 2 -Specifv thc~W =I~~oIve rC11

This step provides the inforniation needed to eventually ~ui~~
code each sub-levcl CSC. It also identifies the CSUs by Ako ~ nn

step wise refi emen ofthe ub~l vel SC.ic work described in this paper was perforined by the
Jet Propulsion Laboratory, Californtia Institute of

Refiningl drinioI of nrocsii niis For Techn',logy, under the sponsorship of the u. s.
Processing entities which are input, output, processing Depiartment of Transportation, Federal Aviation
enititics, specify thle Procesing algorithmn by step-wise Admninistration, through an interagency agreement with
refinemnent. Data type definitions for the input and the National Aeronautics and Space Admninistration.
Output Which were at anl abstract level during
prelnlminary design are now completely specified.

For processing entities that are objects:

I. Define the iniplemnentation of the state data of
the object.

56 7th Annual National Conference on Ada Technology 1989



I. Unite11d St~ates DCpallincil of DI"t~. Mlitary
Statuarnl Defite System Stfniwre Derehopmen,
1)ODl).ST.2167A, 29 Fcbruary 1988.

2. Unitcd States Dc-panrnict of Dcuc Dart Itent
D~escription -Sofnimzre IDeskqn Documnent. 1!
MCCR4800I2A, 29) Fcbnuary 1988.

3. Hooch, G., Sgtfinsvre Engincnering with Adla. Ud
C4. lictijuntin/Cullnings Publi iling coilpaily,
11nc., 1986.

4. chewrry, G. W., The I'AMUiA Design:ers
Ilnodhook Vol. I & It, ib7oughto, Iools, 1986. Dr. lKaren S. E~llison has Over 18 ycearcpcricoce iii

software developtm)nt anld mtlatace In boith
5. Nklisco. K., wnd Shunhitc. K., "Designing 1-irge coitmercial mild aerommaec ap licatlott't. Sie is currently

Rcal!I~iin Systems with Ada", Communications oil contract m; JPI. to Provide day-to-day Suidatice to
of the ACAI, Vol. 30, No. 8, August 1987. thle PMA Rca.4ime Weather Prmosor projet on tihe

practical use or sortwarc engieerig ineth~odooies for
6. Coman, If., "A Softwarne lesign Mcithold for real-timec, distributed systcnts kpirnlced it Ada.

lReal~lrimit Systeim", Commindkatios tr (he
ACM. Vol. 27. No. 9, Scptcember 1984.

7. Ward, 1P. andl Mellor, S., Structured D~evelopment
for Real.7ume Svsrene , Yourdaii Press, ' 985.

S. Scidewitz, 11. and Stazrk, M., "Towards a GCecrAl
Object.-Oricin ed Software Devclopilnenz
Methodiology", Ada Letters. Vol. VII, N4o. .
Association ror Computing Machincry, Inc., July,
August 1987.

9. Firesinith, D., Ada P'roject Atimigenee, 1987.

10. United States Dcparnment of Dcl~mse, Dota Item
Description - Softwajre Requirements Document. Mr. Goulct has over 20 year expericncc 41 tile
DI.MCCR.80025A, 29 February 1988. deve~lpment or infrniation systemls and cinbcddcd

realtime :4pplicationls, lie Is currently tile Sortware
Devclopmcnt Managcr ror the Realtinle Weather
Processor Project at tile Jet Propulsionl Laboratory it'
Pasadena, California.

Thec mailing address for both Dr. 1116omi anld Mr.
Goulet is: Jet Propulsion Laboratory. CaliforniA
Institute of Technology. 4800 Oak Grove Drive, Mail
Station 506-447, Pasadena. CA 91109).

7th Annual National Conference on Ada Technology 1989 57



LESSONS LEARNED IN THE PREPARATION OF A
SOFTWARE ENGINEERING EXERCISE

(A Life Raft at SEE)

John P. Fitzgihbon and Catherine Peavy

Martin Marietta Information and Communications Systems*

Abstract: Potential Dol) contractors are leads to emphasis on modern software engineering
now required to demonstrate their ability to principles and supporting development
successrully develop software prior to environments that perform evaluation and
contract award. One mechanism used to verification of software engineering products. The
assess a contractor's capability is to Software Engineering Institute (SEI) has
complete a Software Engineering Exercise recommended that contractors be required to
(SEE) defined by the procurement agency. demonstrate their capability to undertake software
'I'his paper relates the experiences of Martin development prior to the commencement of the
Marietta Information and Communications contract. One of the methods recommended for
Systems during a Software Engineering evaluation is a Software Engineering Exercise
Exercise that was part or a competitive (SEE).
contract procurement. This papersummarizes the experience as lessons The dcarcd purpose of the SEE is to provide the
learned, procurement agency with an opportunity to evaluatethe offeror's software development methodology.
INTRODUCTION The offeror is required to analyze a software

system, propose a viable design and then to defend
Software systems are expensive. complex and often the solution before a panel of application experts
fail to meet the basic needs that instigate their assembled from industry, government service and
development. Procurement agencies, cognizant of academia. This allows the agency to make an
these problems, have been concentrating on ways objective appraisal of the quality of the product,
and means to mitigate these risks through more and the efficacy of the development procedures and
careful evaluation of prospective contractors. practices. Furthermore, it allows the procurement
Several recent developments indicate that these agency insight into management effectivity.
agencies are switching emphasis from the product
to the process that creates it. Perhaps the most The problem for this exercise involved developing
significant development is a technical report' by the a Real-Time executive that would support the
Software Engineering Institute describing a method control and execution of a distributed simulation.
for assessing a contractor's ability to produce The offeror was directed to provide a complete
software. Commissioned by the Electronics System software architecture outlining each major design
Division (ESD) of the Air Force, this document component, to perform detailed software
typifies the increasing interest by the government in requirements analysis on at least two of the major
the process of system development, architectural components, develop a top-leval

design for the analyzed components and to provide
One of the most significant aspects of DoD-STD- a detailed design for at least one element. The
21672 is the requirement that automated executive was to be designed in such a manner that
requirements analysis tools be used to develop it would be implementable in Ada. Furthermore,
models of the software requirements. These models the design of low level software elements was to be
promote understanding and lend themselves to expressed as compilable Ada PDL. The instructions
analysis. Another trend affecting the software to the offeror also stated that documentation should
engineering process is the mandate3 to use Ada for be representative of th- offeror's software
design and implementation of new systems. This development methodology. Although the

58 7th Annual National Conference on Ada Technology 1989



documentation could be infomlal, the instructions development projects. Therefore, most companies
implied that infomiation provided by a Software are in the unfortunate situation of having to update
Requirements Specification (SRS),a Software Top- their current practices and procedures to
Level Design Document (STLDD) and and a accommodate Ada and DoD-STD-2167
Software Detailed Design Document (SDDD) was requirements. Since the scope of this task clearly
expecscd. cxceeds the time limitations imposed by a

competitive procurement, it is necessary to workout
Following suumission of the offeror's engineering the software methodology in advance.
documentation the procurement agency evaluated
the solution. Once the agency had evaluated the Now that the contractor has defined a modern
submitted '"ta, a review was scheduled to provide software development methodology it only
the offcro, he opportunity to describe the results remains to assemble a team. This team must be
of the engineering analysis and design. The offeror familiar with the application area and skilled in the
was allowed two hours to present analyses, application of the selected software development
interpretations of requirements, design descriptions methodology. There may be companics rich with
and to describe altcrnative design approaches. The an abundance of highly skilled software
presentation was followed by a five hour professionals, couched in the most modern
examination of the requirements analysis, software development methodologies, who are instantly
design and the participants in the exercise. The available to respond to proposals. (If there are such,
remainder of this paper recounts the experiences they would be immediately disqualified out-of-hand
that Martin Marietta had during the performance of if the procurement agency suspects that "ringers"
a Software Engineering Exercise. have been brought in.) For the rest of us, we have

no alternative other than training our staff in the
LESSONS principles, techniques, and tools.

While our efforts on the SEE were successful in the Participants in a Software Engineering Exercise
acquisition of the contract, we feel that with better (SEE) should provide a Software Development Plan
preparation our results could have been bctt,:r. The (SDP) as one of the deliverable documents even if it
following sections detail what we feel arc the most is not specifically required. Submission of a SDP
important lessons derived from the execution of the provides the contractor an opportunity to explain
exercise. Although the lessons were particular to the software methodology used during the SEE.
the SEE, some reflection shows that they ire The real purpose of the SEE is to showcase the
applicable to the Software Engineering process in software development methodology rather than the
general. These lessons represent management product. The proposal section of the SEE response
principles but they are rendered from the should relate how application of the selected
perspective of a software engineering practitioner, development approach lead to the resultant solution
Software Engineering managers should carefully to the software engineering problem.
consider these lessons so that they may better We recommend that the SDP be prepared in
understand the implications of their actions on their advance due to the time pressures inherent in a
staff, the product and the process of development. competitive procurement. This does not imply that
Never try to pick up two watermelons at the the contractor has a single methodology that it
same time applies to each of the projects undertaken by the

offeror. On the contrary, we suggest that theThe prospective biddcr is faced with two different offeror develop a standard set of procedures,
problems in the preparation of a Software encompassing several devclopmnnt paradigms, that
Engineering Exercise (SEE). The first problem is may be selected and integrated into a software
the analysis of the problem and synthesis of a development methodology that is tailored to the
design. However, the second and more important specific needs of a particular project. The SDP is
problem is to select and apply a suitable in effect, a template referencing a set of possible
development methodology to the development techniques and procedures that may be selected to
process. Most companies have established software provide several variant sequences of development
engineering methodologies that have evulved over a activities each of which is appropriate for a given
number years in response to contract experience. It development paradigm. Along with the set of
is a very rare case when this experience base procedures is a set of rules that provide constraints
includes a dozen or more large scale Ada on the various combinations of procedures. For

7th Annual National Conference on Ada Technology 1989 59



example, there may not be a proven methodology Some readers may argue that the offeror does not
that combines Object Oriented Analysis, Jackson have the right to make interpretations of the system
System Design method and Top-Down system specification or to decide what is more or less
development, important. llowever, ambiguous specifications are

common in our industry and arc often the result of
The real lesson is that without establishing software ambivalence on the part of the customer or an
development procedures, techniques and methods in rttempt to reach consensus between different
advance, the application experts will not be factions. By providing a "strawman", the dialogue
effective in solving the designated engineering between the customer and the contractor is
problem. Next, the development team must be transported from an abstract plane to specifics. The
trained in the methods and procedures composing contractor can present alternatives that may not
the methodology. Finally, this system of have been feasible when the need for the system was
engineering processes must be proven in actual first realized and specified. Moreover, this allows
practice since the methodology will be evaluated by the analysis process to proceed to closure.
the quality of the resultant product. Understanding Each journey begins with the first Mtep
that the system problem space is coupled to the
engineering process space is critical in assuring The purpose of the SEE is to demonstrate the
success of the development effort. effectiveness of the offeror's software development
Do not try to eat the elephant in one bite process. An important part of this process is the

generation of cngineering data products. Although
Problem descriptions used during a SEE tend to the instructions to the SEE problem allow the
have very large scope and be somewhat ambiguous. offeror to provide informal documentation, we
It is not unusual for there to be conflicting chose to develop documentation as required by
statements within the problem definition. DoD-STD-2167. By doing so we provided
Furthermore, the offeror can be prohibited from documentation that would be representative of that
asking questions regarding the meaning of the prepared under any future contract with this
problem statement or other requirements customer. Furthermore, this reinforces our
specifications. Given these conditions it is difficult premise that documentation is a normal product of
to control the engineering process. We believe that the software engineering process rather than an
to sonic extent this is a premeditated action on the obligatory and onerous task that has nothing to do
part of the procurement agency designed to cvaluate with the process. l lowever, the first step in the
the offeror's management ability. 'hoereforc, the engineering process is to analyze the total system
offeror should interpret the requirements so that a (i.e., software hardware and manual operations)
solution may be achieved within given time and and define how it will be used.
available resources.

We elected to develop a System Segment
The SEE instructions provide the offeror Specification (SSS) and an Operational Concept
considerable latitude in requirements interpretation Document (OCD) in addition to the software
and the scope of problem analysis. The key to specifications and design documents. We believe
success is to develop a consistent strategy for the that the Systems Engineering analysis and the
course of analysis. The first premise is that not all Software Engineering Analysis are interdependent
aspects of a problem are equally important. processes that form a unified development
Therefore, the analysis must prioritize different methodology. The Systems Engineering process
problem aspects, high-lighting the most critical generates an essential understanding of the context
ones. The analysis in these areas should progress surrounding the software product. Without
first and to the greatest depth. For less important performing adequate Systems Engineering analysis
areas the analysis should be deferred until the rest prior to software engineering, designers have little
of the problem is better understood. For those less guidance in the development of a realistic solution.
critical areas, the analysts should make assumptions
that will simplify the resultant design. This strategy One of the most important products of the System
leads to systems that arc simpler, more Engineering Analysis is the Operational Concept
understandable and ultimately easier to operate and Document and as such requires special attention in
maintain. In the context of the SEE, this leads to a this discourse. Consider a distributed system
problem definition that is tractable within the architecture comprising a central host that processes
available time and resources. information and a network of satellite workstations

60 7th Annual National Conference on Ada Technology 1989



that display the information and provide system specialist during the SEE, we would have bettcr
control. Should the system design employ exploited the capabilities of our engineering tools
centralized control or distributed control? Should and had better productivity.
the workstations be uniquely configured to perfoon
a specific subset of functions or should cach Modrn workstations, analysis tools, word
workstation provide all of ihc functions that are processors, graphics tools, and other facets of desk
required by the set of all possible users? Should the top publishing are of limited use if thc staff and
human machine interface be designed to management are unaware of their capabilities and
accommodate the least trained user or should unable to exploit such tools fully. With this in mind
responsive perforniance be emphasized or must the we recommend that the development staff be
interface exhibit either behavior depending upon supported by a complement of administrative aides.
the requirements of the user? Is it neccssary for the This support team should comprise commercial
system to operate in more than one mode artists trained in computer graphics, word
concurrently? Should different system modes be processing clerks capable of editing technical
physically partitioned so that thcre is no chance of manuscripts, and engineering aids trained to execute
confusion or cross-over? The Operational Concept engineering procedures effectively. 'ilia supporting
Document provides a framework to evaluate these staff should work with the development team rather
design alternatives by defining who will use the than be quartered in a clerical pool. During the
system, how it will be employed and deployed and SEE, our support staff was located at some distance
which system requirements are satisfied by manual from the development team. Consequently, we had
procedures. to use engineering talnt for several ch ical tasks.

Bigger is not better 'This effort would have been better employed doing
engineering tasks.

One of the most frequently recurring patterns of Once the team has been selected, management must
organization among successful projects is a small trust them to accomplish their task through self-
design team that participates in all phases nf direction. Management needs to monitor progress
development. Frederick Brooks 4 described the and assure that resources are available when they
chaos that resulted from trying to employ a huge 2re needed. In most cases, the team nmmbers are
team of 1,000 software programmers to design the ones most qualified to decide what resources are
OS/360. Little progress was made until the design needed and how they should be applied.
became the responsibility of a 12 member
architecture team. On the contrary, Harlan Mills Teach old dogs new tricks
demonstrated that a small team of specialists could Although thc team should be self-dircted to the
design i system of similar size (New York Times g te lent sbld manaemet t thi
operating systems) in a shorter time interval and greatest extent possiblec, management must retainwithhighr prductqualtyvisibility into the development process. A
with higher product quality. development team can easily lose track of its
'he team we selected consisted of a small kernel of primary objectives by becoming too engrossed with
individuals who were well trained and had been tangential issues and minor details of the problem.
working together for over a year prior to the SEE. At this point management must be capable of
We recommend that the team comprises specialists ste,,uping in and moving the development back oit
in each of tile skill categories related to the project. track. To do this Engineering Management must
Skill categories might include a languagc specialist, understand the methods being used by the design
a data base designer, an application expert, a team and develop methods and metrics to monitor
requirements analyst, and a system designer. the on-going process. This means that training for

Engineering Management is a critical priority and
Another category that is becoming increasingly that this training must include modem development
important is a software engineering tool specialist, methodology as well as management issues.
This individual is an expert in the engineering
techniques, analysis methods and the tools that Engineers find it difficult to separate the process of
support the constituent parts of the selected requirements analysis and design. We believe that
engineering methodology. In a long term project, while a partial cause for this phenomena lies with
this individual may also play the role of a software inadequate training and personal disposition,
engineering toolsmith tasked with automating another cause is the fact that the two processes are
portions of the process. If we had had such a interdependent. Rather than inhibit the creativity of

7th Annual National Conference on Ada Technology 1989 61



the developers by enforcing an arbitrary separation the requiring that the two groups exchange
of the processes we decided to allow iteration documents for review. This intcrchangc of
between the two processms. 'Thc team was allowed to information improved the work of both groups and
iterate freely between analysis and design with the promoted consistency of documentation style, form
stipulation that their perambulations were recorded and content.
in engineering notebooks. These notebooks
provided the source material for the engineering While attention to style and format cun make a
data products required by DoD-S'rD.2167. good product sparkle, it must never be substituted

for accuracy of content. In an effort to enhance the
The conversion of source material to standard polish of our submitted documentation, we passed
documentation format was done by a small team or up a final opportunity to review the documents for
specialists acting as technical writers. This allowed technical consistency. One of the most painful
us to uncouple the design process from the experiences of the SEE for our team was tle
recording process. It is tempting to suggest that the dis-.overy of errors after submission of our
writing team be composed of non.cngineering talent response. These errors were the direct result of
so that labor costs can be reduced. I lowever, we polishing an incomplete product.
would prefer to use experienced design engineers. Measure your bucket before bailing
We discovered that the design team was not always
rigorous in the maintenance of the design notebooks Performance analysis should be started as soon as a
and that the writing team had to interact with the candidate software architecture is sketched out.
dcigners to get necessary information. The When there are no Quantitative Performance
r.sulting dialogue forced the design team to Requirements (QIIR's) provided with the problem
consider the validity of the candidate design and to statement, the engineering team should make
consider possible altematives. If tlp- writing team assumptions regarding reasonable performance
had not 1 ,i composed of top quality software based upon experience and similar systems. The
engineers, the dialogue might have degenerated into Operational Concept will often provide valuable
a monologue and have added little value, insight into what the customer expects of the
Substance before style system. Using mathematical analysis or simulation it

is possible to quickly determine performance for
The most important thing a participant in a the major system behaviors.
Software Engineering Exercise can do to improve
the quality of their response is to check the There are certain figures of merit that can be
submitted documentation for consistency. During derived by simple means that provide valuable
the SEE we learned to appreciate the value of using information on expected system perfornance. The
Engineering Analysis tools to verify interfaces first figure is the mean time for task context switch.
between software components. We prepared This can be computed with an Ada program
requirements traceability matrices mapping system consisting of two or more tasks. The program is
requirements to design components. Due to the written so that the tasks rendezvous with each other
limited scope of the problem we were able to in a circular configuration (e.g., A => B => C =>A
perform this task manually. hlowever, we learned ...). A loop of 1,000,000 is appropriate for
that this becomes unmanageable for any problem machines that execute at the rate of one million
that is realistically sized. Since that time we have instructions per second (I MIP). Task rendezvous
directed some research effort into developing rates of 1000 per second are typical for such an
generalized data base models to generate the environment. A variant of this figure is the mean
necessary traceability reports automatically, time for process context switch. This is determined

in a similar manner by having processes
During the SEE we had different groups working communicate rather than Ada tasks. This is
on the requirements analysis and system design. especially relevant for systems that employ
This enabled parallel development to some extent multiple-processor architectures.
while on the other hand it created problems with
consistency of documents. This is essentially no Another necessary figure of merit is the maximum
different than development under traditional life- effective data rate for each data link in the
cycle paradigms where requirements analysis and distributed system. This can be determined by a
design are partitioned by time if not personnel. We simple program consisting of two cooperating
were able to control this parallel development by processes that continuously exchange messages

62 7th Annual National Conference on Ada Technology 1989



without performing any information processing. Money for nothing and checks for free
The effective data rate should be plottcd as a
function of average message size for each data link The contractor should consider the statement or the
in the system. For data links that use multiple SEE problem very carefully before beginning to
access channel acquisition (e.g., Ethernet) it is frame a response. 'he procurement agency will
important to parameterize the effect of channel surely have chosen what it considers to be the most
contention on perrormance. This can be done by difficult tcchnical problem for the real system that
testing pairs of cooperating processes or developing is being procurrcd. The government is
a test program variant that communicates with an understandably trying to get a head start on the
arbitrary number of clients, development of his system during the competitive

phase of the procurement. In doing so, lie is
The results of a performance analysis may be dropping clues regarding what he considers to be an
disturbing to the design team. As a result of this appropriate answer. The nature of the SHE
analysis, we detemiined that no more than two task problem statement exposes tle government's real
rendezvous could be tolerated for a single for technical evaluation. llc mainline proposal
transaction. We modified our design accordingly team can and should use this intelligence in framing
and used buffering to minimize comtunication their proposal. Similarly, the SEE team should
overhead. Regardless of the outcome, we feel that examine the RFP and the proposal for guidance in
performance analysis data shnuld always be their response. The SEE team should choose a
presented as part of the response to the SEE design approach that can arguably be extended to
problem. A perceptive customer will expect it to be work with or be part of the "Real" system. 'Their
there and question its absence, response should emphasize commonalty shared by

Practice makes perfect the "Real" system and the SEE system.

An ounce or prevention has more value than
If there is one thing that we wished that we had a ton of remorse
done in preparation for our first Software
Engineering Exercise it would have been to practice Once the SEE team has submitted their final draft,
in advance. Ideally, we would have chosen a design it is time to start preparing for the Review panel.
team and practiced by pcrforming mock SEE's The first step in this preparation is to have each
internally. This would promote self-confidence on member of tile SEE team read every document that
the part of the design team as well as pointing out was submitted with tile response. "liis should be a
deficiencies in time to take effective action. Even if critical review where each team member is trying
the team has been thoroughly trained in the to discover flaws in the approach or documentation.
principles of software methodology, there is no
substitute for actual experience with a SEE. While reviewing the submitted documents, the SEE

team should make a list of deficiencies, missing
Having gone through a SEE we have gained data, errors and other questions that are not
considerable respect for its ability to point out adequately addressed. The SEE team should then
problems with the software development process try to provide written answers to cach question on
and evaluating de effectiveness of a design team. the list. If an error was simply an oversight then it
We think that this technique should be used to is best to admit it and to say that it was identified
evaluate new software methodologies, research and during the post-submission review. Participants of
development projects, to validate new software a Software Engineering Exercise are very aware of
standards and practices, and to evaluate software the unusual time pressures resulting from this
engineering tool products. In addition to self- situation. In our own experience we successfully
evaluation, we think that thei SEE format is predicted approximately half of ie technical
particularly effective in predicting the perfornance questions presented at the review.
of sub-contractors. Furthermore, experience
gained applying this technique to others will Another task is to find out as much as possible
provide valuable knowledge and insight on the most about the team of "Grey Beards" who will be on the
effective way to execute a SEE as part of a review panel. Several of them will be academics;
competitive procurement. reading their recently published papers will provide

insight into what they will ask. The other members
of ilie review panel will be military and civilian

7th Annual National Conference on Ada Technology 1989 63



employees of the procurement agency. In most dollars spent on training h,ve had the greatest pay-
case,, someone in your organization has dealt with back. Dollars saved on training have borne the
them before and can define the hot buttons. greatest cost.
The best way to prepare the SEE team for the
actual conduct of the "Grey Board" review is to A devclopment strategy or paradigm should be the
stage a dry run. The contractor should select a most carefully considered decision of any
Technical Review team consisting of scnior engineering process. The development strategy is
technical staff and executive level managers from the pattern that unifics the analysis methods, tools,
other projects. The Technical Review team will standards and metrics that are applied to problem
play the role of the "Grey Beards" during the dry resolution. If an Object Oriented methodology were
run. To aid the Technical Review team in employed, we might expect the choice of such
preparing, the SEE team should provide the list of engineering disciplines as Object Oriented Analysis,
questions and answers generated during the Information Modeling, and Object Oriented
document review. These questions will provide the Programming practices. To support these methods
reviewers with an introduction to the SEE problem we would require an Object Oriented Language and
and the critical aspects of its proposed solution. tools to develop and analyze Entity Relationship
Moreover, it will stimulate the thought processes of Diagrams. Standards and nietrics, supported by
the review panel in defining their own questions. If other tools, would instrument the engineering
the SEE team can survive such an inquisition then it process and aid in the evaluation of the software
ihould be well prepared for the actual review, products. No matter what paradigm is chosen, it is

critical that it be complete. Each method, tool and
After the dry run, the SEE team and the Technical procedure must be compatible with and complement
Review team should meet for a debriefing. The each element of the methodology.
purpose of the debriefing is to assess the
preparedness of the SEE tean. The Technical Techniques or methods are forns of analysis that
Review team should provide answers to any describe some aspect of the problem tinder study.
questions that the SEE team failed to answer Usually these techniques employ engineering
adequately. The SEE team should also ask the models that emphasize the attributes under study
Technical Review team to help answer any while diminishing or ignoring other aspects. Since
unresolved questions. The management ntmenbers these models and techniques focus on .singular
of the Technical Review tean tend to be very adept attributes it is not possible for any onet nicthod to be
at providing answers to impossible technical comprehensive. A given methodology may
questions. incorporate Structured Analysis, Structured Design,

The "Tools 'R Us" Syndrome Structured Testing and Top-Down development.
This is not the only feasible methodology nor is it

Too many discussions of software engineering appropriate for all projects. These methods need to
methodology begin and end with tools. Available be selected based on the nature of the problem
tools far too often define and mandate the choice of under study and the personnel performing the
a particular methodology rather than the intrinsic analyses.
nature of the problem under study. Lack of
adequate tools to support a particular methodology Tools support a specific technique by providing a
may discourage engineering management from mechanism to depict and analyze the engineering
applying the most appropriate methodology. On the model. Structured Analysis uses a model
other hand, the desire to use the latest hot comprising a set of Data low Diagrams (DFD's), a
methodology can lead to a precipitous choice of data dictionary and a set of process specifications.
engineering tools based solely on the felicitous The tool must support each of these aspects of the
assertions of a CASE vendor, model and aid in its analysis. At a minimum, it

must be able to cross-validate the DFD's, the
A software engineering methodology comprises a dictionary and the Input/Output declarations of the
development strategy, techniques for analysis, tools, processing specification. Furthermore, it must be
standards, metrics and appropriate training. Success able to verify consistency of expression between
requires that each item be addressed carefully and different levels and partitions of the set of DFD's.
that none be shorted. In particular, the training Other useful capabilities include normalization of
budget should never be sacrificed for the benefit of data flow definitions within the data dictionary,
any other aspect of development. Time and again, reports that specify data elements crossing

interfaces, mechanisms that allow capture and

64 7th Annual National Conference on Ada Technology 1989



retrieval of auxiliary data attributes (e.g., range, The software engineering process is changing
accuracy ...) and analyses of change activity on rapidly due to growth of requirements and
different portions of the model. lic point of the revolutionary advances in technology. To cope with
foregoing discussion is to demonstrate that the and to understand the nature of this change,
outputs of tools should be verifiable and that they companies will have to invest in the acquisition and
should directly map to products required by the transfer of modern cngineering technology. This
engincring process. requires research into software engineering

processes, the intcrdcpendencies among analysis
Standards provide a set of criteria by which to methods, standards to evaluate engineering products
compare the quality, consistency and completeness and metrics that instrument the process of
of engineering products. Most projects have coding development. The results of this research must be
standards that prescribe presentation format, usage codified into new engineering practices, standards
of language features, and naming conventions. and procedures. Once developed ihc.sc engincering
However, far fewer projects have standards that practices must be validated through real world
address the partitioning of requirements models, application by projects. Fccdback front the projects
allocation of requirements to components, will assure that resacrch programs are investigating
appropriate levels of design decomposition, detail the most important problems and that new
requirements for process specifications or provide procedures are effective.
criteria by which to evaluate test cases. For a
methodology to be effective, standards must exist to The engineering process can no longer be viewed as
evaluate each product and activity included in the eparate activities pcrfomicd by isolated specialists
methodology, but rather as a single process executed by a team of

generalists. The members of future development
Metrics provide a standard to measure the state of teams will be schooled in all tle skills necessary to
the engineering process. Most metrics that have engineer software systems including analysis.
been defined relate only to the implementation design, implementation, test and integration. The
activity. The most often cited metric is the Line of same team will be responsible for the product from
Code (LOC) statistic. Most managers can quote concept evaluation through deployment.
program productivity rates (e.g., 2 LOC/hour) but Consequently, staff loading will be more stable
few have any idea of what acceptable error density throughout the project life and productivity will be
rates might be (50 per 1000 LOC ?). Furthcrnorc, higher. The impact to the product will be higher
how can we measure other engineering activities quality, lower cost and sooner availability.
such as requirements analysis or test? Good metrics
should provide management with answcrs io the The development processes must become more
following questions. flow far have we gone? flow flexible ihan current paradigms allow. Rather than
much'further must we go? At what rate are we a single methodology, based on a -landrd paradigm
approaching completion? Suitable metrics for each comprising a small set of methods, modern
engineering activity and process must be developed methodologies will comprise a rich set of various
and applied in the context of the tools and methods disciplines. These methods will forn ,,%ts of
that compose the selected engineering :'cthudoiogy. interchangeable process components. The

components will fon an integrated system bound
CONCLUSIONS by a paradigm that is tailored to specific product

features and program needs. In this manner,
This paper recounts the experiences of Martin different methodologies can be applied to
Marietta Information and Communication Systems accommodate technical risk, project resources and
while performing a competitive Software applicable technology.
Engineering Exercise. However, many of the
lessons learned are applicable to the management of
any engineering process. To succeed in coming
years companies will require a large number of
well trained, dedicated engineering professionals.
The number required and the market demand for
such individuals implies that it will not be feasible
to hire all of them. Instead, companies must develop
training programs for their existing work force.

7th Annual National Conference on Ada Technology 1989 65



To succeed, companies and cmployczs must exhibit John P. Fitzgibbon
an unwavering commitment .to professional
excellence. Employees must be train d and nurtured Mr. Fitzgibbon is a senior staff engineer for Martin
to bring out their full potential. Employees must be Marietta infornation and Communications Systems.
willing to dedicate considerable energy to learn, His current assignment is in Colorado Springs
master and apply new technology as it becomes supporting the United States Space Command in its
available. Methods for monitoring employee Granite Sentry progranm. In this capacity he is
development and rewarding progress must be pcrfonnting system design analysis and defining
instantiated. Furthermore, companies must provide engineering processes to support the development
an environment in which employees can excel and of software. Mr. Fitzgibbon is a member of the
they must be unwilling to accept anything other Institute of Electrical and Electronic Engineers. lie
than superior perfornmance. received a B.S. in Electrical Engineering fron

Northwestern University in 1972. lie has studied
Computer Science and Computer Engineering in
graduate level programs from the University of

I "A Method for Assessing the Software Iowa, the University of Minnesota, the University
Engineering Capability of Contractors", Software of South Florida and the University of Colorado.
Engineering Institute, CMUiSEI-87-R-23, ESD- Mr. Fitzgibbon can be reached at 4180 East Bijou,
TR-87-186, Preliminary Version, September, 1987. Colorado Springs, Colorado 80909 or telephoned at

2 Defense System Software Development, DoD- (79) 591-3800.

STD-2167, 4 June 1985, section 5.1.1.7, p. 27. Catherine 1I. Pcavy

3"Computer Programming Language Policy", Ms. Pcavy is the manager of Advanced Software
Department of Defense Directive, Number 3405.1, Technologies for Martin Marietta Information and
April 2, 1987. Communications Systems Company. Her

responsibilities include the management of the
4Brooks, Frederick P., The Mythical Man Month, development of Software methodologies and tools
Reading, Mass.: Addison-Wesley, 1975. for the company, as well as managing the staffing,

technical and career development for 150
5 Baker, F. T., "Chief Programmer Team", IBM engineers. Additionally, Ms. Peavy is a member of
Systems Journal, Vol. 1I, No. 1, 1972. the corporate Technical review team for project

and proposal efforts. Ms. Peavy is on the Board
for the Annual National Conference on Ada
Technology and a member of the ACM SigAda.
She received a B.A. from the University of
Colorado, Boulder, Colorado. She has done post-
graduate work at the University of Colorado in
Business. Ms. Peavy can be reached at P.O. Box
1260, Mail Station 0720, Denver Colorado 80201
or telephoned (303) 977-2370.

*The opinions expressed in this paper are those of
the authois, and not necessarily the opinions of
Martin Marietta Corporation.

66 7th Annual National Conference on Ada Technology 1989



A Compariso of Methods which Address the Developiment of Real-Thie Dnbedded Systems.

R. Guilfoyle I, R. Pirchner t , L. Von Cerichtent , M. Ginsbergt , D.Clarsont

:Monmouth College Teledyine Brown Fngineering

West Long Branch, N.J. 07764 151 Industrial Way East
Eatontown N.J. 07724

A]BSTRACT information that can help members of th. community

A series of descriptions of software d make their own determination of how clk.ely a given
rtbse o dataotane ho heir spplop ers, method fits their needs. Thi fitness factor dependsthods, base d oa data obtained from Cheir suppirs, upon the problem dowain for which coftware is being

is presented as an cample of a bsis for comparing

nethods. In this approach, mnethods rather than their developed, upon the background and needs of thenwtede Iath appoac t mthos rthe thn teir development team, and upon the ..nvironment in

products art compare. The methods described were which the e ofware is to be dvcloe. This envi on-

elected because they art Intended to help oftwarw e ofpw recs toe ne met s end r ity

developers who art faced with those concerns typically ment encompasses the management style and maturity

found In rtal-tim embedded systems. Dlescriptions evel of the organization, as well as the physical facili.

are provided based on responses to selected questions ties of the development organization.

from a developer's survey. The authors followed the Thus, in order to judge the suitability of a method
thesis that each end user must rank methods accord- for the needs of an organization, information for
lg to requirements that are unique to that user, and making such judg-ments must be readily available. As
avoided making Judginents on behalf of the user. an initial step in providing such information, the
Several trends observed by the authors are listed at aunhors have worked during the past two years on the
the end of the article. development of a catalog of software development

methods. In order to provide a ready basis of con-
1. INTRODUCTION parison, the catalog employs a uniform style of presen-

The adoption and use of methods represents one of talon acro s all methods, n well A il tabult for hat

the major iactors affecting software development dur- to contrast methods. In this atele, the authors have

ing the past 15 years. During this period, a large var. provided some examples of the type of information

cty of methods ha been introduced, and it is natural presented in this catalog.

that attempts should be made tW compare these
methods, and to offer criteria by which a software
development organization can judge which methods are The first edition of the Software Methodology Cat-
best suited to meet the needs of the organization. alog [Maha87 was developed for, and published by,

This article demncnstrates a technique of presenting the US Army CECOM installation located at Ft. Mon-

information about methods which forms a basis by mouth, New Jersey. Information for this catalog was

which comparisons can be made. It is not the inten- ;4hered primarily by surveying method developers,

tion of the authors to formulate an evaluation of the though some additional information was solicited from

methods presented; rather, the article serves as an users of methods in the software engineering commun-
exmle fhowrsnerr the softw ariceerg c uniy ity. The catalog contains descriptions of 47 methodsexample of how the software engineering community and is available through t.he Defense Technical Inifor-

can be provided with information for judging the suita- an C etr T DCc.

bility of a method to the individual needs of the matign Center (DTIC).

development organization. During 1988, a continuation of the project involved

The authors have adopted the thesis that abso. the production of a second edition of the catalog based
on a revised version of the developer survey. This edi-lute rankings of software development, methods are tion, when completed, is expected to contain informa-

neither poesible nor desirable. Moreover, it is the tion about more than 60 methods. The project aiso

authors' position that the needs of the software devel- in a se tan whichtguidelie re

opment community are best addressed by providing included a second task in which guidelines were

7th Annual National Conference on Ada Technology 1989 67



proposed for approwhes to the task of evaluating Important steps to be followed include the identifi-
software development methods. cation of Anembie. and Build#; morcover, there are

In the initial phae's of' the 1918 project, an analyais steps dealing with the staffing and scheduling ofIndo the ialphes o the IrM proecefot, an,,assembly development. Subassemblies of each aem-was made of the rcult* of the first urvtyC lt~ort. bly are recursively elaborated in the manner outlined
loted on this analysis, an extenive rev.ision wM made above. Part of this elaboration process includes pro.
of the questionnaie, with emphais placed on soliciting ducing documentation as well as invoking configuration
more specific information on various method aspects.Additionally, an vxteneive analysis wra made of the management. Some of the steps for dealing with sub-
Addipto gather data from method users. The assemblies include storing their requirements in aattempt to cluded tat fr meod u T method-specittc library, developing method-specific
athors concluded that gathering meaningful data digasadcetn.oicldogs uasmlabout individual methods from users requires informs- diagrams and creating logical designs. Subassembly

tion about the respondents themstlves, and would testing and integration are planned activities addressed

involve significantly more resources than were available in the method.
in the project. Accordingly, it wag decided to use only 3.2 DODS -- Distributed Computing Design System
developer/vendor information as a basis for the second The DODS method it a collection of procedures
edition of the catalog. The revbed developer survey and tools intended to deal with several phues of the
was distributed during the months of September sotware process, including the representation of the
through November, 1988. system, representing software requirements, design and

Using information received from this survey for six testing. Its principal developers are Mack Allord and
of the methods, this paper presents a sampling of the Loyd Baker; it was first used at TRW in 1973.
basis for comparison which is employed in the catalog. The initial step in the method is definition of
The six methods selected are suited for the develop- oyoe initil reuin u mthodis efn to
ment of real-time, embedded systems. Such systems system-level requirements using a method-related
r2present a principal application area for the Ada com- language for that purpose. Definable entities include
munity, and the methods are representative of those functions, their inputs and outputs and their decompo-
currently being used for Ada development. Included sitond aoctintohrde comtonentare mature methods, as welU as methods which have Beyond those, interface designs, control functions deal
are te metfwsars. a io metho whichhe ing with resource management, and fault tolerance areevolved in the last few years. In addition to the definable with the language. A nethod-related
appropriateness for real-time development, the other software rquirements engineering technique is
criteria for selecting the methods for this artite was
the availability of survey responses at the time the employed to decompose the high-level definitions to a
article was prepared. The reader is cautioned that the
inclusion of these methods in this article does not con- Several additional method-related tools and tech-
stitute a recommendation. Furthermore, before mak- niques are used to ensure consistency, establish inter-
ing evaluative judgments, it is evident that similar faces, develop modules and package the implements,-
information about other methods should be reviewed. tLion. In particular, there are steps for dealing with dis-

tributed processing, concurrency, scheduling and mem-
3. OVERVIEW Of TIE SIX METKODS ory constraints. Finally, there also are tools and tech-

In this section, a brief overview is given for each of niq~aes for developing integration tests. Further infor-

the methods in order to provide the reader with a gen- mation is available in the bibliographic references
eral frame of reference. IAVfo71 and !D0D5871.
8.1 ADM-- Ada Development Method 3.3 MASCOT -- Modular Approach to Software Con-

struction, Operation and Test
The developer of ADM, Donald Firesmith, charac- te OTetod dest

terises this method as recursive; i.e., as cycling through The MASCOT method dealt with concurrency, di -

small parts of the design, code and test activities. An tributive processing and real-time issues from the onset
_mrl vesionwasusedin he dvelpmen oftheof the software process. The method also identifies" arly version was used in the development of theineacsndatobcsasprofivprah

Advanced Field Artillery Tactical Data Systems interfaces and data objects as part of its approach

(AFATDS) in 1985. The method has both data-flow towards implementation. It started out in the United
and object-oriented foundations and deals with most Kingdom in 1971 at Malven and has been upgradd
andct-vitiesaoited f do newith mostlopm . several times; Ken Jackson and IHugo Simpson are its
activities associated with development, principal architects.

68 7th Annual National Conference on Ada Technology 1989



The starting point of the method is a "Design Pro- method ham origins in Structured Analysis and Design,
posal" that identi 'es the major functional Subsystems the Software Cost Reduction (SOl) project and Sys-
and top-kvel internal data stores. Top-level units are tems Analysis of Integrated Network Tasks (SAINT);
decomposed into lower level ones by identifying active, it wam fist used in its complete form in 1981. Recent
passive and device dependent components. The devel. systems developed include a Trident Defensive
oping network of units has its components defined in Weapons System/Control Subsystem and a SAM Mis-
terms of data-flow, functionality and access interfaces. slt simulator.
Network decomposition ends when simple elements, i.e. System requirements are analysed using modeling
those that can be directly implemented in a program. techniques based on the U.S.A.F.'s Integrated Corn-
ming language, awe identified. In the process of ela. puter-Aided Manufacturing Definitional Methods and
horating designs, MASCOT employs several templates Structured Analysis. The SOR techniques are used to
that have been devised to match a variety of cir-cumstance. "The method include rules to be followed analyse specifications and to develop the architectural
toguaantee. Thae mth d inlde ules cofoltowhed design of the software. Evaluations through simulation
to guarantee that the simple elemnts conform to the and prototyping are accomplished using SAINT. SEM
architectural structure. There also are aspects of the also contains integration techniques that guide the user
method that deal with testing. Four articles covering in bringing together the various products and results.
MASCOT were published in a special issue of the A cr n ive iewr the method a be
Software Engineernt JournvaMay, 198M, jointly pub. A comprehensive view of the method has been
Ished in London by EE and BCS. Additional infor- presented in IWall87I.
nation is available from the Defense Rescarch Informa- 3.6 STATEMATE
tion Center, Glasgow, Scotland. Visual formalisms are the basis for thb method

3.4 OOA .. Object Oritated AnaJysis developed by A. Pnueli and D. Ilarel and first used for

In 1987, Boeing Computer service. initiated a pro. an avionics application in 1983. The method includes

ject resulting in this method; Mark Smith and Stephan tools and techniques for dealing with specification,

Tolicy are its principal developers. The method was design and analysis of systems. Additional capabilities

first used for the development of a deliverable system include management support tools and simulation for

in 1988. The method calls for the specification of the testing designs.

requirements of a system in terms of essential object A conceptual model is used to deal with notions,
classes. The product of the method is a statement of ertities and procedures that are relevant to reactive
requirements that is intended to be then input to an system development; i.e. responsive to bfth subsys-
object-oriented design. tens and environment. Three repreL.:ntational tech-

Three essential activities make up OOA: niques are utilized to describe systems:

1. Identification and Specification of Object Classes 1. Statecharts, an extension of finite state diagrams,
are used to specify behavior;

2. Specification of Object Communication 2. Activity-charts are used to specify system func-

3. Identification of Class Operations. tionality;

The method is an extension of existing methods 3. Module-charts are used to specify system structure.
which employ Information modeling, Data-Flow model- Additionally, there are parts of the method for con-
ing, and Finite-State modeling. There is a greater ducting 'what if' analyses and developing prototypes.
emphasis in the method on object/class communication Further information about tle method is provided in
and interaction which is represented in the Object Illare87j and jliare881.
Class Operation model. A more complete description
of the method is available in jSmitl88]. 4. SURVEY QUESTION RESPONSES

3.5 SEM -- System Engineering Methodology In the survey used to gather data for the catalog,

This method is a collection of techniques for deal- the authors solicited information about specific

ing with system requirements, developing specific&- features of methods which can be identified prior to a

tions, developing prototypes and developing architec- method's use in the development process. Though not

tural designs for software. The principal developers of as significant as the effect that results from the use of

SEM are Robert Wallace and John Stockenberg. The

7th Annual National Conference on Ada Technology 1989 69



a method during the development effort, such featuires In an effort to learn what analysis and review tech-
do represent information which clearly describes the niques were essential to using the methodi, the respon-
mtod rather than its product. dents were asked to describe the extent to which each

Accordingly, typical of the questions aaked in the of certain well-known techniques were used in the
survey were what development phases ar adrse method. The responses were to be coded with R for
by the method, what type of programming practices, teuiethd. TaE 2,r elo , andho t dressedb
analysis and review techniques are espoused by thethmeodTal2,bowsosterspns
method, and what modes of representation are used by obtained to this question.
the metthod. Otheir questions focused on the specific
ways that the method provides assistance to the devel. TABLE 3 - Use of Analysis and Review Techniques.
oper in areas such as error detection, incorporation of %(FTIIOD
change, and identification of reusable components. AvAlyki ma A D) M 0 S S
Information a&s was sought regarding automated sup- Rcvkw TockIul., 1) C A 0 E T
port provided with the method, available training, and %( D S A N( M
publically available bibliographic references about the S C T
method. In addition, the opinion of each developer Dal&sairwcril "Maysil N4 Rt N R E N4
was solicited concerning the amount of time, and the Dalafiow AyikI Rt Ft it it P. r
type of background needed to learn the method. JR ~ ~

In the sections which follow, a selection of these Dtcdi"o talW 14 E r. E U. 1
questions are presented along with the responses Fotmat proo( tecklaiques N4 N N N N4 E
recived for the six methods. R rIw t t U

4.1 7TeAniques Employed by t Method Cole w~dkIhrouguu It Et N N4 N

In an effort to learn the degree of importance of Chag control review R. E E i N

well-known programming concepts and practices to 4.2 Technology Tranifir sse
proper use of the method, the respondents were asked
to describe the extent to which certain concepts and Another series of questions asked the respondents
practices were used in the method. In Table 1, below, to estimate certain learning times, such as the time
the responses are coded as: E for tsse n tia, C for corn- required to attain a high-level of understanding. It is
putible, and U for unknown relationship to the method. also important to know how long it will take to learn
No respondents answered that the listed practices were enough to make reasonable use of a method and how
inconsistent with their respective methods. long it -night take to become an expert. The results

obtained are summarized in Table 3.

TABLE 1 - Use of Programming Practices.
METHOD1 TABLE 3 - Learning Times for MIethods.

Concepts A D 11 0 S S M~ETHlOD
and D C A 0 E T Esimatedl A D 1 O S S

Practices htD S AM N1 N Lemming D C A 0 E T
S C T Times M D S A NM M

- =- TStepwlst Rcfiffement E B C C CS C = =
Isformation 16ding B E E B, B. DQdl - profrct nager 2 3 1 1 2 1

Irtoces Absithatiom B B C E E C oevt
Ahstract Data-types E E E E C C Days - expefienced developer 5 5 5 5 10 2

- -- - -karoint essentuhds
Structured rwmpanming B B C U C C he-t ocm -2 6 4 "
Ceeckity B C B C C C an expert user
Inheritance C U C C UU
use ofanettom -C C *C* * Developers of software development methods

---------------------------E assume, perhaps implicitly, that the users of their
Modue coplig/coeslm ..... ~ ~ ~ ~methods are capable of understanding and following

the instructions given. Consequently, one type of

70 7th Annual National Conference on Ada Technology 1989



precondition for proper use o( any method is the set of 5KM The concepts which are typically found in an
assumptions made about the method user's education undergraduate computer science program.
and experience. The questionnaire posed several ques-
tions about these preconditions; questions about tech- STMT State machine knowledge.
nkal or collekgekvel education as well am about experi-
ence with programming languages and in previous S. ADDITIONAL tr.sP'ONSES
development situationi,. In Table 4, the results are The survey also contained a series of question
summarised; note that OOA is omitted becte no designed to provide brief, but specific, information rtl-
answers were provided by the respondent. ative to certain features of methods. The questions

focused on key issues such as client involvement,
TA]LI A - Minimum Education and Experience. modes of representation, reusability, and assistance

METHOD provided by the method relative to certain aspects of
Miimum A D N S S the development process. In the sections which follow,

Q1dAifictle, D C A E T a sampling of these questions is provided, along with a
Nt D S t N1 paraphrasing of th. responses provided for each of the

S 0 T methods.
4 4 (W 4 4 For each section, a brief rationale is given for inclu-lechkiwd C41otA1% I I I son of the question in the survey. No comments, how-

Numbir of yrn of 1.2 l 3-S 1.2 M4 0 ever, are offered on the substance of the responses. It
dtYelopwat c - -ce is the authors' belief that the reader is best able to
Number ofprog. aug. I 2 1 I I judge the appropriateness of the responses based upon
(woikaig kaowiedlg) - his or her own experience in developing systems. Note
Number ot sptem with 1 3*4 2 1 1 that where responses are missing, information was not
whkh et hu exfifCe I provided; further investigation, is necessary to clarify

Finaly, it is useful to know the type of theoretical these areas. The authors caution that the reader
background which i6 expected of the developer in order should avoid drawing any negative inference in the sit-
that he or she can learn to use the method. The sur- uaton where no response is reported.
vey attempted to identify the necessary theoretic con- 5.1 Client Involvement
cepts in the question which follows. A key component in the use of a method involves
Question: List the major theoretkal construct(s) what aspects of the method assist in communicating
whkh should be understood by an experienced with the client, and where the method requires the
developer In order to successfully use the method. involvement of the client. Two questions dealing with

this issue were included in the survey.
The responses of the developers are summarized below. Question: What specific features or aspects of the

ADM Abstract state machines, abstract data method are designed to faclitate and coordinate corn-
types, object abstraction, process recursion, munication between the client anti the development
and knowledge of the Ada language. organliation?

DCDS F NETS (control-flow structure), and ADM Communication is facilitated through the use
RNETS (stimulus-response thread structure). of graphics, and a verb/direct object program

design language. The method's close relationship to

MASC Concepts of asynchronous concurrency, and the Adn language also facilitates communication for
data-flow analysis. implementations which are Ada-based.

OOA Entity-Relationship-Attribute Modeling, DCDS The method employs English-like languages
data-flow diagrams, finite-state machines, to describe elements, relations and attributes.
object classes. Extensive graphics are also used, and automated docu-

ment generation is provided.

7th Annual National Conference on Ada Technology 1989 71



MASC The method specifically requires that the OOA The method requires interviews with the
developer identify required functions and the client during the requirements gathering

required interactions with the environment. The stage. The client also participates in the OOA docu-
design technique used enables traceability to be est- ment walkthroughs.
bshed back to these items.

SEM. The high-level graphical language used at
OOA The several models used represent the system the front end of system development is specif-

from several perspectives and at various levels kally designed to facilitate client review, and even
of detail. The representations employed are highly enable client participation in system definition.
graphical, precise, and unanbiguous.

STMT At any phase in development, the client is
SEM The method employs client-orkinted, high. able to review the executable specifications

level description techniques (data.flow, and/or the prototype code which is provided by the
control-flow, and information modeling) to ease client method.
review. The method als provides traceability of S Modcs of Rpresentaion
requirements to the final product.

Central to the use of a method arc the modes of
STMT Because the system specifications can be exe- representation selected by the method to describe the

cuted and prototyped, the development team evolving system. Providing a variety of modes of
can demonstrate proof of analysis concepts in an representation enhances the ability of the developer to
animated execution or prototyped form. Furthermore, analyse the system, and facilitates communication
at any stage of project development, the method's pro- among the technical team, management, and the
totype module can generate code from the specifica. client. On the other hand, a key to the use of nultiple
tions which can be run in the target environment, thus representations is the ability to translate front one
allowing for further evaluation by both developer and mode to another.
client.

Question- Use of what modes of representation,
Question: Specifical y, what procedures does the either textual or iconographical, are required or
me.hod provide for Involving the client during the strongly encouraged by the methodT
software development process, and where does this
involvement occur? ADM The method requires the use of Petri nets,

data-flow diagrams, control-flow diagrams,
ADM By being recursive [ais and developing the hierarchy charts, Buhr diagrams, Firesnith diagrams,

design and the code early, it provides many of and a program design language. Use of finite.state
the benefits of rapid prototyping without the disadvan- diagrams and a formal specification language is
tages. Since the design is compilable, the client is able strongly encouraged by the method.
to review a tested design rather than mere paper
design. DCDS The method requires the use of control-flow

diagrams, flowcharts, narrative overviews of
DCDS Automatic facilities are provided for pro- modules, a formal specification language, and specified

ducing documents for System Requirements documentation templates. The method strongly
Review, for System Design Review, and for the encourages, and provides automated support for, the
Software Specification Review. Additionally, prelim- use of data-flow diagrams, entity-relationship dia-
inary a~id detailed versions of the SDD are produced grams, decision tables, and a program design language.
for the Preliminary Design Review and the Critical
Design Review. The method also supports the produc- MASC The method requires the use of a narrative
tion of test reports for the Functional Configuration overview of modules, data-flow diagrams, and
Audit and the Physical Configuration Audit. hierarchy charts and other diagrams specific to the

method. The use of finite-state diagrams, a program
MASC The client is involved in 'signing off' the design language, structured English and specified docu.

required functions and interactions at the mentation templates is strongly encouraged by the
beginning of the design stage. Additionally, the client method.
must approve the acceptance test procedures.

72 7th Annual National Conference on Ada Technology 1989



OOA The method strongly encourages the use of Questioa: Speelfically, how doe the method facilitate
finite.state diagrams, data-flow diagrams, the transformatloa acros phass of the software pro-

entity-relationship diagrams, object communication cc. (For example, from specification to design, or
diagrams, and object operation diagrams. rom deslgn to code.)

SIM The method requires the use of dat-flow ADM The method uses object-oriented data-flow
diagrams, control-flow diagrams, entity- diagrams which lead naturally to subassembly

relationship diagrams, decision tables, mathematkal QOD diagrams. The Ada-oriented graphics and com-
notation, and specified documentation templates. pilable PDL facilitate the transformation from design
Additionally, the use of Petri nets is strongly to code.
encouraged.

DCDS Transformation across phases is partially
STMT The method requires the use of finite-state automated. Upon completion of the system

diaram, statecharts, activity-charts which requirements database, the elements to be forwarded
are similar to data-flow di arns, and module charts are automatically written to a file. When the software
to show structure. The method strongly encourages requirements database is opened, this file provides the
the use of a formal specifcation language and specified information whereby the elements from upstream can
documentation templates. be transformed into elements of the downstream

language. The same process is repeated when opening
Questlon: If the nethod upe several modes or expres- the distributed design phase, the module development
Plen, Ident/ the cases In which a mapping ruk i. phase, anti the test phase. The languages provided for
prtftribed whkh enables translating fiom one mode to each phac'! are similar, though specific to the phase.
another.

MASC The method achieves coherence between the
ADM 1) Data/control flow diagrams -. subas- design architecture and the implementation

sembly object-oriented design diagrams; architecture by making them identical. Thus, no
2) object diagrams --s data/control flow diagrams. transformation i required.

DODS 1) FNet (control flow) and text database OOA Object-classes which are identified through
information -4 IDEFo diagram (duta-flow); use of the method should map logically onto

2) Logik flow diagram - a PDL; 3) Extended ERA design classes, and these in turn should map in a one-
graphics -, llPO charts, one manner onto source codi object classes, such as

Ada packages.
OOA Guidelines are provided for mapping entity-

relationship diagrams into Booch and Buhr SEM Detailed procedures are provided by the
diagrams. method which provide for transformations

front each representation to the next.
SEM Data-fl2w diagrams -- Petri nets;

2) data-flow diagrams -4 control-flow STMT Transformation across phases is facilitated
diagrams; 3) data-flow and control-flow diagrams -, by supporting several conceptual levels with
Template Based Specifications. the use of the same model. The method provides the

reports, executable models, related databases, and test
STMT 1) Activities - modules; 2) modules - act- suites to support this common model.

ivities charts; 3) control activities within the
activities charts -4 statecharts. Question: Specifically, how does the method assist in
5.3 Transformation Across Phases ensuring that consistency Is maintained among specifi-

cation, design, or code when changes are made to any
In the two questions which follow, information is of these three entitlesT

solicited as to how the method assists in moving from
one phase of software development to the next, and ADM Maintaining consistency of requirements and
what features in the method assist the developer in design is facilitated because the method uses
mantainng consistency a,.r.ng specification, design, object-oriented data-flow diagrams which lead natur-
and code. ally into the subassembly object-oriented diagrams of

7th Annual National Conference on Ada Technology 1989 73



the design. Consistency of design and code is main- MASC The complete design architecture is checked
taiaed through the se of Ada-oriented graphics ad a for oelf.consistency by a procedure known am
compilable program design language which evolves into status progression'. This procedure ensures that the
the deliverable code. design structure i sound before implementation is

undertaken. A system can only achieve fully-checked
DCDS The method ham rules and constructs for ek- status when all modules upon which the system

ments, relations, and attributes which assist depends have themselves achieved a similar status.
in maintaining traceability from requirements to
desig, and from design to both code and tests. OOA Rules art provided for establishing the con-

sstency among the entity-relatio-aship model,
MASC The method tuarantees total consistency the finite-state model, the data-flow diagrams, the

between the design structure and the imple- object interaction/communication diagrams, a-d the
mentation structure. Inconsistency cannot be intro- object operation model (modified Booch diagrams).
duced by implementors since any change must be
introduced at the design level and then propagated 5KM The method provides a simple, easily under-
into the Implementation, stood graphical language for defining system

functions and behavior. The method aW employs a
8M All phase of development share a common built-in review procedure, and the use of simulation for

semantic base, and thus traceability is built dynamic feedback.
into the development process. There is never any
ambiguity which will aris in tracing from high-level STMT The method provides a mechanism whereby a
requirements to specifications and design. model of the system can be created, syntacti-

cally analyzed, executed, dynamically tested, proto-
STMT The method ensures consistency through the typed, and debugged.

use of test scenarios. Test results are defined
nd achieved at different phases in the development questilom: Speciftkally, how does the method assist In

process. reducing the effort needed to tully Incorporate changes

5.4 Other Development lsues In the requirements?

In this last section, responses are presented for ADM As an object-oriented approach, the method
questions which deal with the assistance provided by produces oftware that is more extensible
the method for the following: because changes to requirements are better localized in

1. Early detection of errors and inconsistencies; the design due to a lower level of data coupling.

2. Incorporation of changes in requirements; DCDS Two element types are provided for assisting

3. Addressing timing constraints and concurrey; in incorporating change. The element type
CHANGE REQUEST is used for formal changes in

4. Identification of reusable components. baselined requirements. The element type DECISION
is used for refinements that arise during development.

Question: Speciflcally, how does the method assit In
the early detection of Inconsistencies and/or errorsT MASC The impact of changes can easily be traced

to the affected areas of the design. Th(.
ADM By employing a recursive (sicl technique of method's emphasis on well-defined interfaces and on

'design a little, code a little, test a little', the the general architectural features yields a high level of
method produces early compilable designs and early decoupling within the design, thus limiting the effect of
tested code. change.

DCDS The method provides automated facilities for OOA The method employs a partitioning of the
checking completeness and consistency. A requirements based upon object-classes.

check is provided for use at the end of every major Requirements are stated exactly once, and are parti-
step. tioned around other closely related requirements.

74 7th Annual National Conference on Ada Technology 1989



SEM The method's use of separation o( concerns Questkom Speefikally, how does the mtihod a&sist In
and leel of granularity enourz that for each Identifyig possible reusable components such as

proposed system change, there is only one place in the design or codt?
stattment of rtcquirenients where the change needs 10o
be incorporated. The ripple effect is xvoitled. ADM The method has ant additional steP in the

design decision proces where the issue of
Question: What specific asptcts of t mnethod reuse is addressed. Reusable candidates naturally
address requiremnents of the target sysitm which occur since the default packages implement abstract
involve tlrnlig constraints and/or concurrency Isoums? data types and abstract state machines.

ADM The method uses timing diagrami, and DODS The module development procedure provides
employs Petri nets, Bluhr diagrams, and a gudeclines for selecting modules which should

task sequencing language to address concurrency be kept in the reusability library. This procedure also
issues. astists the developer in setting up and mailtaining a

reusability library using DOCDS tools.
DCDS For the software requiremetnts, the methodl

requires that completion conditions and delay MASC The design architecture is predicated on the
events be addressed. During software design, timng concept that all components are derived front
constraints are specified for each routine. Assistance is templates. Thus, all templates are by their nature
provided for addressing concurrency through a full set reusable, and are always specified in terms of the
of language constructs, andi the availability of an ana, abccte. interfaces that they provide or require.
lytical tool.

8ZM Emiphasis on the urt of separation of con-
MASC Timinitg constraints are addressed in the cerns anti of information hiding assists in

behavioral model which eniconipasas Con- developing reusable specification and design comn-
currency, process synchronisation, and deterministic ponents.
scheduling. The design representation specifically di..
ting'aishes between concurrent (active) processs and STMT The method encourages the identification of
passive data-objects. units that can be treated as reusable comn-

ponlents.
OOA Concurrency is addressed by the fact that

each :...antO ~--.---------- - r-- " -L0 " g"...PD ~ COINCLUSIONS
" * 0 OUWCU f0 44. GUOGERVT U ^jflO It~

exist at any point inl its behavioral lifecycle. In the authors' opinion, there are several interest-

SEM Timing and resource constraints are analysed ing trends which can be observed from the data pre-
through the use of control-flow (behavior) sented. These include:

models. Simulation is used to further analyze system * The minimum qualifications generally needed by
timing, concurrency issues, and( resource contention, developers to use these methods includes a ibur-

year undergradaute technical education and from
STMT Timing constraints and concurrency issues one to ive years of development experience.

are incorporated in the statechart modeling, * The use of data-flow analysis and finite state
audican e (lnamcall tesed.machines are central to these real-time methods.

Note that a question involving spatial constraints was e Iconographical representations are extensively used
also asked on the survey. Unfortunately, the set of by these miethiods.
answers provided for the question were generally unin- o Multiple representations of the evolving system are
formative. In the authors' opinion, this might be frequently employed, and the methods recognize
explained by the tendency Of software development the importance of providing rules or guidelines for
methods to give too much of a 'black-box' view tomapnfrmoeersntintonth.
thoste concerns whiich involve hardware.mapnfrmoeersntintonth.

7th Annual National Conference on Ada Technology 1989 75



" While reusability it viewed as an important issue, f*r Software Engineering, Advanced
specific rules for creatinga,"d/or identifying reuo. Scftwart Technology, U.S. Army CECOM,
Able comiponents have not IbeCn completely Fort Monmouth, NJ., October 1987.
addrcssed. ISmit88I M. K. Smith and S. R. Tockcey, 'An

* Use of ;asrtionp ani formial proof techniques Are Integrated Approach to Software Require-
not currently an integral pArt of theft methods. mcnts Definition Using Objets*, Proceed.

ings of Jagc Tenth Structured Divilpmemt
It would be inicrcstiag to learn whether the same Forum, San Francisco, CA, August, 1988.
trentds can lit observed for other real-time development (W&II87I It. 11. Wallace, J. E,. Stockenbtrg, and R.
mecthodXS. N. Charctte, A Urnied Methodolegy for

lBasedI on their experience with this project, the JDevelopint Systems. Intertext Pub"a,
authors conclude tthat hard rcal-titne requirements tions, New York: McGraw-Hill, 1981.
have been addresd more fully by methods than spa-
64~ constraints associ~ted with embhedded systeons.
Finally, the authorst remain cottvinced that the use o( :1 AUTHORS
uniform, for,,t.t for presentting information about
methods provics a basis by which individual develop-
ers and organizations can judge what methods best Richard Guilfoyle is a Professor of Mathematics at
suit their needs. Monmouth College. lie has. taught mathematics and

computer science courses for over two decades and he
consult* in the areas of simulation, numerical analysis

f11lhl.IOCRAlIIY and programming latiguiges. lie received a PhD in
JA11687 M.Alfod, DOD I~utipe: iewMathematics front Stevens Institute of Technology.
I~lfS7I . Aford 1)0)5 ultile Vewlit coauthaorted the two editions of the Softwarc Metho.

Approach to Closing the Requirements/ 4
0109y Catalog while engaged as a consultant for

Design Cap-, presentation at the Fourth Teledyne Brown Engineering, lie is a member of the
Conaf~rence on Methodologies and Tools for ACM, SIGPLAN, SICSIM, SIGSOFT, and of the
Ile.A.Tinte Systems, Washington, DC, IEEE Computer Society.
Sept. 1987.

Il)CDS87I 'Distributed Computing Design System: A Richard Pirchner is an Associate Professor of 0Cm-
Technicnl Overview%, TRW Systern puter Science at Monmouth College. lie received an
D~evelopment Division, hluntsvill, AL, MS in Mathematics fronta St. John's U. and an MS in
July, 1987. Computer Science front Rutgers University. ie areas

I llarc871 D. Harel, 'Statecharts: a Visual Formalism of inter.'st include software engineering, programming
for Comiplex Systems', Science of Corn- languages, database systems, and computer science
puter P'rogramnming, Vol. 8, No. 3, June, education, lie coauthored the two editions of the
1987, pp. 23 1.274. Software Methodology Catalog while eaigaged as a con-

IHl.are88I D. hlare, 1I. ILnchover, A. Naamad, A. sultant for Teledyne Brown Engineering, Ile is a
Pnucli,, M. Politi, It. Sherman, and A. memiber of ACM, SIGADA, SIGMOD, SIGSOFT and

Slitul-Trauring, 'SrATEMATE: a Work- the IEEE Computer Society.
ing Environment for the Development of
Complex Reactive Systems', Proceedings Laurel Von Gerichten is a principal programmer
of the Tenth International Conference on analyst at the New Jersey office of Teledyne Brown
Software Engineering, Computer Society Engineering. For the past two years, shte has been task
Press, WVashington, DO, 1988. leader of Software Methodology Research, involving

jhfahia871 L,. hajan, K. Ginsberg, R. Pirchner, and production of the Software Methodology C'atalog, es~s. 1
R. Cilfyle 'Sftwre Mthooloy Cta- and 2, as well as inquiry in the area of method evalua-

lgR.Gioep o ft wr Mo.thodology0001 Catr tion. She received a BA in English from the Univer-
logReprt N. 01 00 C80001 Ceter sity of Chicago, an MS in Education from Northern

Illinois U., and an MS in Computer Science from Mon-

76 7th Annual National Conference on Ada Technology 1989



mtouth College. I ler inter tots issclotle #Afware
engiuiecrlng, Programming languagtep and Iipgusiotks.
She is a meniber of ACM, SIGSOFT, a of the IFXFI
Computer Socitty.

Marilyn Ginsberg is a senior systeM. asialys; at
Utldyne B~rown Engineering where she participate in
the idevelopment. of the Software Mthodology Catalog
%nd in rc~txrch into tlhotl tvahs~ioqs. She has. alW
v~rorilivi independet.t vtrificalio and vaIdaio of
(OVthvrnilt procured so~WArt, Including Ada support
systems. lit( expetrenice in software enginerig
inclotics ~ipplitions devedopnsen, sofware support,
vortwac de~velopment, 1ools, testing standards, and
coftwArt qiiality assur ance. She previously worked for
ATV&T antl Concurrent Computer Corp. Shet eci~td
a MA in Mathematics from Rutgers U., mid is
currently tnrolled in the gra~uae computer science
p~rA:) lit oN10mouth College. She is & Ifemlber Of
the ACM, SIGSOFT, SIGADA, SIGMETRICS, and of
the MEME Computer Society.

IDoAd111 Clakrson has ovtr 2.0 years of expeejknct with
camtputtr systems in military and ci~nmutr vender
environitents. lit has been involved with the Ada
programmning langUage since 1961 when het servd AM a
reviewer or the frst, dIefinitive version of the Ada
Isatigua.ge lierrnce Manual during the American
Natio,,al Standardsa Institute's standardiaion process.
lie it -, Principal Systems Analyist at Teledyne Drown
Engineering (TOJE) where he has been involved in Ada
an:alyuis projects; he also is, the principle deosier and
instructor or a series of Ada language courses offeredl to
mnihms or the MOD commnity through TOE. lie
holds a Bl.S. degree in Electrical Engineering and he is
a mnember or SIGADA.

7th Annual National Conference on Ada Technology 1989 77



TECIHIQUES FOR OPTIMIZING ADA/ASSEHBLY LANGUAGE PROGRAM INTERFACES

Eric N. Schacht

Computer Sciences Corporntion

Abntract.
software were converted from PL/M-86 to

This papor describes several techniquos Ada And then benchmark tested. The bench-
for ntrcin assembly lnnguag3 routines mArk test results were analyzed, and a
to Ada programs. Those techniques exhibit list of compiler characteristics critical
varying degrees of c )=plaxity, maintain- to a successful Ads conversion was deval-
ability, and porformanco. The basic op- oped - characteriatcs both within and be-
tions and mechanics involved in establish- Yond the current Ada language standard.
ina the interface between an Ada and Assembly language program interfaces were
assembly language program will be dis- mentioned in this paper as a moans to ob-
cussed. Thu ASHOG assembly language will taSin access to vital lower level machine
be used for exnmple purpose*, although the facilities such as the shared resource
interfacing techniques will be presented synchronization mechanism, and to improve
in a generalized fashion so that readers the execution speed of performance sensi-
from a broad spectrum of assembly language tive areas. This paper extends the re-
product backgrounds may benefit. Increas- search results of the original paper by
ingly sophinticated techniques for opti- examining in detail the assembly language
mining performance will then be given, program interfacing techniques used.
Benchmark test results will highlight the
trade-offs between program maintainability
and performance efficiency. Special am- Why assembly language interfaces are im-
phsis will be given to the parameter portant.
passing mechanism. The paper concludes
with a set of guidelines for managing the Higher order languages allow us to work at
implementation of Ada/assembly language more abstract levels than do more
program interfaces, primitive machine level languages. This

is vital to software developers for obvt-
ous reasons. Working at a higher level of
abstraction results in substantially In-

Background. creased development productivity and en-
hanced ability to create understandable

There are a number of reasons why the and maintainable programs.
ability to interface lower level programs
to an Ada program is important. A primary Embedded computer systems, particularly
reason is simply to enable access to lower those found in &dvanced seapons systems,
level machine capabilities. Another im- present special Challenges for software
portant reason is to improve program per- engineera. Such systems often require in-
formance characteristics of certain speed terfaces to numerous external devices or
critical program operations. The primary other external systems, and these inttr-
focus of this paper will be directed to- faces Are often of a specialized or non-
wards the latter concern. standi.d nature, Raw processing power and

memory size are often severely constrainea
The interfaoing techniques described In because of the physical environment Jr,
this paper were developed during a ro- which the embedded computer system must
search effort to analyze the possible Ada operate. As a result, programming offti-
conversion of a major DoD weapon system -.iency can become very criticol.
eamploying fiber optic technology. High-
lights of the results of this research Because of the special envIronmontal fac-
were reported by the author at the Sixth tors found n embodded computir systems,
National Conference on Ada Technology in a 4.ess to mtchine depanden !eatures is
paper entitled "Research on the Ada Con- Important for two reasons. One zeason is
version of a Distributed, Fast Control t:o support effictoll external interfAces,
Loop System". This paper identified apd the other is to i' prove the execution
explained how several perforinance critical speed ot the applicat1n software.
areas of the existing gunner station

78 7th Annual National Conference on Ada Technolog 1989



The Ada representation specifications are approach may be the only avenue available
the vehicles for permitting us to to capitalize on benefits obtainable fromlow level machine features. With 3omereference low level features with Ada con- time critical applications, this may meanstructs tt are used at a higher, more the difference between meeting and notabstract level. These higher level con- meeting performance reqairemento.
structs or entities are uted in high level
solutions at high levels of abstraction.
Representation specification* allow us to Motivation for technique development.
map these high level constructs to the un-
derlying machine. A highly time critical modcle In the

Pb/al-86 bAsed gunner station 4oftware In-In soma time critical applications, an ap- terfaces with an autotrAcker. Sixty timesProach using Ada code only may fail to a second, this device Interrupts the cpumeet performance requirements. Sometimes to provide a value for the missile posi-
a resort to Assembly language code is the tional error with respect to a moving tar-only means available to improve system set an which the Aatotracker is fixed.performance to icceptable levels. Fur- Also, sixty times a second, this errorthermore, some embedded XYstem3 applica- value must be procestnA -,y the digitaltions require access to special machine autopilot software running on a differentdependent foatures which may simply be un- CPU. The digital autopilot program usesavailable through high level Ada con- this error value to derive A fin m;-vament
structs and progratuaing facilities, and command. The fin cbmmAnd generad Is do-~these machine lev.; features may be abso- signed to move the missile so that future
lWtely indispensabl. for the application error signals will be nulled.
uo perform it& intended function. This is
especially true with Ads compiler* which It In obvioas that this applicatlon 15lack the full range of Chapter 13 f a- tieCtca. T pormwch r-

ciliie* Fo exmpl, cosidr a emed- ceases the autotracker data contains nu-ded application with multiple central pro- marous equationt which perform shift andceasing units that execute processes which rotate and bit-wise Bocolean operations.communicatn with one another through data In an ideal PL/M-86 to Ada code convar-struntures in shared memory over # shared slon. the use of representation specifics-system bus. The pragma SHARED specifies tions would be the preferred method of ob-that a rad or write operation on a shared taining the required values !!om Anccomir.variable Must be Implemented as an indi- autotracker data. This would be the ap-
Visible operation. This pragma enables a proach most consistent with sound softwbavariable shared by different concurrently engineering principles. The Ada comnpiler
running processes to be accessed and up- uued in this research did not offer thedated by those processes 'vithout risk of record type specificetion, but did offarcorruption due to simultaneous cccess. If an interf~ca to ASZI8a anuumbly language.0a~i Ada compiler Used in generating the But even if the record type representation
applica~tions software does not suppojrt the 3pecifjicaticn is provided by an Ada comn-
pragma SHARED, then A resort to a lower pler. there is no guarantee that the ob-
,level machine lenuage0 is the only means Ject code generated by the compiler would
0 implement a shared data structure. be efficient enough to meet performance

Ada provictan the ,Aean: to write low level requirements. If thi3 is tho case, the
machne sa~certswitout teping ut- software engineer has no alternative other

saie fts anguaget witout stepig ot-e than un assembly languipk. interface in or-
side of the lanugeitnse ifhiuchthens der to satisfy perforn~,,ce requirements.

This is ideally 4ona by creating a package Intefloigscivaou tch
that exports a rtozord abstracting the Ane re preownset ionh verou develpe
processor's insmtion sit mnemonics. niusaepsntdwcher dvlod
Access to low levci machine facilitits is to provide the functiotality of bit shift
also posuible !hrou 7h pragma 11TERFACE. and rotate and bit-wise Boolean operations
The argument3 Alor thiv pragma are a sub- required by the autotracker software. The

progam ameand he ameof ,he angage techniques will be presented in decreasing
pogrcm n4m and s enely fh language hc order in terms of soundnesb and desirabil-

(ouc asan asemly lnguge) n wich ity from a software engineering stand-
the zubprogram was written. Prag"u INlTER- point. As the reader progresses through
FACE therefore is used to specify to an these techniques, several generalities be-M'a compiler that an objtch moduiv built come obvious. One is that as performance
id anatlhe- langaage is to be ineotiporatod efficiency improves, there is a corre-
for scz spocig~ed subprog~ram. This ap- spending loss in abstraction. As the ab-
px'aach Involves xtepping outside of che straction quality declines, there is a
Ada larinxuie i'.solt, and iz obviously less corresponding decline in program under-
dea~vable thtn tho full Ada level appraach standability and maintainability. Gcner-
ol n1:tr&ct1ng the prooe&zso.\-s instruction ally speaking, performance gains are real-sct. Ztill. with some Adr, compilers this ize~d by compromising principles of *azod"

7th Annual National Conference on Ada Technology 1989 79



software encineering. compile time. This technique represents
the first compromise made with "good-

The primary intent for presenting these software engineering principles. The com-
techniques is not to ap'citically show how promise is that program reliability is re-
to optimism bit shift and rotate and duced due to loss of constraint violation
bit-wise logical operations, but rather to detection during runtime. The program
demonstrt -qhe abstraction quality versus code is given in Figure 2.
erforman. trade-off involved a* progr=-

ming approaches seek greater and greater The perfomxance of thiz set of algorithms
levels of performance efficiency. Another improved significantly versus the firsL
prime intent is to explain some "echanisms approach, but theoe functions were still
available for optimizing time sen*Itive much slower than their PG/-86 counter-
program opermtions. From this experience, parts. Some of the test results are
a sot of guidelines will be developed to listed at th4 end of Figure 2.
aid the software engineer faced with chal-
lonting functional and performance ro- From these test results it can be seon
quiroments which can only be met by step- that the speed of the Ad& programs is a
ping outside the Ada language. These function of the number of bits shifted or
guidlineas can strve as a simple decision rotated. This is true because the proes-
model when making decisions concerning the nor handles multiplica%ion on repeyted
abxtraction quality versus performance addition and division as rew ed subtrc-
tradk-off, tion.

Technique 0 3 - Interfacot bly lan-
Tecb.dque 0 1 - "Pure- Ada. guage routines Which perorlb # and ro-tate and bit-wise logical op, ona.
The first approach involved constructing
xn Ada package which provides the It became apparant with the experience of
equivalents to the PL,/M-86 functions: SHR the second approach that a step outside
(shift right), MHL (shift loft), SAR the Ada language would be necessary to ap-
(shift arithmetic right), SAL (shift proximate the performanca of the PL/M-86
arithmetic left), ROR (rotate right), and functions. The third approach was to
ROG (rotate left). Bit-wise Boolean analyze the effect of using assembly lan-
operations were supplied by 'withing" a guse routines to perform the shift and
compiler 4pecific package called "UN- rotate functions. The assembly language
SIGNED". These functions operate by routines built ware patterned after the
azaly:ing on a. bit by bit basis each bit code seen in the assembly language dump of
in an operand p~ssed. The resulting value the P/8-86 benchmark programs using these
is set on a bit by bit basis. These tasks functions.
are performed using a bit mask array and
the bit-wise Boolean operations from the One of these assembly language programs is
compiler specific package. This package shown in Figure 3 - the Sill function. The
is listed in Figure 1. parameters are the bit pattern to be

shifted and the number of bits to be
These functions were benchmark tested shifted. The corresponding Ada program
against their Ph/t-86 counterparts. The function dec)aration statements which as-
results showed that this approach i: hor- tablizh the link to the assembly language
rendously Inefficient. Some of the test routine are also included at the end of
results are included at the end of Figure Figure 3. Those statiments include the
1. All benchmark tests conducted during function declaration, the prague INTER-
this research were run on a Zenith 248 FACE, which Instructs the compiler x}mt an
personal computer running at 8 Mhz. The obJect module is to te supplied for the
reasons for this extreme inefficiency will corresponding function name, and a com-
become clearer as subsoquent techniques piler specitic pragma called pragma INTER-
are analyzed. FACE-11AHE which completes the declaration.

Note how the funLtion parameters must be
described in the assembly routine as some

Technique 0 2 - "Pure" Ads with constraint offset from an address contained in the BP
checking deactivated. (base pointer) register.

The second approach i-4volved a rewrite of Benchmark programs were then written in
the previous algorithms to provide the Ada and P1/H-86 which contain numerous
same shift and rotate functions through equations from the autotracker software
multiplication and division by some power involving bit shift and rotate and
of two. Again, bit-wise Boolean ap- bit-wise Boolean operations. The Ada
erations were performed by the acmpiler program's bit-wiso Boolean operations were
specific package UNSIGNED. For this ap- performed by the compiler specific pack-
preach to work, constraint checking in- age.
struction generation was suppressed at

80 7th Annual Nntlonal Conference on Ada Tcchrology 1989



Comparisons of the complete assembly lan- ing valVes from the stack, while the RET
gUage dumps of the Ad& and Pb/M-86 pro- used fUr HEAR procedures reloads only !F
grams provided some interesting insights with t0;: siord stored in the stack. Both
which would explAin the results of subse- typos of return instructions are specified
quent benchmark tests. with the mnemonic RET - the assembler au-

tomatf*ally decidt the appropriate ene to
The most obvious concern which arose was generate.
due to the greater number of instructions
generated in the Ad* program because of The impact of the procedure Interfacing
the overhead of transferring control to overhead on the benchmark test re3alts was
and returning from an interfaced proce- substnntial - the Ada program was 45%
dure. Thin overhead was incurred for each slower than its Ph/M-C6 counterpart.
and every bit shift and rotate and While the performance difference has sub-
bit-wise logical operation. The P6/M-86 stantially narrowed when compared to the
object code did not have this ovorhead - second approach, this difference was still
these operations were simply embeddod in not narrow enough for the Ada version to
the normal instruction stream. satisfy performance requirements.

When further studying the dotailt of the
mechanisms involved in Interfacing nubpro- Technique 0 4 - Narrowing the performano
grams, some inefficienoieoa in the Ada ob- gap by mintmising the number of assembly
ject code were noted. language program interfaces.

The user's manual for the Ada compiler Since the subprogram interfacing overhead
stated that all interfaced subprograms are is a constraint which could not be re-
called by an individual FAR call through a moved, the only option available for fur-
pointer allocated in the global data area. ther performance improvement was to reduce
The implication of this is significant - the amount or frequency of calls to the
it means that the interfaced subprogram in~erfaced assembly routines. Closer
has a different code segment valu 'than analysis of the autotracker software
the calling program. For tht procedures showed that most of the equations using
in the Pb/M-86 benchu rk program, both the logical and shift and rotate operators
calling routine and the called rputine were concentrated in two areas of the pro-
have the same value in the code segment gram.
register. The fourth approach involved moving those
It is important to understand this parts of the equations which performed
mechanism of subprogram interfacing be- these operations to two interfaced assam-
cause of its effect on execution speed. bly language routines - each routine cor-
In a call to and return from a procedure, responding to one of the program sections
the control transfer instructions (JHP, where these operations were clustered.
CALL,. RET, eta.) break the current in-
struction sequence and cause program ex- Minimizing the amount of the interfaced
ecution to resuma elsewhere In the program procedure call and return overhead did
code. The assembler uses the procedure successfully narrow the performance gap.
type label NEAR or FAR) to determine The Ada benchmark program was now only 15%
whether to produce an opcode that changes slower than the Ph/M-86 version. All in-
only IP (the Instruction pointer volved Ads program variables were passed
register), or an opuode that changes both to the assembly language programs, along
CS (code segment regicter) and 1P. with the addresses of each of the

variables. It was necessary to pass the

In an ASH86 assembly langunge program, the addresses or these variables in order for
type of a procedure (NEAR or FAR) is indi- the assembly language program to store
cated to the right of the keyword PROC. calculation results in- the appropriate Ada
The type associated with a procedure is variable memory location.
used by the assembler in determ:.ning which
CALL instruction to generate for the pro- This approach represents a severe and un-
cedure. If a FAR is indicated, the long desirable compromise with effective soft-
form o! the CALL instruction is used. In ware design principles. In effect, the
thiA case, both the CS and IP values are abstraction of the problem solution virtu-
changed when control is transferred, so a ally disappears from the Ada program. It
two-word return address (CS and IP) is is shifted to the assembly language pro-
pushed on the stack. For a HEAR gram, where the problem solution is at a

procedure, only the IP gets changed, so treatly reduced level of abstraction. The
the return address is a single word indi- assembly language code is naturally far
cating an IP value. Since there are two more difficult to understand and maintain.
kinds of return addresses, there are two The interface to the assembly language
kinds of RET instructions. The RET for a routine is very messy - each affected
FAR procedure restores both CS and IP us- variabl, dnd its address (obtained via the

7th Annual National Conference on Ada Technology 1989 81



ADDRESS attribute) must be passed, to address the locations of the Ada record
components, given the starting address of

This interface in all the programmer sees the record as input.
when viewing the Ada code - there is not
the slightest hint of what the program is Benchmark tests showed that the Ada vs.
dealing with or attempting to solve. The P1/H-86 performance gap had narrowed to
program can now be maintained with the aid less than 6X. This was deemed an accept-
of extremely lucid and verbose documents- able performance level.
tion, and an 4xpert assembly language pro-
grammer. This approach obviously has un- This -technique probably represents the
desirable ramifications from the program most powerful tay to overcome performance
manager's standpoint. bottlenecks shozt of rewriting the com-

piler itself. Unfortunately, a reasonable
With the performance differential narrowed level of program understandability and
to 15%, this is the first ttchnique which maintainability has completely vanished
becomes feasible given the imposed hard- here. This technique adds a new level of
ware and noftware constraints. However, complexity over the fourth technique. It
the program management was interested in is also less maintainable. If any varl-
seeing if the performance gap could be able or equation at the source level
narrowed even further. changes, the assembly routine must be re-

written. Any change to a record compo-
nent(s) within the parameter list embedded

Technique 1 5 - Reducing the size of the in the Ada record type object would upset
parameter list. the "hard-coded" knowledge of the physical

arrangement of Ada components within the
Analyain of the object code resulting from record. If an Ada application had many
the previous technique showed a tremendous such performance bottlenecks which could
amount of overhead involved in the call to only be solved using this kind of ap-
and return from the two interfaced assem- proach, one might legitimately question
bly routines. Every parameter passed in the merits of moving to a radically dif-
the function call had to be "pushed" on ferent solution such as a new compiler
the parameter stack. Likewise, every pa- and/or hardware architecture. This can
rameter had to be "popped* from the param- sometimes be considered a radical solution
eter stack on return from the interfaced for a complex, embedded military applies-
routine. The paramet.Nr list was sizeable tion nearing maturity.
for each routine - each affected variable
and its address were lqaded on and removed
from the parameter stach. Lessons learned.

The final technique sought to reduce this The order in which the techniques were
overhead by reducing the size of the pa- presented progressed from higher to lower
rameter list itself. This was accom- (or nonexistent) levels of abstraction,
pl1shed by placing all of the variables to from lesser to greater compromises with
be passed to the assembly language routine sound software engineering principles, and
in a single record type object in the Ada from higher to lower levels of maintain-
program, and then passing only the start- ability and understandability, and con-
ing address of this record to the inter- versely, from lower to higher levels of
faced routine. Thin eliminated all of the performance efficiency.
parameter "push" and "pop" activity asso-
ciated with the procedure call and return, There are specific lessons in this paper
except for the starting address of the Ada for the software engineer trying to over-
record which in effect contained the pa- come functional or performance bottlenecks
rameter list. encountered at the "pure" Ada language

level, and lessons of a general nature for
Naturally, the assembly language routine engineering management responsible for
had to be built with the knowledge of the providing direction on how such technical
exact structure of the Ada record contain- problems are to be managed.
ing the parameter list. First, the exact
physical layout of the components within In solving a performance or functional
the record had to be determined. A spe- bottleneck by resorting to a step outside
cial program was written which used the the Ada language, a list of possible ap-
POSITION attribute to dissect and deter- preaches should be generated. This list
mine the exact physical layout of the should be ordered in terms of desirability
record components. The POSITION attribute from a soundness of design, reliability,
provides the offset of a particular record and maintainability standpoint. Benchmark
component with respect to the first of the programs should be developed and analyzed
storage units within the record. With in terms of ability to meet performance
this structural information known, the as- requirements. The approach selected to
sembly language routine could be written solve the bottleneck should not necessar-

82 7th Annual National Conference on Ada Technology 1989



ily '-- the most performance efficient.
CenerAlly. the approach selected should be
the one involving the highest level of ab-
straction quality, understandability, and
maintainability, while still meeting per-
formance requirements. Using this guide-
line as a decision model should help to
mlnimize total system life cycle costs.

On any sizable embedded systems develop-
ment program, it is important for systems
engineering management to retain a library
of techniques available to overcome per-
formance and functional bottlenecks. Sys-
tems engineering should also provide di-
rection on how to select and manage the
implementation of these techniques.
Documentation standards should become more
rigid and require more time and effort for
the lowest level approaches. Without such
standards, the performance bottleneck
solved today could become tomorrow's main-
tenance nightmare.

Eric N. Schacht is a Senior Computer Sci-
entist in the Defense Systems Division of
Computer Sciences Corporation in
Huntsville, Alabama. His main areas of
interest are CASE tools, systems engineer-
ing, Ada technology management, and large
scale project management.

Schacht received his BS in management sci-
ence from the University of Alabama in
Huntsville in 1976 and MS in computer sci-
ence from DePaul University in 1983. He
is currently pursuing a PhD in computer
science at the University of Alabama in
Huntsville.

Schacht's address is Computer Sciences
Corporation, Defense Systems Division, 200
Sparkman Drive, Huntsvilea, AL 35805.

7th Annual National Conference on Ada Technology 1989 83



lvottboo s0i4?ATm , V00 &COW!rt V0431 return bw to
with U406@IM. Va.. MWO0IE. . ,rt l" is ~ 1411 atest I~ 1,90p§

paso 94a1MATJi.POAMIWUCIC011 Is ~,*
START . TVC fo WORD.C? hoo

lI40Q@P.I0,~d9Q@4.I444C'.T1vW a Tim of SITl."411~ -* W1

f*tthei SHKIVATUN V= . OMNI wo*" retuarn, VO It 4PATTIM *x4 I1MPAM1513 ) 0 th..
C444%190 SALIVAT.10 V0 4 CM'., VM* returni VA START a Is - CWtf - 1.
fogetlea SARIPATIEW ~V=A CVWT' VORZI rturnf K2 for I to STAM 14I 1*4p

runtit W-IRTVW VM24 OUN . WCZ rtur WID.TV.r a TOW or SIT,)iAEII.
fountlo t 9.I xxATtD, vM . WjroT = rowos VQ0 .4 If.

Po Nk... * . A MNr .A taOtTIO tv elS E' re ur 04

ttga SNIPAnWI WOR 4 ' OUNT ,iOUai return V=* Is tuA41164 RCLItAU). , WOR jCOUNT WWI retur Ot oi

bl., bil.

START 'IS - COUNiT4 1AmX , Is COUNT.

for I In. rivers* 0 START loop for I In rOY.,.. 0 GTAXT loop
It t(PATISO **d52 IM4413 a 01 thai It WIAN~ "A I IMNALtIl~ 301 thai

TWI ta TD@ or 11T.K1S I * COUNtl& TDW I I 1W or 11.M I COMRT)
*ad t.lR I

.01d loop. aid lop,
-. TW if TAMAN~ 0 . #C*T)4 040 ALTMATt MOATIWN. for I lot I. COUIfI loop

It MI#~T1 as WITJI*START *I)00 hi

rsr IM TEIC - TW or DlT.RAEI: * i

00d SNLW 04 loop.,

fuaossln S)1?ATTRA A ORD i COUNT i0~ V= rvj WOR I return TDVI

helt *a ROL,

T1W it 0 fuactlon bORIPATatI1 WORDl ownilf VOU3 roturn W000 is

fer : In COUNT. 11 loop bosha
it WIATTA end SIT-MJIAS II 03 then 1 i0

IVC a TRW or 81T.JAKt 0)CUNT), ~ aa0
I tor I is COUNT. 15 loop

It (PATTERN &nd NITWXSCI,l 3 0 theni
94 Till Y Til or NIT..a~iT - COMN)j

.od Iti
and loop.

tune-Ion SALVA'I X,4l k WORD i COUNT 1 WORD) roturn W=~ to 1TAmT is COUNT -13

beginfor I In 0. .TART loop
boil. It (PATTON said IIT.HASK(STAm 23 0 then

TVWl to 0i TW IP fi TH or SITJWAtIS
1TAmT a IS - COUNT. aid Itj

aloops
for I Isto ota.s 0- STA~rt loop:tunTV

It t((ATTIAN and SIT..MASK(Ill 0 0) thentttf ~t
TDW at Till Or IITJIKcKII 0 COUNT), and hDR,

aid It.

: d loop;
turnf TV@. *aad SH27T_0AD.ROTATKJVnWCTIONS:.

and SAL.

Shift and Rotate Function Test - 300,000 Iterations
(Pb/H vs. Ada Using Bit Masking Algorithms)

Operation Pattorn(operand) Count(A bits moved) Ada(seconds) PLj/H(seconds)

SHL 65,535 8 123 6
ROR 255 8 214 6

Figure 1. Program code for technique II 1
and benchmark test results

84 7th Annual National Conference on Ada Technology 1989



.411 4 e I I T. WOO ATI. Pi -- lCflc

SITAT . f, I, .W.

£21000@@C0o0e

(*%I IUJ~dC : 90rurl 1 VOW 4 O I.,t return w

tw to SA 4L Q 4 PA IkV= C'4 1 N I M41o1tr w

lS t= ( I .IM I r sII V C IN 1et00u.nWORD

:I|II|.I|U I 0.t1

III.1111IIC@*COG4..

t1111t "I|1@ " k.0@)

IIIII1"1111OV IIti'(I4

2611 .1 :. 1 1. 14 1rn.

rer uuri OVAI S::Aoa

OIII1.111I.I1.11111.

*Rd SK. "I04I1%111 .lll ln retur Ml Is

tuactteI SAIATT WbI M 4 c00T INT)I return WW I
16a416 TM |?ATTKM WO € ACi ofT 1 Ior (PAgra W2t .jll

TOO1 Alt ATTMI N mCD e CUT)wi rtunl Talu

Ireturn TIIN end W;d

e. S. l  t"dv SNn MR(PA1TJ0d )TiAT 10W I ..tiiTMi j T rltil WW Is

tga-.lA SKIIATIIN i WOOZ I CCOMt I IAI turn WOSS is UqrA C T

loodlla Tw is I(ATWO/12 •II 6 € INT II Or ATT*1V !I 1 III" T TIIj

TM to ATIa (2 so (2 WT1I return TIV4

return TIZgl *ad A.l

6,4 Ill t6.ctI~n SliqlAlll * * cOV T 1ZII11 r';Wrn WOS (a

bai11,tvAtle. UL(?ATII , COW? , llrOZAl rotun W1SO I.
114llTH m trATZMI*(2* CWTI or (PATID/ I2' ((- COVTII I

r~.wr. TS : ndI&I

a tL *Rd SRI I WT-ODOOTAMMOCTII W

Shift and Rotate Function Test - 300,000 Iterations
(Ph/M vs. Ada Using Multiplication/Division Algorithms)-

Operation Pattern(operand) Count($ bits moved) Ada(seconds) Ph/M(seconds)

SHR 65,535 8 34 6
SHLj 255 1 14 6
SHIJ 1 15 52 8SH6 1 8 34 6
SAE, 255 1 14 6

SAR 65,535 8 41 6
ROLj 255 8 65 6
ROR 255 8 65 6

Figure 2. Program code for technique 2
and benchmark test results.

7th Annual National Conference on Ada Technology 1989 85



HIE SiL.PKG
SHL.CODE SEGHIENT BYTE PUBLIC

ASSUME CS:SHb.CODE

; The following defines how arguments will be accessed.
; (Compare with the Ada DETrAIL messages in the compiler listing.)

PAT EQU (BP#6)
CNT EQU (BP.8J

PUBLIC LEFTSH
LEFTSi PROC FAR

PUSH BP ; Establish frame for addressabllity to
HOv BP.SP ; parameters from interfaced subprogram

1IOV AX,PAT ; Move value to be shifted into word register AX
NOv C16,CNT ; Move number of bits for value to be shifted

into byte register CL
SHL AXCL ; Perform shift

; OV SP.BP ; Destroy the frame
POP BP
RET 4 ; Return to Ada caller, popping IN parameters

LEFTSH ENDP
SHG.CODE ENDS

END

function SHI(PAT :ORD ; CNT BYTE) return WORD;
pragma INTERFACE(ASSEMBLERSHla);
pragma INTERFACENAME( ;L, LEFTSH");

Figure 3. A sample assembly language Program interfaced
to an Ada benchmark program to provide the
shift left function, and the associated Ada
program function declaration statements.

86 7th Annual National Conference on Ada Technology 1989



System Simulation in Ada for the Project Manager

Kevin J. Cogan

Electronics Technology and Devices Laboratory
Ft. Moimouth, New Jersey 07703

Philip W. Caverly and carmine Marino
Jersey City State College

Jersey City, New Jersey 07305

ARSTRACT

Ada can serve as a highly graphic, statement or work. It functions at a high-
interactive rnd expressive language for level of abstraction which can be used by
the project manager. When equipped with a the PM as well as by soldiers who will
graphics package and maximum use of utilize the equipment. It is postulated
separate compilation units, Ada can be that a system simulation in Ada provides a
used to simulate future systems in order cheaper and faster design assessment for
to provide necessary feedback to modify use by the project manager than obtainable
the statement of work early in the design from a hardware prototype.
phase to help ensure first pass success of
delivered hardware. The simulated system
can lead to the exploitation of common Ada vs. VHDL
hardware platforms through system recon-
figuration under software control. Hardware description languages (HDLs)

have been available for many years but
there has been no clear standard until the
DoD Very High Speed Integrated circuit

INTRODUCTION (VHSIC) program spawned the development of
the VIISIC HDL (VHDL), now IEEE Standard

Risk, budget and time are critical 1076. VHDL provides the capability for
elements in project management. This is describing the behavior, data flow, and
particularly true for future military structural models of digital circuits, but
systems. Military projects begin with a it is neither interactive nor graphic at
Required Operational Capability (ROC). the system level.
The ROC is developed through an evaluation
of the battlefield commander's needs and Despite the tremendous impact that
the threat analysis. A project manager VHDL is having on the electronics
(PM) is then selected to transform the ROC industry, VHDL in its present form does
into a statement of work (SOW). not provide an interactive simulation

interface for user testing and executive
Usually the first tangible feedback decision making. In contrast, and with an

from the SOW is a hardware prototype of appropriate graphics package, Ada can
the system developed under contract. The simulate the behavior of a system in a
SOW must be precise, lest the prototype user-friendly and interactive environment
will not conform to the ROC. The cost due providing useful feedback to the PM. The
to changes in the SOW are directly suitability of using Ada for lower level
proportional to the elapsed time in the simulation of digital signal processing
project cycle. consequently, changes systems is presented by (Happel and
early in the design phase are less costly Petrasko].
than at the time of delivery of a working
prototype. Costs due to changes in the
SOW beyond this phase typically rise THE METHODOLOGICAL MODEL
exponentially. Design and procedural
anomalies revealed in operational tests Creating the software mockup begins
may indicate preferred changes to the SOW, at a high level of abstraction. The man-
but the impact on budget and time often machine interface is decomposed into two
prohibits this course of action, separate units - the man and the machine.

In the Ada paradigm, both can be viewed as
This paper will examine the use of a tasks. The man is an active or pure user

"software mockup" for a candidate system task which from time to time makes use
vnder development. A software mockup is (calls an entry) of the machine which, in
defined as an interactive and graphic the simplest case, is a passive or pure
computer simulation derived from the server task. The machine will accept

7th Annual National Conference on Ada Technology 1989 87



valid entry calls. When modeled correctly The unit did not pass its operational
the machine task will react to human input field test. It failed the drop test, was
according to its functional specification 12 pounds overweight, and did not give
as given in the SOW. The synchronization consistent readings. Soldier interface
of the ran with the machine is modeled as difficulties were also revealed during the
a rendezvous between the calling and test. For example, the user manual
called tosks In Ada. Usually a change in expressly states that the WQAU must be
the machine's state will occur as a result placed in the CALIBRATE mode when initial-
of the rendezvous which can be represented ly turning on the power. This was easily
graphically on a CRT. defeated or ignored by leaving the

mechanical toggle switch in the MEASURE
A graphic mockup driven by Ada ode.

software can be used as a valuable tool to
assess response time, training require- Five attributes of water had to be
%ents, incorrect steps In procedure, and measured - pit, total dissolved solids,
alterations to the operator's manual. The temperature, turbidity, and parcont
feedback to the PH, through visual and chlorine. Each attribute function was
hands-on interaction with or without selected by a five position switch. An
soldier testing, helps to gather valuable analog probe provided current and voltage
insight into how well the SOW was levels to -he WQAU which was then
interpreted. Although the need for processed and displayed digitally. To
preciseness in the SOW is not diminished conserve battery power, a five digit reAd-
by this method, changes to the software at out was required to display for 15 seconds
this stage in the system development are and then go off. This requirement,
far less costly and faster than if changes although correctly engineered, did not
would have to be made after delivery of take human factors into account. As would
hardware. In the final analysis, recompi- later be demonstrated, a software
lation of software is more acceptable than simulation would have flagged the latter
reconfiguration of hardware. Maximum use two faults before developing hardware as
of separate compilation in Ada adds well as given insight to an alternative
greater efficiency to the recompilation hardware platform leading to a lighter
process. weight package.

VALIDATING THE METHODOLOGICAL MODEL SIMULATOR DEVELOPMENT

A system in the test phase of The Machine as a Task
development was chosen to validate the
methodological model. Known as the Water As stated earlier, the man and machine
Quality Analysis Unit (WQAU), its purpose can be modeled as tasks to request and
was to sample the purity of tactical water accept services. The calling task is man;
supplies produced by the currently fielded the called task is the WQAU. Thus, any
Reverse Osmosis Processing Unit. Present- switch position that can be set by the
ly, such testing is performed using wet human task is modeled as an entry into the
chemistry kits which would be replaced by WQAU. Changing the switch position
the electronic WQAU. An appropriate SOW effects the machine depending on the
was generated by a PH for the proponent condition of its present state. Example:
Army command, an entry to READ the pH of water would be

accepted but have no effect if the power
A prototype was designed and built switch is OFF. Changes in state are

under contract as shown in Figure 1. initiated from a keyboard and a graphic
response is produced on a CRT (Figure 2.)

Figure 1. The delivered WQAU prototype. Figure 2. The WQAU Ada simulator on a PC.

8 7th Annual National Conference on Ada Technology 198



Task MACHINE is represented as follovs: procedure SET WIDT3_80;
procedure SET WVDTN 132;

test MACNINE is procedure invisible:
entry READ; procedure black f;
entry UN; procedure red f;
entry OFF; procedure green f:
entry MEASURE: procedure yellojf:
entry CA LIRATE; procedure blue f;
entry pM: procedure mageta f;
entry TURBIDITY: procedure cyan f;
entry CHLORINE: procedure whiter;
entry TDS; procedure black b;
entry TEMPERATURE: procedure redb

end MACNINE; procedure greenb;
procedure yellovb;

Further discussion on the procedure blue*b;
appropriateness of the task uodol will not procedure magenta b
cntinue here except to c.y that entries procedure cyanb;-
without parameters correctly convey the procedure vhitsb;
physical mcaning of a switch - a end SZT LOCATION:
rendezvous takes place, but nothing
physically pastas from human to machine. Figure 3. Package Set-Location
The machine merely reacts to the stimulus
that a specific contact has boon made.

An Ada Graphics Package
The execution of each procedure in

In order to provide a friendly SETLOCATION outputs an appropriate escape
interactive graphics environment tc sequence derived from the terminal
portray the WQAU in software, it was technical manual. For example, to take
necessary to build a graphics package. As advantago of a 132 column terminal width,
widely known, the Ada package STANDARD is "procedure SET WIDTII 132" is selected.
rudimentary, and provides only primitive The procedure body ii hidden in package
types and operations. Graphics is not body SET LOCATIONl as
part of the language, but Ada language
designers expected that packages would be
written by software developers as required
and made available for later reuse. For procedure BET-WIDTH-132 is
this project, a package SETLOCATION was begin
initially developed in monochrome on a put(ESC A 11[?3h");
superminicomputer and later extended to end;
incorporate color for a PC host. This
package providad a tool to develop a
likeness of the WQAU on a CRT by multiple
selection of a row/column and a color from
procedures in the graphics package when
called with a specified character from With a sufficient graphics capability
procedure PRINTSCREEN. The package now in place, a bit of artistry was
specification for SETLOCATION is shown Jn applied to adequately represent the WQAU
Figure 3. on the CRT (Figure 2) through the

execution of proccdure PRINT-SCREEN
declared in package WQAU. A help command

package SETCATION is was implemented to assist the user with
USE ASCII; allowable interactive entry calls to task
X,Y : INTEGER; MACHINE. Thus through the graphics
TEXT : STRING(I..80); interface, any user operation that could
CLR : constant STRING:= be performed on the hardware prototype

ESC & 1[2J1 1 ESC & "[I;1H": could be commanded from the keyboard and
procedure HOVE (XY INTEGER); the simulated result would be displayed.
procedure satnormal; Naturally, only allowable commands had any
procedure REV: effect. Any illegal commands or input
procedure BOLD; errors had a null effect through judicious
procedure UNDERLINE; use of exception handling. Software
procedure BLINK; development was accelerated by using
procedure NO REV; separately compiled modules developed in
procedure NOBOLD: the top-down design. A partial outline of
procedure NOUNDERLIWE; the WQAU simulator in Ada is shown in
procedure NO_BLINK; Figure 4.

7th Annual National Conference on Ada Technology 1989 89



with SET LOCPTExTxo O Us% SIt WLC1 TZXT-TO: to aPC/AT compatible machine usingpackage %AU invalidated Ada compilers. only one line oftype USER ACTION is (TAX2 OUT#SOL ., coda was changed when moving to the PC duoSOL2,5SOL 3,RZAD, t~o a packaga scope anavly. once thisONOF?,Px7,TIRSIITY, transportability issue was resolved, theCXLORIN,r0u,T2Nf, graphics package was modified toXEASUR8,CALX3RATZNELP): facilitate the use of color, The total
software devolopnont effort required onesubtype Mo.R-C is USER ACTION range (urndfrgrfduata) gan-zonth.

MEASURE. .CALINRATI;

type STATUS In - machine Initial state F.VAT.UATTflG Tile S1FttIX-OR
-- probe not in waterrecord The PC provided a mobile platfora korTYPEO07? MEASURS demontration and testing of the

I STRING C1. .10) : 04P "*: simulator Except for the real analogPOWER IDOOLEAN ~ AS;probes (portrayed on the CRT), theXEAN OR CALXB graphics responded identically to the
: ONRCTYPE :=CALINRATZ; prototype hardware. The 15 second displaySOLUTION :STRXNG(1..P):="AIRDAThe: at the five digit read-out, as specifiedend record: in the hardware requirement, Was

consistently 15 seconds in the sof twareCURRENT STATUS :STATUS; simulIation. This was accozplished throughComo : USER ACTION; use of the Ada delay statement. ActualREADY : &OO11AN:xEFALSE; field tests at the hardware prototype1- /0 package instantiation revealed that soldiers were not happy withprocedure PRINT SCREEN; the duration of the delay. They were ableprocedure DISPLAY: to view and record a mecasurement inproctdure XELF: -- permissable actions approximately 7 seconds and were ready toprocedura PLACE PROBE; -- in water proceed to the next reading. The cost andprocedure OPERATION; development tine to implement a hardwareend VQAU-P: change would have to be weighed against a
ackao bdy VAU isless than optimally human engineerad unit.

procedure PRINiT SCREEN is separate: In contrast, a change to the delayprocedure DISPLAY is separate; statement in the Ada simulator could beprocedure NELP is separate: implemented on the spot by editing andprocedure PLACE ELECTRODE is separate; separately compiling task body MACHINE.procedure OPERATION is separate; Changes at virtually no cost and in nearend WQAU-P: real-time could be tested again for the
human response to the reengineeredseparate (WQAU P) condition. :t is conjectured hera thatprocedure OPERAION is project managers would be prone to m.%ketask MACHINE is sow adjustments to improve system

-_ as shown surlier performance when changes early in theend MACINE: design phase would have little impact on
task body MACHINE is separate: budget and schedule.

begin -- machine operation
null; Observations from the WQAU simulatorend OPERATION; in the laboratory have had a more profound

effect than just the delay modificationFigura 4. VQAU package (partial) above. Software could guide the
operator's steps to ensure that the
CALIBRATE function was performed before
MEASURE as stated in the operator'sSoftware Development manual. This was not possible in hardware
using a two position toggle switch. ThusThe software effort began as a student a round of "what ifs" began to emerge asproject in an undergraduate Ada course, interaction with the simulator continued.The student was provided with a SOW and a

photograph of the WQAU prototype.
Development proceeded on a VAX 8800. e what if a touch panel display replacedApproximately 1200 linen of code were all mechanical switches?written to produce a working system level
simuilator. Through a summer student 9 what if the software driving theintern program, the software was rehosted display prohibited illegal courses ofon a government owned VAX-11/780 and then action?

90 7th Annual National Conference on Ada Technology 1989



" what if the simulator was donloaded to A reconfigurable set of common
a PC laptop? platforms Is the cornerstone oC che Amy's

future Armored Family of Vehicles and the
" what if an A/0 convertor interfaced the heart of the DoD non-devolopmentAl Item

analog probe with the PC laptop? philosophy. Electronic systams are even
hora adaptable than mecha..ical systems to

" what if an off-the-uhelf PC laptop a "software prototyping before getal
costing $1000 and waighing 12 pound: bending" methodology. With software
replaced a custom engineered unit reconfiguration and control, the simulator
costing $5000 and weighing 45 pounds? itself, carefully adjusted early in the

deign phase, has the potential to become
the platform for the developed syutam.

Currently, co~puter-aidad tc,!_lc are
being developed which will svothosize
software descriptions to silicon cotpilers
for the automated generation of
application specific integrated circuits
S(ASCS). With these tools, software

1- I " ' 'simulation may become a computer-aided
project management gateway to a totally
integrated design and fabrication process,

CONCLUSIONf

Ada provides a rich sat of abstract
data types which allows for high level
modeling and simulation of future

Figure 5. The WQAU Ada simulator electronic systems. 8ecaure of the
hosted on a PC laptop ability to write an interactiva graphics

package in Ada, functional behavior of

systems can be represented in a visual
display suitable for testing and analysis
before the system hardware is built.

The last hypothesis is shown in System testing under software control
Figure 5. It does not take into account provides a rapid prototyping feedback
the A/D convertor and weight of the probe, mechanism for the project manager to
but estimates are good that this is a cost modify the statement of work early in the
effective solution to the iriginal SOW. design phase beiore lengthy and costly
The project manager might be expected to developmental hardware prototypes are
conduct a feasibility study for this built. Such simulators can give insight
course of action. In this project, the to common hardware platforms which can be
Ada PC/AT executable code for the reconfigured under software control.
simulator was downloaded without These common platforms become system
madification to a PC laptop computer (on specific when adapted to unique front end
which this paper was written) and used for sensor'. The Ada programming language
inter-office demonstrations. facilitates modeling, portability and

reconfiguration when equipped with a
graphics capability and when separate

NEXT GENERATION SYSTEMS DEVELOPMENT compilation is exploited.

It is envisioned that future systems
development will come to depend on REFERENCES
software prototyping before committing
scarce resources to build hardware Letter Requirement for the Wator Quality
prototypes. This is particularly true Analysis Unit - Purification, U.S. Army
when there is a low probability of first Training and Doctrine Command, '3 Doc 85.
pass success as system complexity and
interoperability uncertainties increase. Happel, Mark D. and Petrasko, brian E.,
Further, families of common processor and "Ada Tools for the Dcacription and
display hardware may be developed which Simulation of Digital Signal Processing
are reconfigurable. Systems will be Systems". Proc. Sixth National
characterized by coupling unique front Conference on Ada Technology, NTIS, 1988.
ends to a mix of standard platforms under
software control. Electronic warfare Poza, Hugo B., "Ada: Maybe Not So Bad
systems are likely initial candidates After All", Journal of Electronic
[Poza]. Defense, Dec 88.

7tn Annual National Conference on Ada Technology 1989 91



--- Xe vin J. Cogan is a
lieutenant colonel in*i the US Army Signal
Corps. Ile received a

B.S. degree Crom the
US Military Academy
and an M.S. degree in
Electrical Engineering
from Columbia Univers-
Ity. He is graduate of
the Army Command and
General Staff College.

In addition to tactical command and staff
assignments in the US and Europe, he was
the Ada course director at West Point. A
year of research at Duke University
preceded his present assignment with the
Electronics Technology and Devices Labora-
tory, US Army Laboratory command.

-- kr Philip W4. Caverly ' Mr. Carmine Marino
received his B.S. 4ill receive a B.S.
degree in Applied degree in computer
Mathematics and Engi- Science and a B.S.
noring from Stevens degree in Mathematics
Institute of Techno- from Jersey city State
logy, M.S. in Applied College in May 1989.
Mathematics from Seton )e was the principal
H1ll University and Ada programmer for
his PU.D. fro Now this project. He was
York University Iie selected by the Army
Scientific Computing. ... to serve as a software

lie is currently Chairman oC the Department engineer at Ft. Monmouth during a summer
of Computer Science and Director of the intern program sponsored by the
Ada Technology Center at Jersey city State Southeastern Center for Electrical
College. le is a consultant to government Engineering Education (SCEEE).
and industry in the areas of Ada
technology, requirements ongineering, CASE
life-cycle tools, and methodologies for
large system software development.

92 7th Annual National Conference on Ada Technology 1989



THE ADA SOFTWARE DEVELOPMENT METHODOLOGY EVALUATION
AND SELECTION PROCESS: FACT OR MYTHl?

by
Sterling J. NcCellough

Computer Technology Group, Ltd.
Washington, DC

&USIMAI 1) The method(s) selected for
use on the projects had an

One of the most important activities impacted on a la~re number of
that is performed during the the generic Ada problems,
development of a software application particularly in the area of
is the selection of a software project manage nt.
development method for use on the
project. The choice of a method has a 2) Many of the interviewees had
major impact on the quality of the a minimal understanding of
resulting design, implementation, and the approach to be used in
documentation and on the productivity selecting a method to be used
of the project personnel. on an Ada project.

During a recently completed study, the 3) Most of the interviewees had
author found that a number of the Ada selected methods for use on
developers that were interviewed had their Ada projects based
only a m understanding of the primarily on subjective
approach to be used in selecting a factors such as familiarity
method for use on an Ada project. The with the method, word of
purpose of this paper is to present a mouth, or recommendations
propomed approach for evaluating and from vendors.
selecting a software development
method for use on an Ada project.

2. STATEMENT OF PROBLEM

After analyzing the study results, CTG
From November 1987 to May 1988, felt that the results pointed out a
Computer Technology Group (CTG) otentially widesoread need for
provided support to Sonicraft, Inc. in education and training in the
performing a methods study for the evaluation and selection of methods
Center For Software Engineering, U.S. for use on Ada projects.
Army Comunications and Electronics
Command (CECOM). The study was
entitled "Methodology Study For Real-
Time Ada Problems" (Soni88]. The 3. OBJECTIVES
purpose of this study was to perform a
theoretical analysis of the impact of To address the problems stated in
a method on a set of generic Ada Section 2, the author then performed
problems that had been identified by his own study titled "Evaluation And
Sonicraft in a previous study for U.S. Selection Of Methods For Use On Ada
Army CECOM [Soni87). The theoretical Projects" [CTG88J. The purpose of
results were then compared to actual this study was to develop a proposed
results obtained from interviews with approach for evaluating the
Ada developers that had current or suitability of a method for use on an
recent experience in the development Ada project.
of real-time embedded Ada
applications. The objectives of the Ada Methods

Evaluation and Selection Study wereThe study results which formed the to:
basis for this paper were:

7th Annual National Conference on Afa Technology 1989 93



1) Develop a set of project features are now specific to the
characteristics to be used in particular Ada project.
categorizing the type of
application to be developed Ntep_3. Set up a checklist for use in
and establishing the relative evaluating candidate methods. Theimportance of the method checklist contains the prioritized and
ieaturea for the evaluationd weighted method features and provides

a quantitative measure of the
2) Develop criteria to be used importance of each feature for the

in evaluating the suitability particular Ada project.
of a method for use on an Ada
project, based on a set of A _p . Establish the criteria to be
method features, used in selecting one of the candidatemethods besed on the results of the

3) Develop an approach for using method evaluation.
the method features and
project characteristics to 5Jep_5. Select the candidate methods
evaluate the suitablity of a that are proposed for use on the Ada
method for use on a project.
particular Ada project.

FaiJL . Evaluate the candidate
4) Provide a o means methods based on the prioritized and

to determine the suitability weighted method evaluation features.
of a method for use on a
particular Ada project. This The result of the method evaluation
information can be used to process is that each candidate method
support or eatablish the will receive a quantitative rating
validity of a method (score) which reflects its suitability
selection that was made based for use on the Ada project under
primarily on qualitative consideration. This information is
(subjective) data. then used, usually in conjunction with

other information, to select the
method to be used.

4. Q ERALL_ MPgM

The task of determining the 5
suitability of a method for use on an
Ada project is dependent on a number The purpose of the project profile is
of factors such as the orientation of the seof the prec ofile istha method, the characteristics of the to establish the features of the Ada
projeth, the experecteriandexrte project that will have a significantproject, the experience and expertise impact on the selection of a method.These features are grouped into theproject management requirements. following areas:

It was important to the author that * ApplLcatiov characteristics
the approach to be developed for
evaluating and selecting a method was * System goals/attributes
comprehensive enough to be useful in a
real-world environment and flexible * Project characteristics
enough to be used for a variety of
project scenarios. * Personnel characteristics

The proposed approach for method
evaluation and selection is as A sample set of these project features
follows is supplied in Figure 1. The sample

set can be used as a base from which.. Develop a project profile to develop the set of features thatwhich describes the features of the reflects the specific needs and
project that are important in the concerns of the project under
method selection process for the Ada considerition.
project.

Stepy2. Use the established project The Ada developer then decides whichfeatur se th esta ishe roect anfeatures are relevant for the projectfeatures to establish priorities and and rates the project features to
weights for the generic method reflect the actual project
features that will be used to evaluate environment. An actual project
the candidate methods. These method profile is provided in Figure 2.

94 7th Annual National Conference on Ada Technology 1989



6. Tno FEATuRES (score) for each method that is
evaluated. The relative scores for

Once the project profile information the different methods can be used as
hnce thn projectepofilenintortation input for determining which of the
has been specified, the next step in
to use this profile infcrmation to candidate methods in most saltable for

establish the method features which use on the Ada project.
are Lmportant for the Ada project. The selection of a c^.%didate method

Figure 3 contains a proposed set of can be made according to selection
generic method features that can be criteria that are set up by the Ada
used as a basis for evaluating a developer. For example, a developer
candidate method for use on an Ada could decide to throw out all methods
project. This list of features covers which receive a score below passing
a range of issues to include (such as 70%). The remaining methods
methodology implementation details, could be evaluated based on their
project management, and automated overall score and their score on a
method tools. A developer can add selected subset of criteria.
issues to the list, as required, to
provide a more comprehensive set of
method evaluation criteria. 9. SUMMAR

The generic method features are then The evaluation and selection of a
ranked to establish the relative methodology for use onl n ojec
importance of the method features for isn Ado project
the Ada project under consideraof the most crical decisions
The project profile information is that is made during the development
used to ensure that the importance of effort. The approach that was
the method features reflects the presented here is just one possible
infrmation obtained from the project approach that can be used perform this
profile, activity.

Figure 4 contains an actual ranking of This approach provides a set of
the importance of selected method quantitative and objective results
features for an Ada project. The that can be used in conjunction with
rankings for the method features qualitative and subjective results to
reflect the actual project profile evaluate the suitability of a method

information presented in Figure 2. for use on an Ada project.
This list or one similar to it is then
used to develop a checklist for It should be noted that the success of
evaluating candidate methodologies. this method depends heavily on the

accuracy and completeness of the
project profile information and the
method features.

7. METHOD EVALUATION

The ranking of method features (Figure
4) is used to prepare a checklist for
use in evaluating the methods that are
candidates for use on the Ada project. [CTG88) S. J. McCullough, "Evaluation
Figure 5 contains an example of an And Selection Of Methods For Use On
actual checklist that was developed to Ada Projects", 1988.
evaluate candidate methods.

(Soni88] S. J. McCullough, F. Francl,
The result of each evaluation is a C. Johnson, "Methodology Study For
filled-in checklist which provides an Real-Time Ada Problems", Final
individual rating of the candidate Technical Report To US Army Research
method for each method feature. Office, 27 June 1988.
Figure 6 contains an example of an
actual filled-in checklist for an Ada
project.

8. METHOD SELECTION CRITERIA

The result of the entire evaluation
process is a quantitative rating

7th Annual National Conference on Ada Technology 1989 95



FIGURE 1: SAKPLE PROJECT PROFILE

APPLICATION CHAR&CTERISTICS POSSIBLE RATINGS

Real-Time Yes or No
Distributed Yes or No
Concurrency Yes or No
Mission-Critical Yes or No
Memory-Critical Yes or No
Time-Critical Yes or No
Secure System Yes or No
Embedded Application Yes or No
Data-Oriented Yes or No
Process-Oriented Yes or No

SYSTEM ATTRIBUTES POSSIBLE RATINGS

Reliability Low, Medium, High
Maintainability Low, Medium, High
Traceability Low, Medium, High
Efficiency Low, Medium, High
Portability Low, Medium, High
Reusability Low, Medium, High
Flexibility Low, Medium, High
Verifiability Low, Medium, High
Expandability Low, Medium, High
Accuracy Low, Medium, High
Integrity Low, Medium, High
Modularity Low, Medium, High

PROJECT CHARACTERISTICS POSSIBLE RATINGS

Size - LOC Small, Medium, Large
Size - Personnel Small, Medium, Large
Complexity Low, Medium, High
Risk Low, Medium, High
Development Time Short, Medium, Long
Development Cost Small, Medium, Large
Project Visibility Low, Medium, High
Use Of Automated Tools Low, Medium, High
Training Budget Small, Medium, Large
Customer Influence Low, Medium, High

PERSONNEL CHARACTERISTICS POSSIBLE RATINGS

Work Experience Low, Medium, High
Related Work Experience Low, Medium, High

FIGURE 2: ACTUAL PROJECT PROFILE

APPLICATION CHARACTERISTICS ACTUAL RATINGS

Real-Time Yes
Distributed Yes
Concurrency Yes
Mission-Critical Yes
Memory-Critical Yes
Time-Critical Yes

96 7th Annual National Conference on Ada Technology 1989



Secure System Yes
Embedded Application Yes
Data-Oriented No
Process-Oriented Yes

SYSTEM ATTRIBUTES ACTUAL RATINGS

Reliability High
Maintainability High
Traceability Medium
Efficiency High
Portability Low
Reusability Low
Flexibility Medium
Verifiability High
Expandability Medium
Accuracy High
Integrity High
Modularity Medium

PROJECT CHARACTERISTICS ACTUAL RATINGS

Size - LOC Medium
Size - Personnel Medium
Complexity High
Risk High
Development Time Medium
Development Cost Medium
Project Visibility High
Use Of Automated Tools Low
Training Budget Small
Customer Influence Medium

PERSONNEL CHARACTERISTICS ACTUAL RATINGS

Work Experience Low
Related Work Experience Low

FIGURE 3: GENERIC METHOD FEATURES

rCess VIMlORTANCE

Process Visibility Low, Medium, HighData Visibility Low, Medium, High
Ada-Oriented Low, Medium, High
Information Hiding Low, Medium, High
Program Structure Low, Medium, High
Data Structure Low, Medium, High
Quality Of Resulting Design Low, Medium, High
Design Consistency Low, Medium, High
Problem Definition Low, Medium, High
Use For Large Projects Low, Medium, High

MANAGEMENT MPORTANCE

Maturity Of Method Low, Medium, High
Ease Of Use Low, Medium, High
Ease Of Learning Low, Medium, High
Documentation Low, Medium, High

7th Annual National Conference on Ada Technology 1989 97



Life Cycle Model Flexibility Low, Medium, High
Available Training Low, Medium, High
Guidelines For Method Use Low, Medium, High

AUT11AgQ J& K=A
Availability Of Tools Low, Medium, Hiph
Cost Of Tools Low, Medium, High

EIG21114% ACTUAL RANZED MZTHOD

Process Visibility High
Data Visibility High
Ada-Oriented High
Information Hiding High
Program Structure High
Data Structure Medium
Quality Of Resulting Design High
Design Consistency Medium
Problem Definition medium
Use, ?ar Large Project*. Medium

mfliflumMORNI

Maturity Of Method High
Ease Of Use, High
gave Of Learning High
Documentation Medium
Life Cycle Model Flexibility LOW
Available Training Medium
Guidelines For Method Usage High

AUTOMATED METOD TOOLSIMOTAC

Availability Of ToolsLO
Cost Of Tools LOW

F 211L.J: SAMPLE METHOD EVALUATION
CHAC~E=I

METHOD FUATURES PRflBITYWEGH

Ada-Oriented 1 20%
Ease Of Us* 2 i5%
Ease Of Learning 3 15%
Available Training 4 10%
Guidelines For Method Usage 5 10%
Quality Of Resulting Design 6 7%
Process Visibility 7 7%
Information Hiding 8 5%
Program Structure 9 4%
Maturity Of Method 10 3%
Data Structure 11 2%
Documentation 12 2%

100%

98 7th Annual National Conference on Ada Technology 1989



FIGURE 6 A METHOD rVALUATI0

KnJ-= =PRIORITY WEG1 CR

Ada-Orionted 1 20% 10t

Ease Of Use 3 15% 101

Ease of Learning 3 15% 7%

Available Training 4 10% 51

Guidelines For Method Usage 5 10% 7%
Quality Of Resulting Design 6 7% 3%

Process Visibility 7 7% 4%

Xnformation Hliding 8 5% 4%
Program Structure 9 4% 3t
Maturity of Method 10 3% 3t
Data Structure 11 2% 2%

Documentation 12 2% 1%

100% 591

DIOGQAiI

Sterling J. McCullough Is President
of Computer Tochnology Group, Ltd and
has over ton years of experience in
the dovelopmon-. of software for both
Govornment and commrcial
applications.

Sterling has over seven years of Ada
devolopment and analysis experience
and has spent the last two years
performing studios and research in the
evaluation of methods for use on Ada
projects.

Sterling received a BS degree from the
University Of Hotre Dame and an VS
degree for Carnegie-Mellon University.

7th Annual National Conference on Ada Technology 1989 99



AN ADA DESIGNED DISTRIBUTED OPCRATING SYSTEM

Martin B. Serkin

Martin B. Serkin 4 Company

Abstract A brief explanation of this avionic
distributed operating system is neces-

The design of a throe level distributed sary in ordor to familiarize the
executive for an avionics system using reader with the terms in this paper.
Ada ws a difficult undertaking. It The system is designed to run cycli-
required a now understanding in the cally. By cyclically we mean that
approach to the design of a systum As there is a set major cycle, i.e., 64
well as training not only In the lan- hertz and the major cycle is broken
guago but in the entire approach to the down into 64 minor cycles each of
problem. Object oriented design was to length 15.625 milliseconds. Certain
be used and required a now approach to tasks will be scheduled to run during
the problem. Personnel were not train- each mino cycle, every 15.625 milli-
ed in the language nor was management seconds such as the Distributed
prepared for such an undertaking. It Executive while other tasks can run
required perseverance as well as a each cycle, every other cycle, once a
co itment on management and personnel major cycle, atc. The Kernel and
to got rid or the old approaches and Distributed Executive are in each pro-
try the now. cessor in the system while the Systems

Execrative and associated other tasks,
such as the Configuration Manager will

introduction be in just two processors.

In the last quarter of 1994 the United
States Air Force requested from the Basic Dosign
major air frame manufacturers a design
called the Three Level Executive, The design is rather complex in that
these levos being a Kernel Executive, the Executive can control up to N
a Distrib% .ed Executive and a Systems processors, up to Y different busses,
Executive. This operating system was with the types of busses being indo..
to be designed Generically. For this pendent of each other, recognize bus
paper a generic system is as one that, errors and then determine faults, and
by use of data types, the configura- do dynamic relocation of those tasks
tion of hardware, communications and that are affected by the faults while
application tasks will define to the keeping the rest of the system opera-
Kernel and Diztributed Executive tional with a minimum of interference
packages their operating environment, to the general operation of the total
By changing these types and then re- system. The following is a brief
compiling these packages the execu- description of each of the three parts
tive is ready for operation. There of the Three Level Distributed opera-
is one modification to this operation. ting system.
It is those portions of the system
that are hardware dependent and must Kernel Executive
change when the host computer changes.
This will be discussed further in this Ada compilers come with a runtime
paper. The operating system is to be kernel and runtime system routines.
input table driven and these tables The supplied kernel was not appli-
would describe the hardware configura- cable to our design and required
tion, the communications network, the extensive rewriting. This included
necessary applications, and any other a design of a new linker for reasons
pertinent information necessary to make explained further in this section.
a functional operating system for air- The Kernel is responsible for the
craft now and in the future. following functions:

100 7th Annual National Conference on Ada Technology 1989



1. Initial power-up testing of the 1. Ilandles all error reportn and
processor. passes them to the Maintenance Monitor.
2. Initiali:ation of the interrupt The Maintenance Monitor will determine

services the name used to define the when errors become faults. The Main-
10 handler routines. tenance Monitor will not be discussed
3. Calling the Distributed Exacu- in detail as it is system related and

cive to do the bus initiali:ation. will change with each major application
4. Creating the task control blocks that uses this executive.

as tasks are loaded into their res- 2. Control access to the System
pective processors. Mass Memory on a task priority basis.
S. landling Ada exceptions. 3. Gathers system status from all
6. Scheduling of Tasks on a cyclic the processors and prepares data which

basis. is passed to the Maintenance Monitor
7. Maintenance of timers, clocks, to determine processor task/bus

page registers, etc. failure.
8. Participating in the recon-

figuration. This brief explanation should suffice
to give the user a working knowledge

Distributed Executive of the way the system is designed.
The next section will go into a bit

This is the name used to define the 10 more detail on the design of the two
bus handler. The Distributed Executive, executives that are the most sonsi-
hereafter referred to as the DE, has tive to the multi-processor environ-
the following responsibilities: ment.

A. During System Initialization Distributed Executive Sensitivity
1. Build the system network by

seeing what processors and devices are The DE, being the controller of all
connected to each bus. the busses in the system, is the most

2. Load the processor connected sensitive to the multi-processor
to the System Mass Memory, the System environment. When the Kernel Zxeceu-
and Configuration Manager applications. tive, in each of the processors,

3. Read the configuration tables, finishes its initialization, it
application load instructions, active calls the DE to determine the hard-
remote terminal tables and all other ware configuration of the system
system tables off the System Mass using tables that are on the System
Memory. Mass Memory, hereafter called the SHM.

4. Send these tables to all These tables are a series of arrays
other processors in the system. that contain the complete description

of all hardware that is on each bus,
B. During System Running the bus configuration and bus types,

1. As a bus controller, send out 10 channels and the initial appli-
commands to do the required input/ cation load of each of the processors.
output for each cycle.

2. As a remote processor, pro- Upon receiving control from the Kernel
pare the bus to receive or send data Executive, the DE will read the back-
foL the current cycle, plane id of the processor. The back-

3. Process System Mass Memory plane is compared to the array that
requests. contains the backplane to processor

identification. This array also
C. During Re-configuration specifies whether this processor is to

1. Do the System Mass Memory 10 be the initial controller of the SMM
to load the processors with the re- and therefore the processor that will
quired application tasks. contain the primary System Executive.

2. Insure that the processors If this is the Primary Processor, the
not involved in the re-configuration DE will now acquire, from the SMM, the
continue their cyclic 10. following arrays:

3. Comimunicate to the Kernel
when tasks are deleted and when a load A. The hardware configuration of
has been completed. the system. The DE will use this array

to issue bus tests to determine which
System Executive of the remote processors/hardware is

responding to the commands being issued
rhe System Executive is a relocatable on the bus. A system status table is
task that works with the Configuration constructed to hold the results of
Manager and the Maintenance Monitor to these tests.
provide the following functions:

7th Annual National Conference on Ada Technology 1989 101



B. The array containing the pro- number of words in the Xnput/Output
cessor to remote tarminal identifi- area and other necessary information.
cation is acquired. This Arr- These requests are processed by the DC
contains the remote identific for and the cyclic XO tables are built for
each of the remote terminals to the each of the cycles in the system.
bus controller.
C. The message to task array is The Input/Output task of the D is

acquired. This array contains the scheduled every 64 hertz. It will do
relationship between message identi- all necessary processing to create the
fication and remote terminal identi- Input/Output commands for this cycle.
fiers. This array is used to pass Once th* 10 chain is built, the DE will
data between remote terminals. Since issue the coumands to the physical bus
this is a distributed system an appli- hardware to start the 10 chain. When
cation dots not know where another errors are detected by the Interrupt
application resides. It is the rcs- Service routine of the DE, these are
ponsibility of the DU to command the reported to the Maintenance Monitor,
designated bus to send or receive the The DE will not re-direct Input/Output
data required. The information about or declare any device inoperative.
whnt application has commanded a read/ This is done only under direction of
write of 4 particular piece of data is the Configuration Monitor. Each
located in this array. Since hardware, cycle, the DE will interrogate each
i.e., sen:org, radar, etc., can not processor to see if any application
issue these requests, this array con- has requested any services. This is
tains their identifiers and inforcmtion done by each of the bus masters and
about when this data is to be written, will differ with the type of bus,
the remote id of the hardware and 15530, High Speed data busses, etc.
other pertinent information.

Svste.m Executive Sensitivity

When the arrays are read 
off the SExe

into the primary processor, the DE will There are two System Executives always
send all those arrays to all other live in the system, the Primary which
processors that can become the bus will receive data and write data and
controller. The System Executive and the stand-by which just receives data.
Configuration Manager is loaded into If the processor containing the Primary
the primary processor. At this point System Executive should fail, the
a message indicating that the System stand-by will assume control and will
Executive has boon loaded is sent to send a message to the Configuration
all other processors in the system. At Monitor that a relocation should take
this point control is returned to the place. Since the System Executive
Kernel Executive. controls access to the SMM, it is

important that there always be an
During primary processor initialization active System Executive 4nd along with
the other processors are waiting for it the Configuration Manager.
the load of the configuration arrays
and the message that indicates that the The design of the System Executive and
System Executive has been loaded. If Configuration Manager is open-ended
this message is not received, another since these tasks are more dependent
processor will become the primary pro- of the type of system, fighter, trans-
cessor, based on a series of parameters port, space flight, etc., then the
and time calculations, and perform the Kernel and DE who are dependent of the
services described above. Once the hardware.
configuration tables have boon received,
the other processors will be waiting Design Configuration
for application load messages and
finally the Initialization Complete In order to design the system, an ideal
message. Once the Initialization configuration of hardware was dosig-
Complete message has been received, the nated. This configuration consisted
entire system is put in a system run- of the following equipment:
ning state.

1. Eight 1750s designated as Mission
Each application, on initialization, Data Processors, each con.aining one
will call the DE via a Kernel call and million words of storage.
will register its cyclic Input/Output 2. Four 1750s designated as Vehicle
requests. This request will contain Data Processors.
all necessary information about the 3. A Common Signal Processor to
data to be sent or received. It will collect the data from the sensors which
also contain the cycle period when the were connected to 1553B busses and send
data is to be sent/received, the

102 7th Annual National Conference on Ada Technology 1989



this data over the designated Mission express their solutions in a manner
and Vehicle busses. that directly reflects the multidLmen-

4. Three dual redundant hi~q speed sional real world."
data busses; one pair alloetati Mir the
SM busses; one pair Allocated as the Since Ada and Ada compilers for mill-
Mission Data Procassor com~unication tary computers, mainly the 1750A, which
path and the last pair for mission to was our target computer, were not many
vehicle data processing communica- in number nor was there many available
tions. trained personnel, we first had to come
S. A quad-redundant set of high up with an approach which wo,'ld make

speed data busses for communications use of the best parts of Ada, direct
between the Vehicle Data processors all design to be object oriented and
which were used for voting purposes. avoid, at all possible cost, AOATPAN

design. By ADATPMA is meant the design
Our design was based on this configu- of a global database, all applications
ration. When implementation of the saring common data, tasks communica-
ssytem was started this configuration ting among themselves without going
did not exist. We were forced to re- through the executives, and all other
design the system to a somewhat scaled bad techniques that we as an industry
down configuration which consisted of have used over the years. In other
the following: words we did not want to make the mis-

takes of old. The system had to be
1. Two 1750 mission data processors easy to maintain, and be as modular an

with 64k of storale, cotnectod via A possible.
1553 data bus.
2. A VAX 780 simulating senuor d~ta Eduetion o mnagemont and Staff

communicating over a 1553 bus.
3. A Harris computer simulating the The following Is an outline of our

cockpit displays, also over a 1553 bus. approach to training management as well
as the current staff In using Ada and

This configuration caused much re- implementing the design matho called
thinking in the DE and mado our original Object Oriented Design.
design somewhat Impossible to carry
out. We had no off-line processor to In the great and old days, systems were
build the configuration tables and this designed where applications had free
had to be simulated and because of reign to pass data directly from one
memory requirements much of the generic application to another. Programs were
executive had to be eliminated, designed to fit in a single computer

and therz was no need for a different
approach. Just store it in a common
area and everyone and his brother could

ADA Xmpleentation get a look at it and possibly destroy,
or modify the data. This executive had

Now that a brief and I hope not too to insure data reliability and integ-
boring description of the Three Level rity. This hurdle was one of the mostExecutive has been presented, we will difficult to overcome in our retraining

discuss the use of Ada and its bone- of management end staff. This is a

fits and problems, which I am sure most distributed system and we had to ins-

of those reading this paper, and I hope till into the applications end system

there are many, want to know how Ada til in tapplicat ndesstem
was applied to this subject. Ada was engineering staffs that unless there

was a shown need, no applications could
chosen as the language of implemen- be guaranteed to reside in the same
ration since the Department of Defense

has decreed this is the High Order processor.

Language of Choice. This was decreed Agin to digress, before Ada, systems
by the Advanced Avionics System which aginering was done for a project with
was the original contract that was let little or no regard to the language to
to design this executive. The other be used because it did not affect thereason for chasing Ad is described by operations of design, coding, pro-
Mr. Grady Beech in his book wSoftware gramming or documentation. If some of
Engineering with Ada" and let me it was in JOVIAL, some in Fortran, a
quote: little in C, a bit more in assembler,

so what. This entire approach to the"Ada is more than .ust another pro- design of a project had to be changed.

gramming language, hoever. Along with The software system had to be designed

the Ada Programming Support Environ- with the capabilities of Ada and its

ment, it represents a vary powerful wit t aabi e d a its

tool to help us understand problems and constraints and viewed in its entirety

7th Annual National Conference on Ada Technology 1989 103



with each object, radar application, 490 which permitted us more leeway in
Hay, etc., being designed as a self- designing the documents.
contained packoge with the data ncas-
seges being the means of counication All the personnel working on the pro-
between other applications. ject except for a few had never heard

of, lot alone worked in, any environ-
We now had to take a software engi- mont where one had to view each object,
nearing approach to the problem and Radar, sensors, Kernel, DE, as a pack-
think a bit differently. Each object, age with data that can be viewed by
that is for example a Navigation only those who must have access. This
system, a weapons system, a sensor packaging of related procedures for a
system, etc., was to be designed as specific object was loosely used in
packages. These packages did not have other projects but had to be enforced
to take into account where other appli- by other means than the language it-
cations resided. Each package was to self. For an Ada systam this was
be designed without regard to the tightly controlled with the use of vis-
other packages nor worry about the ibility. ho application could "with"
common areas for data passage. There a Spec unless that Spec was part of
was to be littla or no shared data. it# own package. A portion of the
All information is to be passad via the Kernel which is used by all applica-
DE and the DE has the responsibility to tions to com=unicate with the opera-
get the information to the correct ting system is also "withad". This is
apolication data area. Obviously input being eliminated with the impleamnta-
anC output interfacas still existed but tion of a DEX call which is explained
data was not to b directly placed in later in this paper. Now that we had
any common area except for system re- our design specified, our system
lated data. See, there is talways an engineering specification clarified,
exception to the rule. All parameters our coding standards specified, we
had to be typed and all limits to were ready to go. How long could it
arrays, ranges and any other types that take to learn Ada and get this execu-
were graator than 1 in length were to tive on the road? The staff was
be parameterized. still untrained and what training

problems could we encounter? We wore
It sounds simple but people just want all professionals.
to do it the old tried and true way.
The usual argument we meet was "hey,
I know the array is I to 10 items so Learning Ada
why not define it that way. It's
easier to road then some silly object Our environment consisted of our target
'first to object' last." Maybe easier computers, Mil-Standard machines 1750As
to read but harder to maintain, change and there were three systems just
and if more than one procedure uses the waiting in the lab to be used. The
array how do we insura the same ranges. VAX1 system was our host computer and
People consistently tried to avoid it contained an Ada compiler. Manage-
using the Ada language to its full mont figured that Ada was like any
extent. other language and allowed forty hours
The toughest problem was the instilling of training to get those who were un-in the group that Ado was to be viewed familiar with the language up to speed.
in a Software Systems Approach. This This was a gross underestimate of time.

meant that from the very beginning of I would say that based on our expri-
a project, all design starting with nce with Adoa, one should allow about
the system requirements, must be 400 hours of training with active lab
viewed in the totality of the Ada practice to have a person learn all
language. All documentation had to be the intricacies of the language. The

prepared with the constraints as group being trained had an average of

applied to Ada. As is standard, in over 10 years of experience with many
the government's wisdom, the documen- languages so use this as a guide.
Sation had to be done to Military Since we could not convince our manage-Standard 2167 which is not too wlloo
defined for the Ada language. Second, small we just pushed ahead and de-
most of the personnel had never seen signed, coded and tested out the execu-
Ada, let alone the rigid typing and tive as we learned. If there was a
packaging that we were trying to get space and I could list the programs
implemented. The system requirements developed on our first attempt one
had to be done before detailed design would notice that we had produced
could begin so we used Mil-Standard Adatran in our code, all the design

104 7th Annual National Conference on Ada Technology 1989



and system engineering we painstaking available for the application tasks,
laid out was violated and the system a specification for the DS and t.-.
ran but not as generically an we Xovnel's private specification. This
wished. host of this was attributable came about because of problems with
to the time constraint placed upon us the private pragna not working and
to demnstrate a cycling system for some other compiler problems.
upper m nagemnt. Most of the coda was
HAROCODED to fulfill the requirements After a period of time we considered
of the demo. ourselves an Ada trained Ada expert

group. But where was our compiler for
The breaking of bad habits was prob- the target machines?
ably our toughest hurdle to get over.
That is besideas trying to learn the Ada Soleetion and Add Tools
language. The Mil-Standard 815 Ada
docription was so clear that almoct To refresh the reader's memory, this
anybody could just read the text and pro ect started in the latter part of
become an Ada expert. It just so 1985 and there were not many Ada
happened that our staff probably had compilers available, let alone those
learning disabilities and found the tht were certiied by the Department
text somewhat difficult to grasp on of Defense and had the 17S0 as a target
a first reading. The entire staff went computer. A group of analysts was
out and bought a book written by Mr. selected to go out and tet those
Grady Beach, "Software Engineering with coMpileaS. They were compared on the
Ada" 2 and used this text along with following criteria:
the Ada standard and this improved the
learning curve tremendously. 1. Dod Certified.

2. Compile tire based on a speci-
The second problem to overcome was the flad set of prog-;ams selected from the
idea of a distributed system. Most of Dais mix.
the staff had not had experience with 3. Optimizatior. capabilities.
a distributed system. They wanted to 4. Available support from the
use the global database, or compool supplier.
structure and have tasks communicate 5. Release of the source code for
directly with each other through shared the Kernel and run-time support
memory areas. They also wore not used packages.
to strict typing of items and tried to 6. Cost and maintenance of the
avoid this at all cost. A special pro- compiler.
blem existed for the Kernel and DE 7. Must be able to run on the VAX
which was the use of Chapter 13 and all and produce 1750A object code.
it implies. Since this was compiler 8. Manufacturer supplied linker
manufacturer dependent, VAX Ada and our with the capabilities that wore re-
Ada for the 1750s were not too conpat- quired for our executive.
iblo. This caused and is still causing 9. The compiler with the least known
a problem in our development. More on bugs at the time of selection.
this later. 10. Debugging tools available along

with any simulator that would run on
The system was developed with a com- the VAX and simulate the 1750 com-
munication method, implemented in the puters.
DE, that allowed the application tasks 11. Chapter 13 implementation. What
to request the sending and receiving extras were available and how were
of massages. The DE would take care they implemented. Th6 executives had
of placing the data into the user to use much of the Chapter 13 options
specified data area or send the data and even though these are kept to a
from the specified matter to or from minimum, the implementation of these
the specified matter to or from the options were of great importance to
appropriate processor. Easy to lay the selection of the compiler.
down the rules, hard to got people to
follow. A module was developed into The process went on for four months and
which all our data types and message we finally selected our compiler. I do
formats were described. All of a not wish to specify the name of the
sudden, this module was growing with corporation or those compilers that
objects that were visible to the world, were selected since the testing was
A quick stop was put to this and was done over three years ago and I am
placed under executive control to sure that the ones not selected have
limit the amount of visible objects to improved and I feel that it would be
the entire environment. We had to unfair to the others now.
make the Kernel Executive have several
zpecs consisting of the specifications

7th Annual National Conference on Ada Technology 1989 105



When we received our compiler, one of operand thd,. it can access and a simi-
the staff had to take the Kernel and lar amount Of instructLon space. The
the supplied linker And mAko or DEX linkage is an executive call which
changes to the coda. This task was not causes an interrupt which is processed
simple and took slightly longer than by the Kernel. With the Implemen-
expected. The changes were made over a tation of this to the Kernel Executive,
period of ti * with work still being thoe pages containing the executive
done. will no longer be visible to the user.

This would permit the application to
As we started to carry out our design, have the full use of the paged memory
one found that much of the features available.
that make Ad* a language which embodies
much of the modern software develop- The simulator received with the com-
ment principles but also rigidly on- piler did not quite meat our needs.
farcas them just was not yet imple- A 1750 simulator was developed to run
mented into the compiler. In our on the VAX host using the output of
first delivered compiler rpvaesan- the modified linker. This worked well
tation clauses did not work. This and still does for the testing of
would have bon somewhat acce. table Applications tasks but for the Kernel
for most applications, but all the ID and DE very limited tasting could be
comands that had to be generated re- done. we were forced to do our
quLred bit manipulation and without testing on the 1750S.
it masses of memory was used. Packing
also was not yet implementer and As expected there were very little
strings were a pain and were avoided tools available for the testing of Ada
if at all possible. The next non- generated code for the IT50 computers.
implemented feature was Machine Inter- A simple debugger with very limited
face, again a problem not only for the capabilities existed and the debugging
DE but for the Kernel Executive. We time greatly exceeded our time esti-
had decided from the beginning to mates. When wc 'nally ware able to
attempt to use little or no 1750 test, one found the usual number of
assembly packages. In the beginning compiler bugs which than caused the
not possible. At present a now de- programmers to start blaming every bug
livery of the compiler contains these on the compiler. Is not human nature
features and we are implementing the so predictable? Give a programmer a
changes as I write this paper. straw and they will make it into a

giant oak. As a generic system that
Of course we found compiler bugs, which is being funded from IR & D funds our
is expected as one tries to use as many budgets were not high nor our equip-
of the features of Ada and its con- ment the best. The programmers did
structs as possible. Why you ask, have a little bit to complain about.
because we were attempting to become
Ada experts and to do this you try Several demonstrations weare given to
everything in the book, wouldn't you? management and lo and behold a real

three level executive was being do-
Our next implementation problem was the veloped and tooted on a limited number
linker. Since we had to be able to of computers using several busses.
load many application tasks and each The idea of a DE written in Ada and
task loaded had to be memory pro- running on Mil-Standard equipment was
tected from the other tasks, the linker fully available now for practical use.
had to be changed to implement the page
register scheme available in the 1750s. Implementation of the Final Three Level
At present our linker will separate Executive
operand from instruction to take
advantage of the page register system The corporation was now convinced that
in the 1750s, and we are now trying to the project could be done. No more
install the BEX linkage for appli- demo systems had to be developed to
cations to communicate to the execu- prove that the design and specifi-
tives instead of a call. cations could be met. The old 1750s

disappeared and new equipment with
For those unfamiliar with the 1750 real debugging consoles, appeared.
architecture, the machine has a series Funding was approved to make this
of page registers that permit the executive a truly generic system. The
operand and instructions to be separ- old adage comes true again, there never
ated and protected on a page boundary. is enough time or money to do it right
A page boundary consists of 4096 16 the first time but there is always time
bit words. Each application is per- and money to do it over.
mitted to have as much as 64k of

106 7th Annual National Conference on Ada Technology 1989



Currently the staff is producing a The new project was designed without
truly generic system. It is table regard for the Ada language and there-
driven so that the number of pro- fore is having difficulty in adapting
cessors, busses and bus types, and to our executive. The Air Force re-
reconfigurability is regulated and can quired document specification Mil
be changed by simply changing the Standard 2167 does not in any shape or
parameters, recompiling and oft we go form allow you to document Ada patk-
with maybe a little testing. The Three ages as one should. It is still
Level Executive is now running on a designed to JOVIAL with all its faults
three processor tvatem. It is being and difficulty to read. For example,
modified for us a government con- we had to re-write our detailed design
tract involving v processors, four to conform to 2167 and the document
busses and a laL imbor of sensors. was over 2000 pages in length. This
The busses being ad are Mil-Standatd might be all right for a lifting exer-
1553D. ciso but as a reference document it

is almost useless.
To add different types of busses, the
system allown the Ansertion of that bus The Executive Group is now workin2 with
handler with a minimum of changes. The the project to try to retrofit our
DE checks the* bun type that is to be executive into their design. The best
used and will call the appropriate bus analogy I can think of is when a large
package baied or, that type. As bus car manufacturer saw a need for diesel
types are Addea, trio bus package will engines for their cars, instead of
have to be debugge-1 but t~is does not designing a new engine they just took
affect any other rAckagos in the their gas and made it into a diesel.
system. I am sure we all remember the results

of that fiasco. As of the writing of
Projectizing the Executive this paper, we are still battling the

hard-liners who want.global databases,
In the latter part of 1987, the organi- event-driven 10 and all the Adatran
zation that I am contracting with was that you could possibly implement.
rewarded a contract to supply the soft- The configuration for the project con-
ware for a retro-fit of an existing sists of the following:
airplane for the Air Force. Our
executive has been chosen to be used in 1. Five 1750 computers connected
this project and is also being proposed via 4 1553 busses.
for a variety ot systems being imple- 2. Soqsors connected to the 1750s
mented or planned for in the future. via 1553 busses.
The immediate project should be dis- 3. One of the 1750s will use memory
cussed, though somewhat briefly as this as the SMM.
paper is getting too long. Upper
management, in its great wisdom, de- The training goes on as well as the
creed that the Three Level Executive instilli" of Object Oriented design
be used in a project just won by the in all personnel working on the pro-
company. Without consulting any of ject. Management is coming around to
the Executive group, the work began. the idea of software engineering and
The people on the project were not Ada control and the strength of the Ada
trained, had no knowledge of object language in controlling a project.
oriented design and thought a package
was something you brought home from
the store. The systems and the opera-
tional flight software personnel had
no knowledge of our system but pre-
pared the design of all the software
without any working knowledge of the
operation executive.

As you can guess, they designed a
complete ADATRAN system, with naming
conventions, shared databases, dis-
regard for relocation and all other
things this executive expected to be
used. As one can surmise, all the
problems that the executive group went
through during design and implemen-
tation is now going on once more.

7th Annual National Conference on Ada Technology 1989 107



II

Martin B. Serkin
Martin D. Sorkin & Company
16479 Halsey Street
Granada Hills, CA 91344

Hr. Serkin received his Bachelors
degree in Psychology with a minor in
mathematics fron Brooklyn Collge in
1965 and received his MBA from Monmouth
College in 1978. Ile has been involved
ini the real-time operating system field
for over 28 ytars and has been a con-
sultant for the past 8 years working
in the aerospace field as well as doing
a real-time system for NATO in Europe.

108 7th Annual National Conference on Ada Technology 1989



PARSINI: A Parallel and Real-Tirm Simsulator for Concurrent

D"n N. Cokma
Rlonal J. Lrtach

Depatnt of Sysites andl Computer Sciene
Schoo o Engineering

Howard University
wSahingt. D.C. 2005

1. Abstract Execution of a Peid net may bc deseibed by IntlieatlnR
TIk papr Jacribes a Pwali~ wA Ita-l the gt of thc network as a functiont of time A con.

Simulator (PARtSIM) which was de-velop In Ada wing vailm way of dclning the sate of a given net 3t a Ionaic.
the Meridian compiler on an AT&T PC 6310. PAXSIM. Iar gtim Is to dcertibe thc number of tokens in each place
developcd mt a sotware soot, uses a Petri act model fr at that time. Changes In a sw ac ontrolled by thc tliui.
slNWIA4tl Of c&KnCuren COMPuaWional algorithms. The bution of tekeis In the he'. Stae changes occur as a
paper dixscus the structuit and opemationa teimc result Of firngs 0( transitions. When a tvonstloin fire$.
of PARSIM. there IS a1 rdsrutOf Vhc token1 socMad with Its

Iput Ad output places. A node with an awc directd Into
a trans itnIs defined as Input plae fr th" transition:

2. ~104herea an output place Is definod as one with an we
The tud an anlyss o rel~tme nd aralel directed fro the tranition to tha plce A transition can

sTem Istudy and Important afreatm and parlel Arm (be eabled) %hen each of lIs Input places has at leastSYSC11% i AnaciveandimpnW4WUof OMP~t l- one token for each wec direted from tha place Into theVc.An Imiportant tool for such studies Is the Petri net uansition A transition fircs by redistributing the tokens
(P'etsonv, Cherrl. A Petri net Is a particular type of amn h places as fo(We*%
graphical mode which Is especially suited (or the
repireentatIon of concuren and parallel systeML. In WhS On toe 1s removed from an Input plie fix
paper we itport on a Pctri net base Paralle an Real. each we betweeat "input Place and the tsition ;
Time Simulator (PARSIM) &hich was developed using One token Is erewile and detposited into exch out-
the Meridian Ada compiler on an AT&T PC 63 10. which Put place (or each JIM from the transition Into the plac.
Is based on the INTEL 20286 microprocessor and which
uses MS-DOS. The paper eonisas or 3 ma* rts. Fas Figure lia and lb Illustrate the result of the firing
we briefly describe Petri nets, the tool for modding sys. of trnito t3. For this particular ne: we have four trantsi.
tcms: next wie outline PAitSIM. Its components, Pararne. tions and six placs. The Initia state Ifiven by.
ters, and the rules for execution; finally. we discuss results (1'o
on the exccution effectiveness of PARSIM . 010:0

whr the 1 4 entry in the six-tuple represents the number
oftkens in the 11 plac. After transition q~ Is fired the

3. Descnlptlc. of thet Petri adt model new state vector is given by
A Petri net Is a special type of directed graphecon- (0.2.0.0.1.0).

sisting of nodes trasitions, and ares. Symbolically nodes 71i time associated with the firing of a transition Is
(a&W called places) wec represented by circles, transitions assumed to be zero within the class of ' Untimed Petti
by vertical bars, and the flow In th graph by directed Nets" (wee (Peterson)). Also for thiselass ofnets. the
arcs. in addition. Petui nets use tokens, indicated by dots sequence of fiings of the transitions Is random; It.,:a
in the nodes, to control the execution of Vhe network, given transition may fire whenever it becomes enabled;

however. it is further assumed tha the probabilihy of tws
transitions firing at the same time is zero. A useful

7th Annual National Conference on Ada Technology 1989 109



charaieruation rot a Podtacnt Ad a givn Initial %we XW14T
vecwo Is the reachablihy set. This set defines all 04 states rw pARStIM we have for Itype of ,%-cnu. They Ore
which can result froam any sequnce of trnstion firigs *1 follow*
gting from the initial state. Alorithms exst for the
construction o( Ahc reahabliy trzt, which Is a grphkca SunkSinulato" (tIne I)
rcintation of the reachability Iet (mce I Pterson, lIoli. End.-Simulion, (typ 2)
da)y A Vernon)). Trilin.Cmec&mig(type 3)

Transitio.Ends.Ving (t)ire 4)
4. The Structure a( PA RSIM

Thbe Petri net Is a natural Ioo for Ace Modeling of Th siuao s'vn.cvt* I.e., the simulation
concmrent sy tm. The Col. pnrce between Ace proccds by ecuela the sate chops as specified by Ace
simulation model W Per ocsI sflo PARSIM Is cvetw in Ac Event.Table. The Evet-Tabl Is a dynamic
a distrete event simulator. hat Is. kt Is beacd an a mode Wkl of nac AM W"et co" a list of the
of d~isce process For out puqtoacs. a process Is a times aI which in event wil occur, Ace ape and
activity which exocutes or procm&d ovar dine Waing a clsfi~o 0( event Involved, and an identilier of Ace
well defined beginning and end. Sice each of 6he transl. tanstion U5Oiaswi with the cvmn Events w c a"f~
aimn frfet a process In Ac simulation. we introduce u either primary (P) or conditiona (C); primary events

the desof ime asmia Wih *4trasiton irig drs. may cauinethe creation of new f(aRK events Indepcndcn
don Te ofdmne asoitd cuitn Ac trnssition kits n of Ace stat of Ace system, while conditional events my

inigs) define events to this model. Evenw chan:e c nnweetm inboduo h ytmn
stae iLe.. Ac dsstnbution of Ace tokens i Acenet. Recall ~ 'IYPW event table Is shown In TAbl I
tha Place Mad transitions We Petri net primitives. We 7M~ events to be added to Ace table we dtcermined
wil be concerned with a prticular Inerprettion o( #4 by Ace event-time predicton moudnes Theme routines
ne4 which reuires us to esPiedtAc definition of $we 10 select events (trnuition ineas) bead upon Ace set of
Include Wnorm~An about A1c 'execution' 0f VO&W enabled transition va Ac pilcuWa rules of a given com.
Primitive transitions do wo scuw,* they only Are lasmn. putaon For esanple, whatt several transtin are
taneously. We ca n pesent this new notion. "excutlon of enabled. Ace nea transition to be fired detrmines an event
a Vansllon*, in WeM of primitives as shown In p~~f 24 which is IIo be placed inAc event table. Thut transition Is
and 2b. selected according to rules A dmcied by Ace user's

We mce i Fgure 2&aa represetation of transition TI Itrpatio or the net. The selection may be made at
with its Input wnd output places PI wa P2. When we rdmo ysm te ue
Intrrethls transition M exeuting. we mean thot Ac lt PMSIM. type 3 events am primary event since
structure of A transition Is as shown i Figure 2b where we always have a future type A event asociate with Ace
transition TI Is eamde Inwo two 'vinaaa trstions ad occurc of a type 3 event The even - time prediction
a *virtual place repmeented by TI., Ti. P* respectiey, routines uxe cexecution disciplHne or set of execution
Thefiring of T'lIndicates cstartof die eecutsion of TI; rue ~ whih is Wfoo.
Acking of ri indicates hecad ofthe execution of Tl:
and a token in place P' Indicate "ha transition TI Is exe. Extvo Diaciplinte
cuting. We use Ace represenitIon given in Figure 2& foir l- No two events can occur a th Am tme. The
out computational models. The parmetrs asocatd minimum time between Ace occurrenc of a pair of events
with transition T, awe as follows: is controlled by Ace value of Ace Input parameter

tj randomn variable representing Ace time at which Minr-13" 0t .
, is enabled. 2-Tranitdins can fir when enabled.

mi random variable representing Ac time at which 3- A transition which has fired cannot be; scheduled
T, commnences executiona for a subsequent fiing until a&We its scheduled end "tin.

Ija random varibl representing Ace time, at which TheC virtual transition and Ac vi"ta place weC safe: ILe..
T, finishes exocution, can have at most one token.

e el- waiting tim fr T1. Sm ato Procedure
NST - latency tim for TIs, where NST Is net.

work sunr time. I Start the simulation. mead Input data. laitiLize.
2 Select evw rom Ace event table.

It Is appropriate to not that Si A ft represent Ace 3 Advaince clock to designated time.
firing of the two virual transitions: asociate with tra*i 4 If primary event create new events add to event
tion T, and that Ace expocted value off, - el Is Ace input table.
parmete E, . tAc average execution time of T1. Latency
is defined as Ac time that a transition must wait before it 5 Chanige Status Descnipdtt.
Is enabled.

110 7th Annual National Conference on Ada Technology 198



6 Exacw conditional evenits foutnmt 5. A parametier to set the minimum time between
7 Add new ecnt to even table. kl4~ fiin f traniions.

IRecord daa and goto step 2. 6. An Initial aced for the random number genr2.

Set 9( PARSIMI ftweea
In addition, the kItrfae contains an on-line help

I n rogram to control the flowo dcCsesimula. facility which proides basi Information regarding the
lion.operaton of die simulator. The preliminary protot)T4

2 R~lo~ ~Intcrface was devcloped originally for a restrictset ocfC2 Rndo nubergoaa ar, Lc.. stuent in a graduate realtime systems class.
3 Statstical routines for pmpepmng vid proccssing Subsequen work Includes emphasis on &clopuiens of a

output table. graphics bsmcd 'friendly' Interface for a more general set
4 Routinc for reduction of the number of mail. oC users. The grahic based interface allows fr provi.

tions fiigl in purafle. Cpiswuine will be pu io sWa of input interactively or vi4 data fiks.
abeyance Initially. It can be diciennlncd within the cotext PARSIM allows uscrs to view output Interactively cc
of a Petuict.) to 100te output to any of the output denlecs. Thse output

5 Set of enabld transiions; routine. Includes a statistical packages which give statstics on the
6 State chosge rouine. Upon passng of tokecns following Wet pmwuetm.

wha sthe textsate. 1. Transition latency timeS
7 E . -is time predliction routinc. These anays

the current state and use the stAC change routines to give 2. Trotsitl~t waiting time"
th madtype of next ows.tate.xcuintme dfrigfcucils
11 Routine for selecting a tnnition fio 3.asthexcuintmsadkigfeunis

enable Set accordig t0 the network dicpline 4. Plce w ndsriuin
9 Routine for selecting the next simulation event.
10 Routine to process event table. 5. Total aict execution time.

an also rores oudtec nine 7ba detect deadlock6.Rahblttr.
andals meuse todetct nfiiteunplanned looping. 6 eciblt re

12 InrAWFOutput Interface. The Interface allows. In adition. a '&bug* modec.
In this mnode, a user can print out sables such as the state
sable at each time step, the event or transition table thus

S. USER INTE.RFACE. allowing detailed analysis of a simulation design.
A preliminary prototype Interface. which %tWe PAISSIM was testd on a number of small to

alpharnnc Input only. was develope for the description rnedjm slitt!d lui-nets ranging horn somewhat simple to
CC the net to be simulated. Thi nterface Includes Inputs rather complex topologies. For seven or the networcks run
for the following. on PARSIM. we present the resulting data In Thble 2.

1. Two matrices D' and D' awe used to define the Thec column labeled TOKENS represents the number
topology Of a1 givfe net. The dimensions of the marices CC tokens initially In the netwock. The times In seconds
ace Nt by Np reivesenting the number of transitions and reitesent the total t time for the simulator to complete
places, respectively. ciecution. Execcution was completed by arriving at a state

2. Ad Initial state representation where staoe Is In which there were no possible additional transition firing
defined as follows. : or having the looping limit reahed. That Is. the network

ha repeated a sequence of transition firings up to a linit
STATrE(t) n (stael... stateNp) U BUSY. set by an Input parameter. Tis %%a the case for net

wher stej eprsent th nuberof oken Indieplae j nunber 6, which displays the largest total execution time
whrat sjrpeet henme ftkn i h 6M4 L of 2.9 seonds. Netwvork number 6 had the most comn-

at time L - network topology. These times ame for the AT&T MC
BUSY is abinary vector where fo Iin 1. Np, 6310. with 640K ram. a20 mcgabyic hard disk. and a 12

BUSY(I) 0 I. if transition I Is executing at mcgabyte flop)py drive. Mie times given d~o not Include t
time 1:. input timcs for describing she net toplogies. The prelim-.

0o. otewie Iary version of PARS IN consisted of approximately 1500
lines of Ada code run on the Meridian AdaVantagc(tm)

3 Transition execution time is in a real away called Compiler version 2.0.
Expected-Times of length NL

4. A parameter to control the maximum times the
system can transverse through a loop.

7th Annual National Conference on Ada Technology 1989 111



The Current Implementaion of PARSIM Is being wy at tie University of Michigan. Currently, Dr. Cole.
portal to an AT&T 3B2=50 Unix Ado envirnent. The man chair the Depunene of Systms va Computer Sci.
focus Is on the enhancement of the usr Interface and the ence at Horwd University where he hac been since 1971.
examnsion of the sim of Petal-nets for which the Woo may Illk resa- Ih and professional interests center around
be applied. A practical Matkorlan extension to the simu- softwaire crigineering . fault-tolerant computing, systemns
laor is Pons of the enhancement i the Unla environment. engineoring and techW4oy and development. lie Is a
The Markovian versio Is based an thet epiresenting the member of the IEEE and the Assion for Computing
Petrlnet a" a Mark"~ process and the Wtutlon of the Machinery.
resulting equlibrium equations. PARSIM winl be used as
a tool for the analysis of real-tme conicurfen somae RONALD J. LCACII rvcelved the B.S., NIA.~ and
We intend to use PARSIM in our mvairch on software do PhID In Mathematics from the University of Maryland
reliability In real-time systemns xid to measure ft ovr aCollege Park and a M.S. in Computer Science from
hea of redunancy checks moed in reliable real-tinte Johns IlpiftI University. Hie Is a Procsso In the
soft ware systemts. Department of Systems and Compute Science at Howrd

University where he ha boen teahing since 1969. is
ecacweh inerest Include software engineering and softwar

7.SumarY mcclric, faukltgocrnw computing, computer graphic and
This paper has presented an overview of a Pettl-net analysis of algorithms, lie Is a member of the Assoclaton

tool for the simulation of paralle and rWa.time systems. for Computing Machinery, IEEE Computer Society, and
The simulator has been used to model complex but small the Mathematical Asciation of America.
(transitions) nets. PARSIM provides comprehensive
statistics on the executlont of a Peui-rot. A variety of
options are available for user it WA output. The
present version rns on an IBM compatible PC with at
leas 610 KB memory.

1. Ackwmokdgenatuts;
The authors ratefully acknowledge support from the

Department of De=s under contract I NIDA9Q418C.
4169. The second author also ratfully acknowledges
support from the Army Rcscarh Office under contract 8
DAAL06.a.OCSS. Both of the authors are paickulary
Indebted to the following Real.Time Systems raduWae stu.
dents at hloward University who developed some of t
software for PARSIM: Robert Bennett. Marcus Reed.
Marvin Bingham. aind IVan Brooks5.

9. Refereacts
Cherry. G. . Parallel Programming i ANSI Stan.
dud! Ads. Rreston Publishing
company. 1984.
Hlolliday. M. and Vernon, M. ,A Generalized
Timed Petri Net Modekl ror Performance Analysis".
IEEE Transactions on Software Engineering. Vol.
SE.13. No. 12. December 1988. pp 1297. 1310.
Peterson. L.. Petri Net Theory and Modeling Of
Systems. Prentice-ltll . 1981.

DON MICHAEL COLEMAN Is a naive of Detroit.
Michigan. He! received the B.S.. M.SY-E. *and Ph. D.
degree In electrical engineering from the University of
Michigan. From 1960 to 1964. Dr. Coleman worked as a
systems engineer at 6se A.C Spark Plug Division of Gen-
cral Motors, and itom 1'f6S to 1971 at the Institute for
Science and Technology aal Systems Engineering Labora.

112 7th Annual National Conference on Ada Technology 1989



Time Event hkatifier Ctxu
234 qjp :10 C
a!S IT4l 3 6 P

,247 q)v.4 6 C
238 t)Te 3 4 P

TAHLIF 1: A TYPICAL. FFV.TANfLt.

PLa o sTRANSITIONS ARC Tie 0O
2 6 I 2 0.109

3 s 2 5 0.159 TI P.

5 3 4 16 0.99
6 12 3 8 0.279 IltRIZ C~ul Trni
7 13 3 II 0.219
Is 1 10 .0 2.00
25 II In 66 0140

iiTABItF 2: RI:SU.T G

T1

lltthipr 14

a:
T) V.,

T3 1

7LCNRt lb

7th Annual National Conference on Ada Technology 1989 113



Real-Time Pattern Recognition in Ada: On the Formulntion of Neural Net Recognizers

by Ada Tasking of Massively Parallel Hulticomputers

Willien Arden

Talos Federal Syatems

AISTRACT As for Pattern Recognition, we
This paper examines findings in are speaking of the identification of

the technologies of Neural Nets, Ada- objects by inputs that may be dis-
Tasking, and Parallel Distributed tinguithed by pattern (i.e., charac-
Processing (POP) multicomputers for teristtcs, attributes, structure,
their integrated Approach to Real- geometry, topology, algebra, etc.).
time Pattern Recognition. This For example, if track data were to bc
approach involves formulating Neural supplied for ICBMs in boost phase
Nets in terms of Ada-Tasking and versus decoys with similar trajec-
examining the Ads-Tasking model for tories, the sensor track data cnuld
networked VLSI microcomputers. The be interpreted within centi-seconds
result is then the class of pattern to make the identification (in this
recognizers based upon Neural Nets case also the decision) ceal or
which may be coded into Ada and dis- decoy. This would then be Real-time
tributed onto host multicomputer Pattern Recognition.
architectures. The primary benefits
of this paper are in the relation of Neural Nets, which are fashioned
the now developed technologies of PDP after brain circuits, are a powerful
multiconputer architectures and technology of pattern recognition.
neural networks to the Adf applies- Due to an inherent parallel and
tion area of Real-time C I pattern distributed processing nature, there
recognition. nets also offer a tremendous capa-

bility for Real-time performance.

INTRODUCTION This author has been researching
a common logical interface between

Lessons are being learned in Neural Nets and PDP Hulticomputers.
three distinct technologies based In this regard Ada-Tasking constructs
upon a common theme with powerful supported by a POP Multicomputer Ads
agplication in the IEW component of Compilation System (ACS) are ideal
C I systems: Ads Language with its for flexible Real-time systems. The
Tasking Capability, Hulticomputer common logical interface is demon-
Chip Sets, and Neural Nets. The strated by representation of Neural
common theme for all three tech- Nets, Ada-Tasking, and the POP Huiti-
nologies is their enormous potential computer Ada model by extended Petri
with POP. Nets.

This paper is an analysis of This implementation strategy of
lessons learned in POP with these Ada Neural Nets for PDP is the
differing technologies in regard to material to follow. Such Ada Neural
their utility for Real-time (Sub- Nets assigned to a PUP Hulticomputer
liminal) Pattern Recognition. This offer tremendous potential for Real-
means that the process must complete time pattern recognition and are yet
below (sub) the threshold of percep- flexible (not resorting to numerous
tion (the limen). This threshold may costly hardware modifications) and
be set in the centi-second range; portable. This is due to the imple-
below this range events are not mentation strategy of using Ada-
detectable by human observers Tasking Software for Neural Net com-
unassisted by instrumentation, (for putation.
example, consider what is meant by
"the hand is quicker than the eye").

114 7th Annual National Conference on Ada Technology 1989



1.0 ON NEURAL NET TECHNOLOGY Currently, the models of cogni-

tive systems by which Neural Nets are
Neural Nets are now provably the formulated are being done formally as

best pattern recognizers for patterns math models. There is a general
above modest complexity. Researchers class of cognitive systems, including
at EEG Systems Laboratory, a Govern- Boltzman machines and harmonium
meat sanctioned research institute In graphs, described as the quintuple.
San Francisco, California, have
stated 'ue compared the (Neural) Net- C - (R, P, 0, , C)
york vith standard ststLstial tests
and the network was better" . DARPA This is described by an example
has recently released a 600 page of a harmonium graph under its inter-
report entitled the "DARPA Neural pretation as an extended Petri Net In
Network Study" %which stresses the Appendix A. In fact, it has been
importance of Niural Netuorks as shoun that there is a method of
computtiolal structures which adapt translating these cognilivy systems
and learn. The Lincoln Laboratory into extended Petri Nets . These
of NIT has reported the feasibility extended Nets have the extensions of
of Neural Net% in tracking the inhibitor arcs, colored tokens (red
Stealth aircraft , and DARPA assis- and blue), and a stochastic firing
tant director Jasper Lupo has stated rule. This is depicted in Figure 1.
that neural nets are going to be The power of the Petri Net Represen-
"more Important than the atom bomb"". tations (PNRs) is that Ada-Tasking
The Importance of Neural Net tech- models for the Hulticomputer may also
nology to Pattern Recognition should be represented similarly.
not be underestimated.

BLUE TOKEN WITH
WEIGHT X WHICH
IS WEIGHTED

G BY LEARNING

KNOWLEDGE ATOM cc
RED TOKEN ot (A PETRI NET PLACE
SIGNIFYING AN .WITH A BLUE TOKEN)ACIVATION OF SM
cc MY TE
TRANSITION

O THEN TRANSITION WITH STOCHASTIC
UPDATES X . FIRING RULE GOVERNMENT NY

THE APPROPRIATE LEARNING
RULE:

INVERTER SYMBOL

/ ARC AN
IN@IITOR ARC

RI RED TOKEN
FEATURE I SIGNIFYING AN FEATURE I

ACTIVATED FEATURE FEATURES ARE PETRI

NET PLACES WITHOUT
BLUE TOKENS.

FIGURE 1. AN EXTENDED PETRI NET REPRESENTATION OF A
SIMPLIFIED COGNITIVE SYSTEM (NEURAL NET)

7th Annual National Conference on Ada Technology 1989 115



2.0 ON Ads-TASKING MODELS OF NEURAL illustrate how Ada-Tasking may be
NETS formulated for each of the PNR Neural

Nat tlements:
We will begin by examining the

simple PNR of a Neural Net given in Example 1: This task corresponds
Figure 2. This PNR uses bidirec- #a place Panther in Figure 2.
tional arcs in place of its equiva-
lent in input and output arcs, task Panther Recognition is
places, and transitions. (This entry Transition one (...) :
example Is taken from the more formal end PantherRecognition;
example given in Appendix A.) task body PantherRecognition is

-- declaration of the
We will speak of places and Activation indicator

transitions as PNR elements which are boolean variable
linked by Input/output arcs. The begin
Ada-Tasking model of a PNR Neural Net loop accept Transition one
is simply the correspondence of an (...) do
Ada Task for each of the PNR ele- -- set the activation indl
mnts. The PNR Neural Net is such cater to one
that all of its elements perform -- if recognition of a panther
processing in a parallel and distrL- occurs
buted fashion. In this regard, the -- otherwise set it to zero.
tasks which correspond to each end Transition one;
element may also execute in a exit when -- recognition occurs
parallel and distributed manner. end loop

end Panther Recognition;
The following three examples of -- we wauld do task Toplat

Ada-Tasking generally explain the Recognition similarly
nature of the Ada Tasks involved and

PLACE PLACE

PARNER TOPHAT

TRANSITIONONE TRANSITONTWO

PAEPAEPLACE PLACE

LARGE BAKCTHAT

FIGURE 2. A SIMPLE PETRI NET REPRESENTATION OF A NEURAL NET

116 7th Annual National Conference on Ada Technology 1989



Example 2: This task corresponds It should be mentioned that
to the transition named Transition Neural Nets (or cognitive systems)
one in Figure 2. have larger scale architectures which

may also be given as PNRs. These
task Transition one is larger scale architectures are called

antry lare C...); Schema, and a top-level represents-
entry black ... ); lion of a Neural Net is said to be a
entry cat C...); Shematic representation. Each of the

end Transition-ono PR elements in a Schema may b2
substituted for by more elaborate

task body Transition one Is Neural Nets. This is tllustrased in
-- declare booloan Indicator Figure 3.

begin Here a top-level cognitive
)oop accept large ... ) do structure called a Schema Is given.

-- perform neural net computa Each of its places and transitions
CIOn can be filled in by substituting
-- on inputed value fire tran other nets. In this way, a top-level
sLtion design of a Neutral Not nay occur.
-- if appropriate end large;

accept black (...) do Similarly, Ada Tasks may cor-
-- process aN above respond to Schema PNR elements by
end black; incorporating the necessary sub-net
accept cat (...) do PNR element associated tasks into the

Schema PNR element task. A template
-- process an above for the task corresponding to the

end cat; substituted net In Figure 3 is given
exit when -- desired in tle following example:

recognition occurs
end loop; task substituted not is
end Transition one; task transttion one is

task place one is

task Transition two is done 
o

similarly o
0

Zxample 3: This task corresponds o
to place large in Figure 2. o

0
Task large Is end substituted nat
-- appropriate c€stry statements task body substituted net is
end large; task body transition one is

task body place one is

task body large is o
-- if we refer to the example o

in Appendix A 0
-- task large is for a place o
-- which Is a knowledge atom o
-- and so we would declare o
-- a variable for and begin
-- a boolean variable for a; loop

substituted net;
begin transition one ;

loop place one ;
0

-- uri appropriate accept o
statements o

-- compute by a learning o
rule o

exit when -- recognition or o
not occurs 0

0
end loop; o
end large; exit when -- overall

-- task black, cat and hat recognition occurs
-- could all be done similarly end loop;

end substituted net;

7th Annual Natlonal Conference on Ada Technology 1989 117



This task, which is comprised of Since Ada Tasks may be incor-
all the tasks corresponding to eachi porated into other Ada Tasks as shown
of the places and transitions o.' the above, the Ada Tasks nay be uized to
substituted not, will correspond to the Appropriate grain (be it fine or
the transition in the Schema Ne Of coarse grain) of the Hulticomputer
Figure 3. Architecture.

SUBSTITUTED NET

SCHEM NETSUSNET TO TRANSITION
SUBSTITUTION

FIGURE 3. SCHEMA SUBSTITUTION

118 7th Annual National Conference on Ada Technology 1989



3.0 ON Ads CONKLATION SYSTEMS FOR 3) Ada Sinder
PARALLEL DISTZ11UTED MULTICOMPUTERS 4) Ada Runtime System.

The ACS is being formulated Into
Naturally, Ada-Tasking for an Ada model wherein each AdA Task is

Neural Net Keculnizers needs to be to be represented by a trAnsputer
compiled for and bound (linked) on a process. The choice of which Ada
computer by computer basis for multi- Task to schedule at any time is made
computer architectures. by the Ada Run-time Kernel.

Lessons learned in this arena The Ada model of the ACS is
are primarily from ALSYS Ltd., in ideal for IuplementLng Ads Tasks
Joint endeavor uith Inmos, to develop based upon the I'NR elements discussed
an ACS for tho lame VLSI aicrocom- in this paper. This would allow for
puter named the Transputer. The the potential of massively parallel
Transpucars have included: distributed processing for Neural Net

computations. The reason that Neural
1) The Ins T414: 32 bit Net implenentacion on a networked

processor, operating at IOMIPS, 2K 7ranoputer multiconputer is Ideal is
on-chip RAM, Xenory addressing to 4 that Ada-Taskintg becomes a common
gigabytes and A links each providing logical interface between the Neural
2OHbits DNA communications race. Net P'Is (as shown) and the Trans-

2) The Ins T212: 16 bit puter network (by virtue of the Ada
processor operating At 12 HIPS, with Task Transpucor process model of the
A links. ACS).

3) Tht T800: 32 bit processor
and 64 bit floating point unit 4.0 CONCLUSION
exceeding I Hflop, A K bytes on chip
RAM. Thu preceding has been an

analysis of establikhed results. The
These Tranp,;ters may be linked analysis herein clearly indicates the

point to point or via a "telephone potential for Real- time pattern
exchange" of custom silicon for such recogni:ers which are Implemented via
purposes as an application specific Ada-Tasking on PDP multicosputers.
topology. The advantages of the Ada tasking

approach include the flexibility of
The application specific modifications to the Neural Nets and

topology for the class of pattern the capability of porting such
recognLzcrs (Ada-Tasking Neural Nets) Ada-Tasking implemented recogni:ers
In this paper would tend to be a to other hardvare platforms.
n-ary tree architecture. In most
cases, point to point links alone ACKNOYL£DCHZNTS
would suffice.

I vish to acknouledge JGV Barnes
The Transputer systems for his correspondence on the Ada

commercially available include: Compilation Systm for Transputer
Netuorks.

1) The Floating Point Systems
T-series of supercomputers operating REFERENCES
at 128 Mflops for S0.sn

2) The Meiko Computing Surface 1. "Neural NetuorkM at Work",
operating at 2 ilga Instructions per Scientific American, Nov. 1988, pp.
second. 134-135.

Each of these systems adopt a 2. "DARPA Neural Netuork
netuork strategy for the VLSI Study", Signal Hagazine, Nov. 1988.
microcomputers (Transputers), pp. 8.
resulting in parallel distributed
processing multicomputers. 3. "Neural Nets Could Track

Stealth Aircraft", Advanced Military
ALSYS Ltd. is also developing an Computing, Aug-Sept. 1988, pp. 5.

ACS for such netuorked Trtnsputers.
The compilation system is to consist 4. Same as I.
of:

1) Ada Library Management 5. "The Analysis and Synthesis
Utilities of Intelligent Systems" William

2) Ada Compiler Arden, Hay 1988.

7th Annual National Conference on Ada Technology 1989 119



6. "rorallel Distributed
rroccaslnl, ExploraLon$ In the
ricrostructure of Cogol t on", J.
McClelland, D. Rumelhart and the rDO
Research Group, Vol. I MIT Press
1986.

AROUT ThE AUTNOR

Mr. Arden In a senior englaeor
and task leader for Ada technology
research at Tlos TedgrAl Systdes.
is experLence Includes research into
pattern recognltion, Al And noural
networks. Be has conducetd w4th-
-odlllng and simulation In support of
sensor recognition systems.
Mr. Arden holds A 11.A In mathematics
frui Stockton State Univers Ity and a
H.S. In Electronic Engineering (ron
Monmouth College.

PANTM FE TOP HAT

ENOGEOUOUS FEAURM
(FEATURE UPDATED BY
KNOWLEDGE ATOMS) Is

FEATURE UPDATE
TRANSITIONS_.s 

i

KNWEDGATMS

KNOIEDGE4ATOM
UPDATE TRANSITONS to

(FEATURES UPDATED R RR RR R RR RR R R RR
BYTRANSDUCTION 1 22345S 6 76 10 1 1 2 123 4
(ALSO THE PROYJMA.
ENVRONMENT)

TRANSDUCTION AS
OPTICAL SCANNING

DISTAL ENVIRONMENT O

FIGURE 4.

120 7th Annual National Conference on Ada Technology 1989



APPENDIX A Hart the subscript % denotes a

Here we viii give an example of 4 particular e tom and R

simple cognitive system represented This C is chosen because it
in Petri Net form. This cognitive maximizes for harmonium machines.
system is represented in Figure 4. for hArmoR um mchines Is

We viii discuss It first #s a where It is the harmony between
cognitive system or C • Civen our features updates and knowledge atom
definition of a C as the quintuple: activations. We viii merely state
(R, P. 0, C), we see from the 1Cr, a) as:
figure that: 11(r. a) - , . h(r, )

R (Rex; Ron) " (IR R2  and

A..141  t 13, R16 ) . h Yr K 5 ) X . -

MR1) I i l , R2 1... R 1 6 ) where X is the constant seen

P the Proximal environ- befote I'K01-2/(max, 11CJI.
We vil not go Into the details

sent is the proba- of this formulation as it diverts us

bility distribution of from the intentions of our example.
The Interepced reader should see the

the activation of chapter on Harmony Theory In the POP

R ...R by the series (47). Let us simply state
14 that the completion function given

optical scanne; viii serve to maximize.

0 -the set of observables We have nov specified the C s
Is here (large, black, (R, P, Oir, C). Let us return to

cat, hat) given by the figure and see how it behaves as
a CNN. Firstly, red tokens viii

connections K ( and appear with probability P on our

knowledge atoms s places wi...R1 4 with each pass of
the optical scanner. These are the
feature activations. Our

Before we go on and show'lt and C transitions t I... t 4  will fire
we viii first mention that choices of according to the completion function

and C will specify types of cogni-. for knowledge atom updates.

rive systems and vice versa. Here, Similary transitions t5 ... t7 viii
ye viii choose a harmonium machine fire according to the completion
described in the PDP series Volume I function for feature updates. For
(47). several passes of the optical

scanner the blue tokens of the

For the harmonium machine we kn qledge atoms vill begin to veight
have: byA. In fact, this CN can be

C such that: probability trained 3y eighting h3  for the
(a, - I) . I cursive writing giving thc word cat.

and 1 + e-" Is  This CNN viii then correctly decide
probability (Ri - 1) - Panther Instead of Top Hat and

1-+ i7- recognition will have been
performed.

where ai- I is a knovledge atom
activation and R - I Is a feature What ye nccice from this
activation and 4 is a parameter example is that the PNR readily

called the Computational Temperature models the C . Beyond this, the C

usually set at T - I and lowered to in PNR form is nov capable o

force decisiono. undergoing the powerful techniques

Also here: of Petri Met Synthesis and Analysis.

and

and

T" .1T1 where K is a
proportionality consant to be chosen
as 1>K>l-2/(inaxt I),.Il

7th Annual National Conference on Ada Technology 1989 121



TASKIT:
AN Ada SIMULATION TOOL KIT FEATURING MACHINE INDEPENDENT

PARALLEL PROCESSING

Michael Angel and Paul Juozitis

General Dynamics - Data Systems Division

AbIkticX Important requirement for TASKIT. Several machines of
this type In the commercial marketplace support

The Tasking Ada Simulation Kit (TASKIT) Is a set concurrent Ada. Loosely coupled parallel processing,
of software tools that enables model builders to where processors do not share memory, Is not
develop simulations In Ada. The tools are Implemented addressed In this paper and Is not supported by
as user-callable procedures and functions and provide TASKIT.
simulation services common to many types of modeling
applications. TASKIT uses an activity oriented TASKIT was designed with two key goals In mind.
modeling approach that is a variant of discrete event First and foremost, the tools had to be machine
modeling. An important feature of TASKIT Is that it Independent, Including the parallel processing
enables simulations to take advantage of tightly capability. The idea was to design the software so that it
coupled parallel processing. This parallel processing could be easily ported to different machines, and so
capability, which is completely machine Independent, that future advances in hardware technology would oot
has been successfully tested and benchmarked on a make the software obsolete. The second goal was to
parallel processing machine. TASKIT was developed make the parallel processing feature optional to ensure
under contract to the Software Technology for that the simulation tools were efficient in both
Adaptable Reliable Systems (STARS) Program, in sequential and parallel environments. Both goals were
conjunction with the Naval Research Laboratory, and Is achieved.
available through the STARS Ada Foundations
software repository. Ada as a Simulation Languou

The simulation services that TASKIT provides,
Introucion combined wi;h the Inherent features of the Ada

programming language, transform Ada Into a robust
Discrete event simulations that require detailed and simulation language. The use of a standard

cophisticated algorithms often suffer from slow programming language with appropriate support
execution times. This is especially true for simulations routines to write simulations is not a new idea. This has
that have a large number of entities. Consequently, the already been done in several high level languages.
model builder often must sacrifice detail in the Interest However, Ada offers many advantages over other high
of faster execution time. Parallel processing holds level languages for the development of simulation
great promise for these large and computation- models.
Intensive modeling applications. Distributing the
processing for concurrent simulation events could One advantage is that the standardization of Ada Is
greatly reduce the execution time for a simulation. This much more rigid than other existing languages. Ada
performance Improvement would allow the model compilers are required to pass a suite of validation tests
builder to Increase the level of detail or the number of before they are fully accredited. The result of this rigid
entities in a simulation if desired, as well as reduce the enforcement of standards is portability. A simulation
turn around time fo(producing simulation results. written using TASKIT and Ada can easily be ported to

another system without modification.
TASKIT provides this parallel processing capability

for simulations. It takes advantage of the Ada tasking Another advantage is that Ada promotes structure
mechanism and Is designed to run on any tightly and readability. As a result, simulations constructed in
coupled parallel processing machine that supports Ada are easy to maintain. Maintainability is key for
concurrent Ada. Tightly coupled parallel processing many simulations since models often have a long
allows processors to share memory, which is an lifespan and are frequently changed and enhanced.

122 7th Annual National Conference on Ada Technology 1989



Figure 1 shows an example of a ca!l to a TASKIT This activity orientation is a variant of discrete event
procedure to create a simulation activity. The code in modeling. Essentially, an activity is a construct that
this example is very readable. The readability Is greatly combines i. series of regularly occurring discrete
enhanced by the Ada feature !hat allows the explicit events to represent a continuous process. In discrete
naming of arguments in a procedure call. event simulation, an activity can be represented by an

event that reschedules itself at a fixed time Increment.
Conversely, an activity can be used to represent a

Create..Activity discrete event by setting the start time equal to the end
(Ac IVIT CLASS -> AIFLCMr MOVE, time and setting the time step to zero.
START '..g 01 - 0.0,D i a> 100.0, The primary reason for adopting the activity
TIS 0 10.0, orientation In TASKIT was to set up a simulation
TJlIS T A -> 10.0,lt rmethodology conducive to parallel processing.
ACTiVITY.DATA 0. AIRcMFT-MOVEACTIvITYDATA). Instantaneous discrete events do not conjure up a

notion of concurrency. Activities however, can
conceptually be thought of as executing in parallel with

Figure 1 - Example of a call to a TASKIT procedure other activities, since an activity has a duration and is
not instantaneous. TASKIT takes the conceptual notion

In addition, Ada provides features that make of parallel activities and turns it Into a reality through the
simulation tools written in Ada easy to use. For use of the Ada taskirng mechanism.
example, an Ada procedure can be overloaded and
can contain default values for its arguments. This For each activity created by the user, an Ada task is
feature enables TASKIT to provide a great deal of created by TASKIT. The call to the user's activity
power for the sophisticated user, without overwhelming procedure Is embedded within the task that Is created.
the novice user. Other Ada features that promote oase It is Important to note that the user does not create Ada
of use Include packages, information hiding, and strong tasks, only procedures. It is TASKIrs job to map the
typing. These features enable the model builder to use activity procedures to an Ada tasking environment.
an object oriented approach for constructing Since TASKJT creates and manages the Ada tasks, the
simulations, tasking feature is optional. If parallel hardware Is

unavailable, the user can turn off the tasking feature to
Finally, the major advantage Ada offers is the task, avoid the additional overhead associated with tasks.

which is a virtual unit of concurrency. The task Is a very
powerful feature of Ada because it allows for machine Activities and Parallel Procesing
Independent parallel processing. Parallel processing
hardware that can exploit the use of the Ada task exists There are some rules as to when activities can take
today. The combination of parallel computers and Ada advantage of parallel processing. The first rule is that
tasking holds great potential for portable parallel TASKIT can only execute activities in parallel If their
processing applications and tools. TASKIT is one corresponding time steps occur at the same point in
example of a tool that has tapped this potential. simulated time. This is not an unreasonable

assumption. The alternative Is to allow a situation
The Activily Orentation where one activity could be farther ahead in simulated

time than another activity, although both are executing
The fundamental concept behind TASKIT Is that concurrently. Letting activities get ahead of one

any system can be modeled in terms of activities. An another can lead to problems, especially if a slower
activity has a user-specified start and end time, and a activity causes some change in the system that affects a
user-written Ada procedure that contains the algorithms faster activity somewhere ahead in the future. That is
used to model a real world activity. Each activity also not to say it is Impossible to handle this type of
has a unique user-specified time step associated with it situation. Rather, it is much less complex and more
so that the activity duration can be subdivided into intuitive to only allow activities that occur at the same
small discrete time steps. Once an activity is started, time to execute concurrently. TASKIT provides a
TASKIT calls the users procedure at each time step method for synchronizing activities to maximize the
until the end of the activity. A data record is passed to amount of parallelism.
the activity procedure at each time step to provide data
local to the activity. The structure of an activity is flexible The second rule for parallel activities involves the
and allows the user to turn the time step mechanism on concept of an activity class. A class consists of one or
and off. When the time step is turned off, an activity will more identical activities that may or may not operate on
only be called once at the start and once at the end. the same data. In TASKIT, activities that belong to the

7th Annual National Conference on Ada Technology 1989 123



same class can execute concurrently. The model The third rule for parallel activities pertains to the
builder specifies whether or not the activities In a given use of global data. On a tightly coupled parallel
class are to execute In parallel. In addition to having the computer, shared memory allows parallel activities to
capability for activities within a class to execute In access shared global data. The user must take certain
parallel, It is also possible for different classes to precautions when using global data In a parallel
execute concurrently. For two or more classes to environment. Read operations on global data require
execute In parallel, they must have the same no special treatment for parallel actvities. However,
user.specified priority. The reason for the priority is to read-write operations performed on the same global
handle the case where one class of activities may object by parallel activities can cause problems.
depend upon the results of another activity class, even TASKIT provides a semaphore package so that the
though they occur at the same time. Figure 2 Illustrates model builder can restrict the access to certain areas of
the concept of activities within a class, as well as global data. A semaphore simply queues up requests
multiple classes executing concurrently. to a critical code section where access to a restricted

resource occurs. The resource can be an area of global
data, a file, or an external device. Semaphores are

Pnecessary In some cases, but their use should be
Priority 0 minimized. A resource protected by a semaphore

n) causes parallel activities requiring that resource to
remain In a wait state until access is obtained. This
results In a loss of parallelism.

Following the rules described above will not
guarantee that a simulation with parallel activities will

Class A run faster on a parallel computer than on a sequential
ActivitJes n class A execute oncurenty. computer. Parallel processing is more like an

Investment than a gift. An Investment must be made
Priority before profit is realized. In the TASKIT simulationF f' I 15R))environment, the investment Is the processing

noverhead required to manage the Ada tasks at the
TASKIT tool level and at the Ada run time level for a
particular machine. The profit is an overall reduction in
computation time. In order to realize a profit, the time
saved by distributing computation must be greater that,

Cthe time spent managing tasks.

To realize a computational profit, a TASKIT
simulation must have parallel activities that contain

all acties In class A have cmpleted tx the given time step sufficient granularity. Granularity denotes the duration
of processing between synchronization points in a task.

Priority 2 It is a measure of the amount of work to be perdormed
by a particular activity. For example, an activity that

F F n)represents a radar site trying to detect an Incoming
T* F3 missile would have a low granularity If the a..tivity only

performed a simple range check for radar detection. If
the activity used a sophisticated radar detection
algorithm, it would have a much higher granularity. A
set of parallel activities with very little computation does
not have sufficient granularity to justify an investment In

Aciites In classes E and F execute concurrently after parallel processing, while a computation-intensive set
desses Ain.ses. and Fali eeuete fo tegien time a te.r of parallel activities should realize a handsome profit.clases A. B. C. and D all omrplete for the given U=m step.

In addition to having parallel activities of sufficient

Figure 2 - Activities of the same class execute granularity, the application should also have a suitable
concurrently and activity classes of the same priority number of parallel activities. The model builder has
execute concurrently control over the number of activities within a class and

the number of activity classes. The number of parallel
activities should map closely to the number of

124 7th Annual National Conference on Ada Technology 1989



processors. Fewer concurrent activities than processors The work performed by the activities in the benchmark
results In unused processors, while more concurrent consists of a floating point addition that operates on
activities than processors results in extra context local activity data. This addition operation was placed
switching, inside a loop so 1hat various levels of granularity could

be measured.
Benchmrwk R&2ults For TASKJT on a Parallel

MirhIn* The benchmark consisted of three main cases for
the test simulation. The first case contained only one

Benchmark experiments were constructed to activity, the second case five activities, and the third
validate TASKIT in a parallel procossing environment, case ten activities. For each case, the lest simulation
Two goals were set when designing the experiments was executed for 1000 simulation seconds with a time
for the benchmark. The first goal was to demonstrate step of 10 seconds. The granularity was parametrized
that TASKIT can be ported to a parallel processing with values of 0, 100, 1000, and 5000 representing the
machine without requiring modification. The second number of additions performed by each activity.
goal was to show that simulations using TASKIT on a
parallel machine can experience performance Figures 3, 4, and 5 show the results of executing
improvements under the appropriate conditions. Both the three cases in both a sequential moda using one
goals were achieved, processor and In a parallel mode using 10 processors.

In the parallel mode, a total of 12 processors was
A lest simulation was constructed using the TASKIT available. However, the main task and another support

tools and then ported to an Encore Multimax T . The task used two processors so that 10 processors were
Encore Is a tightly coupled parallel processing machine available for simulation activities. The ixecution time
that supports a validated concurrent Ada compiler. The shown in the figures represents the cumulative time for
Encore used for the benchmark contained 12 replicating the test simulation 10 times for each case.
processors although the machine was capable of
utilizing up to 20 processors. Figure 3 shows the obvious case of one activity

obtaining no benefit from parallel processing. This
The first goal of demonstrating portability was met case illustrates the expected result that the parallel

by successfully compiling the test simulation and the mode Is less efficient when one activity Is involved.
TASKIT software on the Encore. No modification was Figure 4 shows that in the five activity case, parallel
required for TASKIT to take advantage of the parallel processing begins to show a computational profit. The
proces.Ang capability of the Encore. This was a profit Is small at first, however the profit margin
significant achievement since TASKIT was developed Increases as the granularity increases. Figure 5 further
on a sequential machine, a VAX"' 111R80. The TASKIT illustrates this point. This case has a better mapping of
development team did not have access to any parallel activities to processors. As a resu,, the profit from
processing hardware when TASKIT was being parallel processing is greater than In the five activity
constructed. TASKIT was developed using a 'software case.
first' approach. This approach emphasizes machine
Independence and more Importantly, reverses the
natural tendency to develop software specifically for
existing or available hardware. One Activity

After successfully rehosting TASKIT to the Encore, 140

the second goal of the benchmark was to prove that 120 MSequential
TASKIT simulations could benefit from parallel 100 U10 ProceSs
processing under appropriate conditions. As discussed so
earlier, only activities of the same priority that occur at To*0
the same point in simulated time can be executed (sec) 60
concurrently. For this benchmark, all activities in the test 40
simulation belong to a single class and therefore have 20.wr mor !
the same priority. Additionally, all activities are
synchronized to the same time step. This represents an 0 100 1000 5000
ideal case. (An actual simulation might require the G, ana
activity classes to have different priorities or time steps.)

Muax is a tadema,* of Le Encoct Comoputer Cooration
VAX Is a tradk o th .Oiki Equoment Corporstbn Figure 3 - Encore benchmark results for one activity

7th Annual National Conference on Ada Tf,:hnology 1989 125



granularity plays in determining the benefit of parallel
Five Activities processing. Even the Ideal case does not benefit from

600 parallel processing if the amount of computation
soe iSequen11a& performed by the activities is not sufficient.

400 a 10 PMc.SM "he Best of Both Worlds

TM300
(sIc) As far as the model builder is concerned, TASKIT

200 represents a low risk, yet a potentially high gain

100 proposition. TASKIT is most beneficial for simulations

L that are well suited for parallel processing. Even If

0 10 0 parallel hardware is not available, a simulation that is
Gm00 * oprepared for parallel processing can be developed and
GeMrs~an used in a sequential environment. When the

appropriate parallel hardware becomes available, the
simulation can be rehosted to it without modification.

Figure 4 - Encore benchmark results for five activities For the case where a simulation is not Inherently
parallel, TASKIT is still a valuable tool. Since TASKIT
Is designed to execute officienhy in a sequential Ada

Ten Activities environment, it can be used like any ordinary
1200 sequential simulation language. No additional
1000 Mlanguage training is required for an Ada programmer to

build simulations using TASKIT. The Ada programmer
600 a*10 P st needs only to learn the TASKIT packages, not a
60 gospecialized simulation language. The number of Ada

(sac) programmers is growing as is the general level of
400 experience with Ada. Additionally, the number of good

200 Ada compilers Is steadily Increasing ad Ada compilers
L are starting to emerge on personal computers. As a

o 0 L result, software and hardware support for TASKIT
0 10 0 1000 5000 simulations Is widely available.

The key to TASKIT's versatility is machine and
environment Independence. Virtually any computer that

Figure 5 - Encore benchmark results for ten activities has an Ada compiler can be used for TASKIT
simulations. TASKIT has been successfully tested for

Speedup is usually the bottom lne when t comes portability on a VAX using the VMS TM operating system,
to parallel processing benchmarks. In the cases a Harris computer running under UNIXe, and the UNIX
performed, the maximum speedup achieved was 5.3 for based Encore multi.processor used for the benchmark.
ten processors and ten activities. However, had more TASKIT was successfully tested in these diverse
cases been executed at higher granularitles, the environments without requiring any modification.
speedup would have approached 10.0, and a linear
speedup could have been achieved. The point is that More importantly, TASKIT leaves the door open for
TASKIT Is a set of tools, not an application, and future hardware advances. It is conceivable that
speedup is an application dependent measurement. someday multi-processors that support concurrent Ada

could be available as desk top personal computers.
It is difficult to extrapolate the results of the With virtually no risk, simulation developers can begin

benchmark to make'conclusions about the speedup preparing now for this future hardware by writing
that a particular simu~ion application might achieve by simulations In TASKIT and Ada today. Given the rate at
using TASKIT. The.. is no guarantee that a simulation which hardware technology is advancing and the
using TASKIT will benefit from parallel processing. typical lifespan of a simulation, It is a sound decision to
Some simulations may benefit while others may not. design simulation software not only for the present, but
The test simulation represents an ideal case for an also for the future.
application that uses TASKIT. The results of the
benchmark show that this ideal case performed as VMS ist a dwwko(the D)WEquentCoqaoon
expected. It emphasizes the Important role that UJNIXisar, tgimeted UdsmikofAT&T

126 7th Annual National Conference on Ada Technology 1989



Other Services Provided by TASKIT KjZMhIR

TASKIT Is a robust simulation tool kit and provides MICHAEL ANGEL Is a software engineer at
other Important simulation services in addition to General Dynamics-Data Systems Divil on. He has
activity management. These services Include: statistics specialized in the design and development of
collection and reporting tools, a plotting package ior simulations of space based systems. Mr. Angel holds a
diplaying simulation statistics, a. performancs analyzer BS In physics/mathematics from the University of
that collects data on the execution time of the Illinois, Champaign Urbana. He Is a member of the
simulation, resource protection tools to protect g!obal Society for Computer Simulation.
data in a paral.l environment, a raixdom number and
probability distribution package, keyed linked list PAUL JUOZITIS is a software design specialist at
services, and a simulation data management system General Dynamics.Data Systems Division where he
that enables the analyst to Input and manage has developed several large wargaming simulations for
simulation data in a spreadsheet format. The services the Operations Research Department. His main interest
that are provided are organized Into Ada packages so Is in the design and development of simulation software
that the model builder can selectively use only the tools In Ada. Mr. Juozitis holds a BS in mathematics/
services required. computer science from the State University of New York

at Binghamton and is a member of the Society for
Information on Obtalning TASKIT Computer Simulation.

TASKIT Is part of the STARS Ada Foundations
software repository and can be obtained from the Naval Mailing Address:
Research Laboratory. For more information contact: General Dynamics

Naval Research Laboratory Data Systems Division
Code 5150, Bldg 1, Room 321 P.O. Box 85808
4555 Overlook Avenue, Southwest Mail Zone W2.5680
Washington, D.C. 20375.5000 San Diego, CA 92138

7th Annual National Conference on Ada Technology 1989 127



Ada. 1'un-Timc E~nvironmnt Considevrttfions Poor Simnulation

S.'Shastry (201-Th8-7277)
Concusrrent, Compuster ConroAtion

100 Apple Strect, fiziton Falls, NJ 0772l1

Counpllcr vendors do not have tilt freedom to
enhoAnce the language. Thvy canl only providec

AbatrAct Add-on fcturo; htowever, these rcarcs itre riot
supposcd to change the Semlantics of the

Tilt choice of Asia as thile1MnAtion piOwrii as dtfined by the Atli lAnguage
language (or slimulation systems raists some Standard. The implementors or tilt simulation
run-time environmnta concerns. In evaluating software are (aced with using a new languago
an% Adat lantguage system for simulatlin, theft S)ytm that, sWems to require new approach in
run-time environntt losuts must be tile design. 'Therefore, impiementors or both
conidered. These losuts Include the support for thet slInulatIon and the system software need( to
migration fronm FORTRAN to Atil and the take a different approach to solve their
support for exploiting target systemn features. problemns.

Rtal-timet alplicationl software (like 3a
Asimulation systin) has stringett timing
constraints. It aso has some special run-time
requiremnts, In generAl. This paper addresse

Introduction the following run-time environment issuts from
tile point or view of Implementing a real-time

Over thlt Years, some computtr vendors -ytmIIAa
have improved and tailored their maichine tm nAa
architeture and thlt operating systms (or eMigration (rom FORTRAN to Adai;
simulation applications. Wt have $tell systemls *OS tasking as opposed to Ada tasking;
evolve (fronm x umi-proctssor configuration to
inulti-processor distributed sstem Access to operating system features;
configurations. The concept or sh~ared mrnnory Shared memory configurations;
Architecture was also lntroduce d. Along with ut-rcsigytefaue;ad
the evolution of the hardware configurations,* uipocsigyte fatr;ad
tit sySteml Software (specifically the operating *Symbolic real-time debugging tools.
3sytemls and compilers) underwent changes to
tailor niIine- level access to Lte app~lication Migration from FORTRAN to Ada
requirements.

In thet past, the simulation software was
Traditionally, FORTRAN was used as Lte mostly written in FORTRAN. It is possible thtt

language (or Implementation of simulation somne parts of this software call be reused in
software. Compiler vendors were free to new projects where Ada is being used as thet
enhance Lte lunguage Implementation to best implementation language. These parts can be
suit their language offering to their rewritten in Ada in anl incremental fashion,
architecture. Library routines were provided to which provides P gradual migration panth for the
exercise and rontrol various systemn resources. ilmnplemientor. However, (or this approach to

work, the Atla language systemn should satisfy
With Lte adoption or Ada as Lte langunge the following requirements which become

of Implementation for mnost of Lte simulation sgiiati is ron fFRRNcd
softare som ofthe ssus hae t beis reused. (Tme idea here is to use Lte

approached in a slightly different fashion. FORTRAN code without nodi ficsntion.)

128 7th Annual National Conference on Ada Technology 1989



(1) The Ads Compiler must support pragma
I NTERFACE to FORTRAN. Futei predictable beha~vior of the run-timet

This pragma allows subprogramis written In systenm 6 crucIal1. Where these charxcteritIcs
FORTRAN to be exlled from Ada are loss Important, It Is po-isible to adopt Ada
protiurcs. The Ada language (lots not taisklng constructs. However, for more critical
mandate Adla compilers to support this portIons of thle simulation software, It may be
j)FigtOS however, many Ada compilers do. iscessary to took for some other kind or

(2) The Interface between Adat and FORTMAN spot
should be as "Aturafl as poasible. The operatIng oystemt allows the User to

define his own tasks (also known "s process).
The source code for thle call fromn Ada to These processes can be Individually controlle
FORTRAN should look as If tile called aoid mnitored by another process caled a
procedlure Is written In Adat. NO special monitor. The monitor can activate: other
req ircments Is to be put onl the@ progritiiter Sbprocesses, adjust the system load,
In passing arguments$ to thle called dynamnically change tile priority of procs,
subprogram. For example, thle Ada find so on1. Til gives the user softie flexibility
progranmer should not he required to pass lIn thle design or his simulation systm. Major
the aiddress of thle actual argument rather pavrts of thet slultlon systetm (t. g., Avionics,
than the argumenta Itself. This is mainly Nlisual, Enginels, etc.) canI thus be designed pind
because the programmer should have to do Implemented as separat procesfes with tile
minimum source modification when the main scheduler (or thle optratlng systemn Itself)
FORTRAN subprograin Is reimplemuented lIn controlling their execution. Large simiulatIon
Ads. (The only source modification thet prograis; may adopt this approach rather than
programmer has to do Is to remove the Wsing thet Ada taskIng model.
pragma INTERACE for thet subprogram
atid supply the boy coded lIn Ada.) However, for the latter approach to work,

thle Ad% systemt should allow thlt sep.arate
Further, all relevant Ada data types mtust proresses to share a common data. This data Is
be mapped to the FORTRLAN data types In normally detclared lin Ad* Iackage
it convenient fashion. specifications. Fromt thfe progrmmer's point of

view, accessing objects III thest ptackage
(3) A mechanism to mapl Ada package mpeciflzations should not require the knowledgii

specifications to FORTRAN COMMON of thle takIng model. This also requires thnt
blocks should be provided, there should be one anti only one common diata

set loaded Into thet memory for thie simulation
Tis Is necessary for the simulation p~rograml sysitin. Mosdt importatntly, there should be no
that i4 made up of Atla and FOirTRAN run-time penalty (or structuring time simulation
code to work on a single set of global tiat' systm lIn this fashion. Further, the Atli
objects. lIn Ada, global objects are declared language b~ystemnl shoultd have facilities to enable
in package specificatIons; andi li FORTRAN, a process written lIn Ada to control another
they are placedi lin COMMON blocks. process. Tile user shouldi not have to write

Assembly or FORTRAN code to achieve the
OS tasking as opposed to Ada tasking desired functionality. These, arc examined in

TileAdalanuagehu onsruct (kowngreater detail In the following sections.

taskcs) to support parallel programming. These Under the OS process model, one may require
constructs are unsuitable lin somte applications facilities for resource locking when there are
where the task's priority has to be adjusted more than one process in the application
dynamically or the task Is to be program. It may be necessary thait when one
blocked/aborted if Its time-framie has lapsed or process is manipulating a set of data, aill other
a failure in the task needs to be notified to at processes be denied Rccess to It. It would be
monitor. Also, Ada tasking does not efficiently desirable to have resource locking facilities
support periodic seheduling. Further, most or available at the Adak programming level.
the implementations of Ada tasking are not Therefore, thfe language system should provide
efficient. There Is a significant amount of procedures and functions to achieve data
overhead In a task switch. In a real-time locking, for example, through Test-and-Set
environment, meeting the Individual timing primitive operations.
requirements of each task is important.

7th Annual National Conference on Ada Technology 1989 129



Acce toOpertin Sytem t~tr*Smust be sharedl by some or sill of these
Aeces o OeraingSysem eatresproct,-4s. Some hardware vendors hrve come

Motoperating Systems provide suport, for lipt with Ioowcly coupled sysAtents coungured lin
folloing elliit:such it fashion that the various processors In
follwing(~ 5tilt system oharc memory. That Is, a certain

" procc-it maopuldtion and coritrof - 'rhis part. or al; systm memory is common to all or
facilitates dynamic eretton or proctess the processors In the configurations. The data

aitngbkcin/abrtng procsses, or the simulation software that, Is common to
dynamic %djustinents of Priorities, selsing tile different processors Is placed In this shared
state chnge of Processes. Sad so an1 memory. In such it configuration, the only way

" proccis comitilisicii - This allows or communication between processes runniutg on
Interprocr." communication ror sending and thet differont, processors may be through the
receiving messnges, data, notification or shared muemtory.
status and "~ on orAlthough there is a hardware solution to

" iirncr radiinct - This allows seting ofthle problem, the software solution needs to be
litriodie timer iterrupts for rtgular system evlatd The data common to more thsfn One
molnitoaring and load adutetand time.- protcss running on different processrs lin this
slet iuan%timent configuration needs to be Placed In the shared

memory. The simulation software designer
h Jigh spCed input/ouput - allowing for rapid needsi to know this configuration merely for
data collection and transfer. organliting his data structures. It should not,

have k major design Impact for the detsigner.
Eflicitnt, Implementations of these functions is The programmer of such softwre should not
required for a slinulation application program have to know where the common data (which,
to function well. again, Is In an Ada package specification) Is

located at run-time. Further, there should not
These OS functions should be made available to be ainy perfforance Penalty for choosing" the
the Ada, programmer as procedure/function shared memory configuration. The compiler
calls. Errors generated by these support vendor should supply the tools required to build
routines must be muapped to exceptions so that data Wmages for these shared data, to build
the programn call react to these errors In a executable proceswe using tile shared data, and
consistent fashion. These OS functions should to load thle Shared memory with thle appropriate
he In thle standard library that i supplied by drta.
thet compiler I impilleentor. Thet Impfltintntor
should supply Package specifications defining Muiti-proceeImg system ftAtures
thle interface to these functions. The simulation
programmer should not have to write these There Is another hardware solution for some
packages. of thet large simulation systems: a cl~dtlY

coupled ulti-processing system. All of thle
The Ada Real-Time Environment Working processors lin such a system Share aill of the
Group (ARTEWO) (under thle guidance of the available memory, and typically, one of the
Ada Joint Programl Office) is %.orking onl processors lit the System Performs the
standardizing the run-time interface to scmne of supervisory functions. In such Systems,
the required OS featurosi. When this Standard Is processes can communicate with processes
established and adopted by the compiler running onl the Samle system" by sending
vendors, the Ada programmer will be able to mlessages or through shared dlata.
mnake use of these features. However, hie will
have to evaluate the supplied features from the lin a multi-processing System, the process
point of efficiency of its Implementation. scheduling may be done Inl one of three different

ways: through programmer control, qlanual
Shared memory configurations intervention, or operating system control. Most,

simulation programs prefer the first approach
For a very large simulation, the software ov'er thle other two. This gives thie simulation

many require mnare than one processor for designer a closer control of the processes in thle
execution. One set of processes of thet system. The functions that are necessary are:
simulation software may run on one processor, scheduling processes for execution on a
second set on a second processor, and so on. processor in the multi-processor system,
However, there is a certain amount of data that removing a process that is executing on a

130 7th Annual National Conference on Ada Technology 1989



procci~or when Its time framt (or time slice) configurations, integrstiont with the underlying
has expired, or moving a process (rtin one operating systein support, tind realt c
procetor queue to another. Once alan, the debugging facilities.
comphiler vtndor should supply the multi.
proessing support functions and the awsciated Rercrenci
package spcIlicallion In the standard softwnrt
package If the smulstioat sartware reqires 1. J. Stankovic, "A Serious Problem for
programmer (dynamic) eqntrol for proess Next-Generation S)tems", Coinputcr, Vol.scheduling. In addition. the reqirements listed 2,~ 0 ~hrI~,p.1-0
In the section on a~red memary ctligurations; -I o 0 coe 08 i.10
aire also applicable. S. . Shas~try, "Ada. I,%nguage Symbolic

l1il-Tgne Monitor (SIrTM)", To* for the
Symbolic real-time debugging toots 'Feifuld ion PI'fC44100. 1988. Froln the

Proceedings of the 1088 Conferences:
The Ada, Prgramnming Suppor 'roots for the Simulationlst Simulation

Environment (APSE) should provide toots for sortware, The Society for Computer
real-time debugging. These t00ol1 shlld not %Iitilation International. lip. 1-4.
require the utsr to refer to m.%chine locations lit
the program, but should use sysaolic nimes
fram those programs. A symbulic rval-tinic
debugger Is requiredl. llower, coventional1
debuggers are known to alter thlt real-time
behavior of simulation progratus.

When it programn has rtaehc Ilhe semil-
producetion levcl, thet user can use a symbolic
real-time mocnitor 2. Such at tool will allow thilt
user to mtonitor certain datui objects Its rral-
time without Impacting tile titrformnantre or thet
real-time nature or the prorain. Thbis Is tie to
thet fact that thlt tool dots; not Interrupt the
execution or the prograin to poide iiituru-atioi
about, the programo being debugged. When thlt
real-time itinitor shows a potential Incorrect,
execution lin thet programn, the user should be
able to activate a debugger andi start debuggint;
ina the conventionail (aslun. These debugging
tools should optrate with the rmurce level
reference front thet user.

The symbolic debugging twlis linuld l aso About the Author
have thet ability to Introduce (atulis into4. thet 1; Shuastyi h eirMumgro h d
program for testing or training purposes andi co il ry develet eam Mai onurrntAd
enable checking of all possible lugic pn~ts iI the compuer deoprntio nin tintn Fils, New
program. Further, these debugging ttxJ.ls should Comper*li holtas i eld Tiag ntond technical
be able to suppc'r thet application prograat poetiseyl in thel devnelo en t a uecniersa
running in at multi-processing shared mentury ptsitier (or FtRlt (ieviito at onurent.

lihe wits also a member of at developmuent teama
confiuratin. fIit ImiPletitetEcd at fastr inemory-resident,

Conclusion FORTRLAN compiler at the indimn institute at
Techlnology, Bombaty. fie hats 12 years at

Various run-thne environmnent (actors need software development, experience lil compilers,
to be looked at whten evaluating ani Adai runi-time systems, and lainguage tools.
Programming Support Environment for Shastry received at NIS (10SO) lin computer
simulation. These factors are not just limited to science (roin tile university or Peimmisvinnin,
the run-time speed of thie code generated by the Phiadelphia, NM'ech (1070) in computer science
compiler or Lte efficiency at the core run-time trout the Indian institute ot Technlology,
system facilities. One needs to evaluate mime Bombay, India, and a BE (107.1) lin electrical
language support for mixed lnguage communications (roin tlie Indian Institute ot
programmning, support far shanred mnemory Science, Bangalore, India.

7th Annual National Conference on Ada Technology 1989 131



BENCHMARKING THE REAL-77ME PERFORMANCE OF DYNAMIC ADA PROCESSES

Alict .. Lee WilliaR.1,Uarzo Donnc;Ko

Lockheed Ekctronis C". Inc.
Rowse 2.1. Vlalofield, N4 07061

AILM~IST&QUA a.4wig

to &JIgnins tlse Mn .-tkins 004ns ptocciing softwarr. 11it i mpkxiso
1o know the dynamic behavior and timi~ng riaslancl: Of4 thepccs

T
the informsation niecessary tofully undeustand the mondel -f the'
coaveneenee to oriare the taaqdkl~s f~ornulcc T13is mief dsciobelI
M11101604n eCtouhtered and Meul oWtsie In bM~satking the rest.-

lime p'occlac:4 OeIinAlly *filters In "TCv assembly laipage. agilmt the 10sam ptoeesus ecded In Ads, both esecutabl eales were downloaded L
Into A Moto0o04 61010 eiabtddcd microprocessor to obtain the
bendIAUIAars Simulation Ofithe same p(OCeC*s i Ads and CacOasng theml 0*
an aftzti - 'AP ti ctuitl suie n oiroaet tathc modcaisals ogadivitnal11T --.A

ptoctsksto x4d fiis, rvhf the su lacctos tu ovvehad uAd the
fct on the thttughivt Will ke analysed by comparing a sequentia model

toaprle akn aae.Foe time Cistlea .auldlttskingt proccsscs this Fg ucoslll~ it io h mcestudy sSggsts that a rapid model simulation In Ads o VAX provides lg~eI roa lol rn fteIcae
quick Iknatificstions of time critical legions. an understanding oatraodel
behavior$ andl allous the isigner to 1a40ogIthe model for the best tira

fcioenianc prior to target impkmerartion.
In adition to tasks, a doubly linked 161: Is used aU tilt basic data structure

LlT~l)I~t~fl0Mby tbe pocess astdel Til situctu re lulit Ilhe dynamic: nat ure Of tile
__ __DMMT signals while ptoviding poinitrs for direct data access %henever NS5 of

AS aceunsulses enough links fromt thec Inpul tfer. lsn'ls on thle linked
Tile procese studw d ture I i involve thse sorting of radart pulses that list wre sorted into a lash: table to speed up clustering, Tlsen signal link*
taste been digitired wa sampled to produce a J4-byie kcalur vmcor Ilse witth small featuie differences start to cluster by Joining realties of sub-
algorialsaconsistsofa dlosed loop dkecisioan process thsat eontparesecdsof cluts. To aivid wasting time in garbage collecting tile usied WAnS. the
the . features to known libraries of feature vtor limits tn searela of a model allocates sufficient five links from the heap oten eomtnl the link
*kst fit' The teo fit is iaknrfied in tenant of a feature slot kdenclflearion :llocation addeallocation. In onkleto slLhar telobal link poolvwen

number glD.Clusit analysts is used to ldenttry signals that do not NS anW AS tasks, a flUCl!l'O0l. task has to be addcd to guarantee that
cossetate with existing tatararts either due to new sststils intoduced into the p4olt asis mutually eactuive Fgre 2 depictsthe rtahittorior
the system or old signals whose features may be drifting: because of the 1;,c tasks ite nandel. To irsaplemnert tasks. ASNI was writtn arousnl
cnvtratstiaaalchange± In onertio keeptrck of th conianous procse a popular offthex-siscir real-timae operating system tO.S.), Ada. on the
of clusicling and producing statIstleally generated mesan feature vcits, othert bana. gaa.4 concurrent plosrammting facilities Wilet provide thec
tt rroeeses were Written in natv MC63010 iscmnbly tin,-uage tAS.Ix notational conivemenee and conaceptual elegance an willtng concurrent
As a rsuli. the ASM workng wilhcustomnbult Ihatlwarets able to ncg algortims taherent in this model Figure)3 depicts thse Ada
the real ltme requirement uliaru nnning in an embedded 62010 target ansplemeamataon ofa( todel a:, five packages. thse dependency cithe

=lOT. 7T1C 24 features obtained 413 cluster UAnaysis a= used to S-1 new packages and thle entry cals made by the parallel tasks.
WAM twindow adresable mernotyt linmits of to update old WAM limits.
Each WAM slot provids .1 feature limsits to allow paittru matching withs In ilac pravess to dtermnine flow close Ada niet~ lte real little
tiltepreserat signs. ''lic Whsole prorcesses cycle until all WANI slots are requirement. we cna~ountered the following difficulties when
set. At least two tasks are needed to hsandle tile asynchronous processes.- benclamarking, both Ads and ASNI on TOT.
an NS task to handle new signals and an AS task to 3dapt to drifting
signals Bioth tasks rely on input stgnal thaus requiring two mome tasks,- a (1i ASMI benchauuk - benchamarks of procedures directly related to 110
DNIA task to input feature ettora through direct msnois access and a are not measured Sinee 110 as a Msacine dependent variable
SYNCHIRONIZATION tank to synclarnze All three tasks while causing 24eanwhile, itaming of tle task overhead can not be done without
DMA to stay one buffer alsead of US and AS 'lus arrangement allows coangang the source code. Thereforekls thso uf of the procedures
ile overlap of data 110 wrish CPU eaecutior, anW ensures tha buffered data are benchmina ed and no glirouglaputs are measured. Moreover. tile
does not beconme outdatd. dynanmic behavior of thle procedure is not always known because

132 7th Annual National Conference on Ada Technology 1989



ccris hirpnig within the proccdutc can no( b: triced during
t-tw nut nt Is (urthcr c,4kaale by d,€ fact that stUlh di s
v.,tlom wiIl O cuf due to founding In the All) comv er, The
fonding cror is sufficient to cause completely diffeint Moadel " AA y "'
b -havio CA a run to nm bsk,,

;i~ Ads .entkr -TSADAX.6$e on c ompiler lt foud to abdle to
uandlk three tm% bitt "ct alt five L&A tw by the pces Wit

pinbiem ofs fied Inv-u a dla valway )tc) aeboteoc atring k.

ttc mui-1. -int4 t lst- i lthl acm tein com plenrs. "t
3anlytcd the parallel model and determined that It can be
svjKmill:ed by modifying the top maul hMcciachr of the entire
structure Other thin the proceduies ths replace thek all -311
remaining p c-dutes stay dic same foe he two models. Te*,efor-
bNdvnarks Of tOK common PC*rWCS $1100 Nht be c samne (fo botth
olls,

ripu 4 desttics the m3or differcnes between dKc paalkI model and s c 2 Taskq S.wrtc 0( the l'AlkI MOMe

NSf to kngc ls it wil cal ,AS or lking. After abutfIctsilfse
scaned. MAIN wilt call UMA tO (ill tShe pxt buffer ahead, On the
contrary. Ins the parallel modtel both NS and AS scan thc same Wtvee -

Imldpeakntly %Wh UMA gum simulaneously. Although bWh mools -

take the s3me Input and gentrate thc same output. their timing
rNrfoorne may differ siandy. L

Althugh Ixnchmsa o(Aof sad Ad an e done t TGT. they both
cecou n-red r uictio", To et around the problem ve Iichmal the . .
pflocSc* on a seltiftargetd mAchine. VAX/1600 (VAX). where the .
TSADAVMS compirlcit able to hrAdlc kh modelsitoperly. When
coding Ads. Instcad of replicating ASM step by stp. we use Ads features
to Impkmen thc equivalent AS} functiodn. Ir ocaes run on VAX wlt /
not be able to test the hardware 110 used on TOT. but will ptovIde dhe 7/ -
designer dte conennce to time and a lym high level algorithms of tc
model, and to have full contcl of the Input di, Input dais can be TAU,.. i..t,
synthesitcd by a simulation program or convcrted from binary data f, /
collected from antennas. When banchmriking tpocedutes of parallel i/-N, Orrf
procsses. dec time slicing fcalure Is disabled in order to prevent task "

peen.(sion of swaopng fro locfii

The study is summatIed In the (allowing ,ectilos. System setup and _____
timcrs such as logic analyter. system clock tSYS clk), Ads cock (Ads tt> .& t M.' . .
elkt and target clod TOT dk) 3M pICnS0Cd ins section 2 ofthe pnr. - -
Section A discusSes timer chaactristics, model behavior. benchmaik TAu / TAU 4

results and meoti ceompalusonr. hik Seaton A presents out conluslmo , - - I

Flsurc 3. Ads Psckagc Cor. tct oc the P=llel Model

2 SYSTEM ISirnIPANID h " M-NCI ARKTOL

2.1- SyI-msetup Prallel MOMe - eurilloe

Since de l'enhmak measures both maichie aehiltecture and the ability of O \ N
the compiler to gencral efficient code[I ). major system conrfigurations 4__ . - - A1 -,,. -,

of VA-XIS60 a TrT/lao I are listed in Table 1.

2.2 HlendxnakTools M A 5.M

2-7- -ASM on r dde TOTr

The 6S010 code was assembled on a Koncton Development System then ,ft 6,11
downloaded onto the TOT operated under an UNIX like OS. . PSOS. M A A S 0 $?XIS
When bcnclma.klng. the liP.I 650A logic analyzer, f[P-1031 l3 Incerface
probe and IIP-10269C preproccssor were used to provide precise timings
between triggr points. Figure 4. Parallel Model vs Sequential Model

7th Annual National Conference on Ada Technology 1989 133



3 7.~~a~ Fme&JeTC~VAX

Th Ad acwto mirvotamenrito kttreWAd A'd:.: o he MWIPU STt*IUM 4.19 11l J1~s00
machine d .nPr p~i th is TOT inelodisi; contole U0. cIock CIW I JAP TM t 3 1tA0AIW49 3.*13
cS~mtvk imemlq Wimllt and cAepilootk To allw t-hmjg a In 1400 111011cs syliOI
illac which conotai a plogramasa-M coalIdoivt timer (PTI rW MI z.. ~WZ z.. g

MC4coJ) was W"k to Ote MaenirimMc mudl flaeu The Adi Witt lc f M I
cod wAct* cop~k4 vpVAX by TSADA44nithc waklas S. "Ai MW9 44 MM U "
ftcorkt"C are OM twwim o4Q1 Ue the A&CACC k1~titIernel h"& 74' "?10 110
k'en lfiked 'ofto the ,Igwolosil module. the TOT Ix iteated is a haft rr JV~kzM"T1 US 10
Msahk *14 o (16 Cd&O03. VATh "a(I I. 11M i4 PITS

The Ada ct4c was coespile via TSAAIVMS compiler onVAX *ea zcAtXs $ ncw M PIU~ NoS
ktebreaked @4 VAX WioIAS YS elk 5'Y$ ctkicaItJ from a 1vntr
rrftile p.ravi4e bcter Me?,sutectt thus Ada Clk cxlk4 from the
Cake4da Peage A1104gi; PMnAht OfSVS elk ks .e**cse to mXMAhis
*CVAX*ruler. Valske the ee aay. tO~itki OT d SYS elk sA"Mos. AZA IM g SV K W L
provided limint accueaey At the paw eoe~e l that a tiwing loop....... ..... .... ....
itchoaSqw as vied to jIrove the Accuracy of both clockt. The I'MMU1114 TItti gw *I rM ti
k~MAo a Poew v i *tllyMMJOeb u 0( :mrtAflCzs 0.11 CUMza O.S. Ol

PMSOliUMMUS 10000 10400 4.4
M"t".v-tC 141 111 9.4

#P=I#WKo/lO~sC 71 0I 111.
rwo all Ada vtlm sigeAl datak were ilchid In Mnemory to. order 14........ t........o........
mtulos the VO time~ spent Ii, thtcmop 1'x Skeaftmitk no " iIrAtic4

nu'* "C so emura the rrpe 7eK~ii ARML 77MEX CMARACTERISTWS

T *:ADA CLOCK

Amn" the thtee clock* ofAds clk. SYS cii and Tl k T" 42 sows
"u T6T e has the Woigtrsolution. the loureat o'rcrhead and the leas

Dabc to the high frsolution of SYS CIL. And the slowness of the cross
compiled A44, the lenchwaris of Ads on TOT were obtInedwithout
loppitig Ins most cass To benchwmk on the VAX. we Choose SU~ clk
becaute It offers a 2% kitte( Ictolootion than Ads clk and SYS cli F
mts s tuteC time only. NotliccthatstheCPU timeof aprocesas I till s
affected by page thrashing or iwapping ftom the 0.S.1231 lloxxver.
eaCcWsVe page thaihifg Is iukey to Occur undet a sintgle vser condon -7

during benebmatking althoogh some will occur to allow the O-S to '

pcrfommuma-- ysssevers. SscehmarksonthdediatcdTOT. I
however. sic not Interfered by the systemn at any time. System
iictreteccs. reflected sjy the standard deviation ISTOEV) of the
masmwt me^t Is nw0% for TGT ek And lemi thanM 2 ot SYS elk.
Interfence of(VAX sysem work load on both Ada elk wAn SYS elic Arc 1 _ 4

)2 lienctusar Reaults onTrsT and VAX

Table)3 shows the benchmark comparisons of paralke Ads vs seqential Figur 5 1Etfcct of VAX System Work Load on Ads elk & SYS elk
Ada on VAX And sequential Ads vs parallel ASM on TUT. Bchmarks
twanig fiun 7 we to 1,M4,000 we ame specified for pro cedures; or tasks 3 ~I t-!2tf vs md-oow
that are Indented according to their hierarchical calling sequence. To
3VOid repeating. we elAborate the sequene only when thc procedure Is In ASSI. the computation pan of CALCWAMUMITS procedlur Is
first incoururered. Ira comparing the two Ada models on VAX. ceredvifixed pntmat.mainly byhifin bit. Inorder to presrve
benchmarks are listed According to procedures tha Are common to both the accuracy whiIc calculating the means And standard dcviations of the 24
models And unique to each modeL Among the benchmark differences. tic features. To code the sanse function In Ads both the long-Inreger mthod
parallel model exhibiis a much Mlower throughput than the sequential And the fixcd-point method ate fcasible. The lonS-intelct method
model because of the task overhead. Meanwhile, the ASM benchmarks. preserves th.e Accuracy by simulating bit-.shiffint via multiplication while
though limited. indicate ihat ASM runs roughly 10 times iastcr thin the the fixed-point method does it automatically via type-caasinS. Although
cross compiled Ada on TOT. Therefore we conclude that. If the parakl the fixed-point method Is easier to Implement, Its execution time of 982
model used by ASM were coded in Ads. the efficiency of the Ads parallel usec Is 24% longer the 794 usec of the long-integer method on VAX.
model will be more than 10 time slower than ASM. ilaus we choose the long-ineger method.

134 7th Annual National Conference on Ada Technology 1989



I IA CO )S/ TASKS"I OIM N 'A' 9-R ------- I ............. -------- 'I5Z
......................... I-------------- I-----------I

I =91O,14C3e11(t I ADAIVAX I AVA/?G? "Wm?0 I
I . ......................... -. ........... I ----------I
I t0ows HOOZI. I rmA Catlo" Stoll 1 3to.4 IAAA* I

I0. 3117IIAVA'CK 34003 I 1351) 44 1

I1. CVAIA1)DtiS Vr0c1mITP/AJN 1 40120 41)37 1 40)303 $0 1
It sptn^ arrtp. NW~.~-1112 I I

ACESS 1 tLS9 r"4s MCMAfi I 1 1 17 4# I

1 2. NS PPOOV PSITASK 1XV41 I lOIM: 404PZ 4*7002 1~

I IN~0C~A~N1IC~lCI1110) 365 1 1703 to I
IPsI~L0QZAZ.P2 I 1I0 44 1 11% 44 1

IP.swTtiIKtX I I 1 45, 44 I
I DtmUCyW.Z Isa-t it 1 32 .. I

I ~ I 177.. I -44 I
I LJO~4~.V I -- 17 I 14 1-

I Qs CSK0ITZ liaVl I 1107) 13961 44
M IN 13 LI1,1* 175401 6570 1

IpU2t~mAIvc? Tot 411 1 263.2 3341
ozrrisz~t 1 )I7 I 1163 1:0 1

I N~ 0~I0~LI 1s 1 70 34 1
I CLUS7CA IN 1,#1I1 413 1 737 125001 1

6w A~ .A I M.2 1 032 110 I
I rCUCS?2-IKX 1 9 1 In 11 1

IcCL'vjsfjlNX 1 11 I 41 13 I
I IS-CLUJSMU (IEAX44111 1 4249 I 312)1 44 1

( Or ISi CW.:?z5)j 1 I 24013 2 112 1
I 1-w cw""~ I1WMI-1I 1 2400 I 3453 1141 I
ICAWC'mAILmmsT I 1127 I 21460 1335 1

I tA~~M$L1hT 117 1 30)7 Sp I
LO1A.~ 120) 44 1 162 57 1

I 3. As r~CzVPZ/T AS (AVI 1 172500 1253500 1 1230597 4t I

LIVLICLN1CA.Z 36161 ISO1 5310 o4 I
1 LNWZ 11 7 0 .. I

ICZS7WCZCALPZMC I 11t) - 1 - 44 1

I G7CtThYICAL DATA (lIIlx I is -I - 44+
I C*.S3V~tI11MlTANZ R(aVO 1 10151 f 25010 to
I 6ozrrtwc 1 117 I 1653 130 1

I ASCSUZP. tie6s 15755) 44 1
I CXIX.WA4LLXITS I1127 I 21460 1335 1
1 UF)1LoGICALl1j I 1454 2-6 I 1554 4$ 1

I IL1SOE ;- 1 I 32 - I

I 3,VI.XCz (I4ZNIwJN 1 232 1-I -- 4

1 4.1. Z7KXI3UF11ox I - 4 1 742 -

1 4.2. SYflCRIAIZQ TAUK 1347 -- I - 4 I

IACEPT ASjREQEST I I
I Aci?? CFA mot1 I II

1 5. FALE-~POOL, TASKIII

I ACCEPT ALLOC)IZVP.1C i 1)0- I - 4
I ACCE.PT DtALLOCCSDZC I1177 -I - 44 1

* 1 SEALO *50'T4?AL -- NOT APPLICABLE ++ NOT? HEAStIPID
IMHASUI!ZD AT CONDOITIONS SP'ECIFIED TO TIME LEFT

TABLE 3. BEN.CHMA&RKS OFADA ON V4X& TCJTAND ASM ON TGT

7th Annual National Conference on Ada Technology 1989 135



3.4 TkinsI Otf~lead For better fficiency. 3ll Ads run time checks arc suppressed and the
results arc displayed In Table 6. The stopiressed versions are able to

The tasking feature of Ads. thotegh powerul in providing concurrent decrease the meMoYr.- Of the esCACtable codk by 5%. and to Increase
soluions. Is severely restricted by Its tun time performance. %%hile a the throughput by M.2.5% depending on the model and thc machine on
procedure call Invokes the save and restore of the return address and whiJch it ram
registers wed, a t"s entry call Invokes the more estetwivc comtest switch.
Durig the switch. the old task Is reempsd ,od its contest lart saved
thent a new task is seeed and Its contest layer restored. Since a contest PROCESS CPU MOC0L ItOIQY TIRE
layer is the taskt e.~cution enivirvomnt, It Includes sets of regiters "~ all.....................
local variables used by the task. On both TOT and VAX. Tablet 4" VAX P'ARA 4.11t 11.4%
demonstrats thtaskentres alledn par~lklmodel onsumes 30-100 A3 VAX PAM 5.2% 21.1
(old moe time than procedures called In sequentiall model. M.oreover. the .. ... z------ _ . :;
actual work conducted within the ALLC.J4W..REC and the 1; VAX~ Qz 41 43
DEALLOC..USED_.REC entries of the FREE_.IOOL task Is minor......................
NcvenhkA the two entriesuam neededIn order to gustmethe mutual 53M St .4%1 .9%
csclusive acess ofthe gobal free pool between NSaWAS tas. lflS A TOT Ma 5.4% 1.311
and AS:teeT their own (mee poO, the FREEPOO1. task caa3 be eliminated .....................
toward the benatsis (f h process effciency. TABLE &. )EmonrANP TIME SA VED BYUPMO

PARSALLEL SZ0** PATIO
..................... .... 3)6 lRenchnsak touarion treuivation

I or TASK~S LNTRY4 %TIC Iu" CALL, zNsmY/
VAX S'CtRKONiZZO USCC ENTRY USEC CALL Since both modrls ate dynamically driven by 11O. benchmarks of 110

UYhCHtROOI *.AT 101 3 1247 9.5% 0 -- deperk ent cduresappearto be random at first glanc. Hiowever. by
ALLoC .NEw PLC 2 11O 1.5% 17 70 marchinghchmaks with atvitiescincd iona piogram Indeendent
DZALLWCUSWJIZ&C 2 1177 2.71 11 187 o(the benchmark study. wc amable toelita he benchmarks to evens

TGT .... : ------------------------------- that occur dynamically within the procedure and to formulate the

SYNCHtRoHMlATIOR 3 2040 0Ok' 0 b- enchmark Ino anevent quation:
ALCWW MC 2 3310 tit 70 46
DtALiWr ato xc 2 3360 0% 32 109 bcrhMark M deviatio + sum Ofall

-----: --------------------------------- (sub-ptocedum bencmarmk Pofclls.
*TOT BZNC~NtA.KS ARE OBTAINEDOH S01 IMULA'TION WIiTH
PULL STATZtOIT INSIDE ENTRY COtSITIAL where deviation reflects the measurement error (<l%.Tablc 8) of

procedure overhead (Tables 7,9,10). Table 7 shows a simple examnple of
TABLE 4. TASK OVERHEAD * Enitr CALL VS PROCEDURE CA[LL procedure ClusterDistance of AS task making A' 6 calls of DIFF sub-

procedure. The differene betweecn the measured benchmark 925010 usec
and the calculated DIFT benchmark total. 496 * 1863 use. results In a

3.5 Throuzlva and SuIIr~tion deviations of(927 wsee on TOT. Similarly the deviation Is calculated to be
1694 usec on VAX. Tables 8 and 10 describe that more complicate

The average time needed to update the 24 fearures of I WAM %Mt defined eqluatlos can be formed for procedures whose individual benchmarks
as throughput, by NS and AS tasks ame compared. Table S Indicates that vary with the number of subprcedvtcs called during each messurement.
the sequential Ada model runs 10 times slower on TOT thtan on VAX. Table 9 shows a procedure. though makes no sub peocedurc calls. whose
Meanwhile, on VAX. the tank overhead associated with the paralkl modcl benchmar3k is directly related to the number of WAMt set. Eqiuations thus
makes It nun 50% slower than the sequential model, and the percentage of derived allow tun-timcs to be predicted utder vasdois conditionts withouat
beng slow Increases after supprtessing all run time checks. By calling acual benchmnarking.
F.REF,.OOL task less eften. AS Invokes less task overhead thtan N~S. On
the other hand, AS consumes 50. 100% more time In throughput than NS
even when AS uses simpler algorithm. Benchmarks of 3.6.1 CLttsERDISTANCH caledby AS
CLUSTER..DISTANCI! procedures from NS and AS Indicate that this Is
because AS collects twice as many signals and the time spent in pairing
signals fo katum difference Increases bythe power of two. ADA/TOT 407 01sF DEVIATION ADA/VAX DEVIATION

US=C CALLSS USEC USEC UsEC

NS Its AS AS AS/IS 925009.9 496 927.2 99150.3 1494.3
CPU HOOEL USEc PATIO USEC RATIO RATIO -------------------------

-----~~~~ ~ ~ ~ ~ ------ ---- ------- -- - 11N(11-1l/2) wri~it I or LocicAL LINKtS - 32
UNSUPPRESSto VERSIZON

VAX PAM'A 101923 1.60 172500 1.37 1.69 TABLE 7. CL USTER-.DISTANCE CALLEDRBYAS
VAX SEQ*- 60692 3.00 125500 1.00 2.07
TOT SEQ 607603 10.01 1236067 9.07 2.04 CLUSTER DISTAdICE.USEC - DEVIATIO9 4

----------------------------------------- (007 01FF CALLS) *(DIFF BENC1111APJS)
SUtPRESSED VERSION1 - 927.2 + lN-(14-1I/2) 1563.1 -- ADA/TOT

VAX PARA 90130 1.91 135000 1.41 1.50 - 1494.3 + lI (11-1)/21 0 196.5 -- ADA/VAX
VAX SEQ 47231 1.00 95000 1.00 2.01
TOT SEQ 561488 11.09 1123043 11.82 2.00

------------------------ --------------- Becase iof the icgh caling frequen,..of DIFF by CLUSTE-R.DISTANCE
APARALLEL 0- SEQUENTIAL procedure. DIFF consurres 99% 0! the CLUSTER..DISTANCII time on

TABLE 5.NS &AS THROUGHIPUJT-SUPPESS VS UNSUPPI 1ESS both VAX and TOT. If DIFFwere caied in-line. DIrF will become 19%
mome efficient on VAX but only 1% mome on TOT.

136 7th Annual National Conference on Ada Technology 1989



),A jLCL~t_. ISTANMC 1,ld~y 1j. 171-3T caelldtby4S

XA?/TGT --- *Cr CAU-S --- UEV1hT1t A/VAX tVIAT30'- " AU5- #f A5 EITO
Uste Pus&T* oirr* Isstzv uszr U.sCc Lit! "Mvhx PEfor iLtITS hi SC? mIT

611417 1 45 45 116.1 0210 175.4 4....7 7 a.. .....

151144.3 1 76 42 45.7 145 -10.1 s s i:a og

10P 4 . 1 55 %% V6.2 123)0 132.4 124.0 12 11 is .

122061.0 I cc 46 41.11 14210 51.% 120.07 1 15l.".

151260.2 1 76 16 -104.1 1(6(0 -74.0 59. a 21.0

1267.6 1 (4 a0 40.6 1.052 it2 1 241.1

15350$.1 I 76 76 -122.0 17010 -46.5 .40.710 0 0 3 19.1

151475.1 1 76 46 -45.2 14S50 -4"..5 f2.10 2 10 a a 169.5

11751.6 1 21 51 -96.f 12040 -160.4 7472. 1 0 0 216.6

15:067.2 1 76 56 -17.1 1(665 0. 2677.1 10 1 05 10.5

10325.0 1 I6 31 7.2 16551 -70.5 17) 1 15 11.

152016.6 1 761 56 -67.6 1910S -29.2 )IC 10 1 6 221.7
102246.6 1 15 5S 61.4 12390 164.2 5421.0 12 1 7 217.P

126015.4 1 cc 50 116.4 %5250 15.2 5461.5 2 0 6 107.0

153556.6 1 is 71 -94.S 17001 -51.5 3405.3 15 1 2 207.0

69901.0 1 45 45 162.5 10251 200.4 1)01.5 13 1' 136.$

128333.4 1 66 54 154.3 14040 54.7 51. 1 0 0 1)9.2

16035.0 1 H1 67 -145.5 12510 -175.2 4521.0 1 a 10 12.6

110000.0 1 76 56 -17.1 16550 -64.5 402.7 it 1 10 254.0

570EV " 145.1 106.6 MEA 124.0

PL. - -~Z UU VRTItO TilL 0177' - wZTrtict RZ1 - RI
INSERT- - INStiT,,SOATINO,,TUL -ZIT' C LOGCAL- C

TABLE & CLUSTERJJ!STANCE CALU BY NVS V. - # o WAM7Q9T 1N 12-EWCLUSTEL CALL.

CzLUS al: .TNC9,USC " DEVIATION 4 (R~ZsL :DUCHHARK) TABLE 10. NS..C1USTER CALLED BYN'i
(for 01FF CALL:) W-~I (01"STI - DEVIATION
(for INSERT CALLS) * (INSERT SESICI(XAREI HsL 07 TP.UZNCALS DEVIATIONWKI

- 32.6 4, 2622.4 4 (for 01FF CALLS) * 1063.1 4 (for LIMIT CALLS) * (LIMTS UNCL'AAX) 4
6. (or INSERT CALLS) . 70.4 -- ADA/TOT (#Or LIMTCWTALLSE) -(LMIT NHAK+

4.14(or IN1ER CALLS) 196 AD A - 194.047 (#07 RETO CALLS) - 44.3 4
(#07INSRT ALL) * 7.6-- DA/AX or LIMITS CALLS) * 1127.2 *

16&3 IS NIIW CLUSTER called by NS 10.7 + (for NAM SET) . 217.2 -- ADAJVAX

WAI4# ADA/TOT USZC/ AIDA/VAX USEC, ASH/TOT USEC/
SET USEC WAX' USEC WA USEC WAH-

----------- .......... ---------- .7-Enwiel Factors Correlatint Benclunitics
0 42.9 - 10.7 -- 21.1 --
1 5162.1 3139,2 226.7 216.0 166.3 167.2 SneVXbnhak r edl vialw upc h O
2 (517.4 3137.5 446.0 217.7 3550.3 1(0.1 SneVXbnht3k r edl vialw upc h G
3 9456.6 5157.9 4665.5 217.6 542.0 175.6 beochnirks may be correlated to VAX benchmarks via empirical factors.
4 12505.6 3136.2 661.5 217.7 When a benchmnark comparison Is made on different processors or
5 15731.2 3137.7 1096.0 217.1 different systems, the empirIcal correlating factors become a gross
6 10667.8 3137.5 1312.0 216.0 measurement of language influcitce, compiler Influene, machine
7 22009.*6 31368.1 1532.0 217.3 architecture. cache Influence, etc.! I1.41. These factors, however rough,
6 25143.0 3157.5 1746.7 217.0 allow the designer to guess the approximate timing performance of the
9o 26264.2 3137.9 219673 217.4 model and possibly tune the model before embarking on a full scale

10 3420.5. 3137.3 2166.7 217.6 benchmark study on TGT. Since only the sequential Ada model runs on
12 31692.2 3136.2 2400.0 217.3 TOT, we tested Its benchmark correlation to the same model run on VAX.

-------------------------------------------- Table ItI lists dthe resulting factors correlating Asprocures oiay
MEAN - 3137.9 217.2 170.0 features. The correlation is then tried between benchmarks of Ada and
STIDEV - 0.5 0.5 3.3 ASK.! both run on TOT, and finally between Ada on VAX and ASP.! on

----------------------------------------- TOT. Results of the two sets uf correlations are shown In Table 12. To
*-(BENCMMAHtX AT I4AH#ti - 13ENtCSP AT WANIO) / IN1 the thirteen benchniarked ASM. procedures, only those tHat are not hand

optimized and are using the same data structure and algorithm as the Ada
TABLE 9. ISJJEWCLUSTER CALLED BY JVS code can be used. Based on the six qualified procedures, the factor

NS CLUSTER, USEC - DEVIATION 4 correlating Ada on VAX and ASM on TOT Is estimated to be 1.0(+.0.25).
(#07 NAM SET) * (WAH BENtC)(MA) The designer, however, is cautioned to use the factor only for codes

- 42.9 + 3137.9 6 (#OF NAM SET) -- ADA/TGT Intended forsWiilarpupoe * devloped unde the same1systemsl.
- 10.7 + 217.2 * (for WAX SET) -- ADA/VAX
- 21.1 + 170.0 - (f0r WAX SET) -- ASH/TOT

7th Annual National Conference on Ada Technology 1989 137



rA TORTT/ VAX
MAIN rZATR.'9. rPoMO'UMS M"Mmetsy:

GUKAM MtAOH 14 AS _H'.W*Ht$T0 H:L 1541 9.5I'V10.4 ~~O
AS WIT0Zt1ANCS.
irl'tW'z. Z m1,"" rjyx In spite of limitatiptu cnicoumcmei In kcnchmamking parallel pmesets on

TOT, we are able to demonitate that using Ada on VAX allows rapid
IttTMtt 15 IL AS SI4LO~LI~IA .M(.31 model simulation of real time procesies and quick profiling of the Process

PIC Z TN " ICLLK cc perfontanee. Without 110 testril"~z and kttgthy downtloading time~. this
LGIAlt. ItSA,:PTltoTL approach encourages the dcsigner to try dIfkrern model constructs and
PSt%;*ATlN0_T*L Ianpage features In search of a model wih desIred chauaeerislc and

LO1O 1T- CAIX-RAHLIIT. ASCSUS 11.110.9 t eiluire.I Wmng performance. Finher. the study *hW%" tht t~enclmaaks of
"K PATH dynamic processes can be formulated Ito event equations to allow

HE$W.T AcES I rUlLE FAII KaboAy. I:_ benchmak prediction. It aI~o suggestm that an emnpirical factoc may relate
"ct:s Iti:1CVsWT5 vrAI;_yA4LRHI7 14.*5(11 1 the VAX benchmaik to the TOT benchmark although mote work needs to

........................................ k done to confirm such a retatloonhip. Finally, on the embedded TOT.
the real time performance of the cross compiled Ada Is not yet close to

TA B L I I CO RRELA TE RXCJIMAWKS OF ADA I I AX TO ADA IT that of ASM which strives to take advantage of the undrrlyitg hardware
and language constnucts for efficiency.

%?/IVAX ASNI VAX
KAJO A TuWV &DPZ rA=TA,HwA14t)oV) L.ACKNOW111MORI ETP(

A5ICNttT5R G ~ CLUSTER I1X, 5.( ) 1202 The authors Would like to express their appreciation to Mike Cahill (or

Atsi? SORZNC ?IL. supporting the hardware and providing the test algorithmns and to David
is WTSOATINWO II I Isu for reviewing this anik.

tI.tIRY Access & OiFlttZ5Ect, 13.3(1.1. 0.9(0.11

SIMPILE MATHI 4#- I5J4l,CLU5?Zc 6. RfFrjEnWC&

------------------A----O---1---- 0.------ III Reinhold P, Welekcr. "Drystone A Synthetic Systems
Programming B~enchmark". Communications of the ACM 27010),

TABLE 11. CORRELAT8BENCHIMARKS OF 1013-1030. October. 1984.
AXA ITOT TO ADAI %AY AND ASMI ToTr TO ADA /I1'AL

121 Russell M. Ciapp CI al., "Toward Rea~l.Time Ptrformanice
Benchmarks for Ada". Communications of the ACM 29(0),
760.778. August. 1956.

3.A Module Sires and Ease of Mckdelint 131 Neal Altman. 7actors Causing Unexpected Variations In Ada

Table 13 compares the code sires or Ada and ASMI both run on TGT. For licnichmasks". Technical Report. CMUISEI.87.TR.22. ESD.TR.
a fair comparison thse Ada code Is compiled under conditions similar to $7.173. October. W91. Cumeictcllon University.
ASNI with no run time checks, no TIIXT,.IO and no pulse Initialization. (AlJack Dongarr et 2I., "Computer Ilenclwnaking: Paths and Pit'Alls".
Further, the DMA module which sunulates the hardware function used by IC M-1 Spectrum. 38-43. July, 1987.
ASSI is excluded fronm the Ada code.

PAATRADA COoE uSH CODE 7. AUTIHORS

RZS.NELIO.5. *size 31 IWT 5 jKaYT Alice 3. Lee Is a member of Information Systems Sroup at Lockheed
ME CODE SIZE 20 IWTTE 5 KBYTn Electronics. She has Implemented several real-time systems including
DATA SIE 192 wKRYT 8 salTE direction finding, gun fre control and signal processing. She received an
SOURCE COoE 670 LINtES 2360 LINES M.S. degree inI Computer Science front New Jersey Institute of

---- --- ---- --- ---- --- ---- --- ---- --- Technology.
- COtHtEtT LINESS rXCLUDED

TABL 13 MODLSSZES FAD VSAM OTGTWilliam R. Mtacre Is a Software Staff Engineer at Lockheed Electronics In
TABL 13 MOULE IZE OFDA V AS ONTOTPlainfield, NJ.. lie has been involved the design and Inmplemntation of

several real-time embedded systems targeting miceroprocessors. This
As expected, ASM modules are smaller than Ada modules except the Involvement his lead to his Interest In real-time Ada and Ada related
amtount of the source code. By using the bit fields, the ASM Is able 10 topics, lie received a B.S.E.13. degree from New Jersey Institute of
have a data size much smaller than that of Ada. If Ada were to use Technology.
representation clauses, the data size will decrease but code size will
Increase In order to unpack the fields for accessing. Meanwhile. the Donna K. Doi Is the Program Manager for Advanced Programs In the
readability and versatility of Ada makes the modeling concept easy to Informiation Systems line of business group. She has participated In the
realize. For example, the parallel model containing five tasks Is development of real time systems and Ada software developmnt. She has
Implemented with 10% increase or 15% total change on the source code of a Master's degree in Engineering from California State University,
the sequential model and With all changes localized In two of the five Fullerton. and t Master's degree in Mathematics from the University of
packages. Arizona.

138 7th Annual National Conference on Ada Technology 1989



ESTABLISH AND EVALUATE ADA RUNTIME FEATURES OF INTEREST
FOR REAL-TIHE SYSTEMS

Sharon Lofko.ltz Henry Greene Mary Bender
IXT Research Inst. IIT Research Inst. U.S. Army CECOM
4600 Forbes Blvd. 4600 Forbes Blvd. Advanced Softech Tech.
Lanhan, MD 20706 Lanham, HD 20706 Ft. Monmouth, N3

Tha class of s st=s dxccc, were frcm the
Battlefield Functional Area (BFA) of

With 206 valloated ccpilars, developers Intelligence Electronic Warfare (IEW);
or real-tima aezo& d .za-ts need guidance in spacifically, the class of Otlf'/ELW~r
the selection of =time cuira-ents (RThs) syzte=. The system that represented the
to ensure that the Rffz used can root strict oMIr/ETEirr clas were Irprovd Goatxail V
timing and storage raquiroxnts. The pueroce (I='), Oxnication High Accuracy Airborne
of this study 16s to assist these dvlopers Loction System (OIA.AI), A, ancod Quick look
in the selection of MYs by providing a rans (NQL), "n Trailblazer B. These systems were
for prioritizing MIE ale-ents and intrcducing chosen because they wee lage and " oplx
the corcpt of a ocapcite bendchark to real-time aboddad system. An assption ua
evaluate candidate RTE performance. made that if a method could be davolqd that
Specifically, this study prioritized ME prioritized ME olarents (or lage an oplex
elements and developed preliminary roal-tire xodded syst the method could be
requirements for a comxpite bnclrork for one applied to other real-time b-dded system.
class of sys- v.yportod by the U.S. ry
Ccmications-Elactrcnics Coand (CDtO),
Ft. Hormouth, lU. The cluas of sys tes- PRORIZATQ1.or OF, MiE FFmT17P
studied was Cmications a-d Electronic
Intelligoene (ctXr/ELDT r). The next -top was to prioritize the R=

oloe--ts. A prioritization matrix w used to
This paper presents the rveral steps in identify the critical WE elements for

the process devoloped to prioritize MEs. of:l'ELa~r syst. Tha prioritizod list of
These steps are systcz selection, prioritizing i= alcnnts was to be used to prioritize
RTE oleents and the use of the prioritized bench nrYm. The axes of the prioritization
elanents to prioritize groups of be .marks. ratrix are etboddW coniter sister. features
The purpee of a cayceita bcn=cmr),1, the (the olIr), and ME el-exnts (t'he rows).
dvelopant prcess for such a bench-arY, and
a praliminary descrlption of a oxmposita MIS SiX DMOX)) CVILM SYM (ECS)
benchak for oCsDr/EMrr sys-t - are given.
Recrnrdations for the use of bec.arh- in
ME selection are rade. The Softwa Ertgineering Institute (SEX)

determined that there are six basic fa3turz
of an asiod real-time systm: tine
control, concrrent control, I/O control,

SYSTm4 SEEMT9FW -.qVIEW error handling, rumeric ca-putations, and
internal representation (Woider r.n 1987). The

The first step was to select a class of six features were developed from a definition,
C£OM syste-s to analyze. At the tine of this a general requirement, and basic
study CEMi supportod 136 systes. It was characteristics of ebcdded conpiter systemrs.
irpractical to study all of th.? systn.e 'e six ECS features rake up the colurmis of
because of the system diversity "d the nbar the prioritization ratrix.
of syste-s. Thus, the goal of the selection
proces was to identify a class of systes. to Each of the f-3tures has a weight
study that would be most beneficial to CECOO, assigned to it. The weights represent the
i.e., the class that contained the rost real- relative irportance of an ECS feature "ith
tire systam supported by CE 4. The specific respect to tb class of syst-s being studied.
syste:r selected were representative of the Th =u of the weights ust equal 100%. 'Me
particular class. 100% signifies an entire system, and the

Support for this research was provided by AJPO Contract Number
.DA903-87-D-0056 with funds orovided by CECOM Center for Software
Engineering.

7th Annual National Conference on Ada Technology 1989 139



separta weights indicate the Lportnca of Us Activation
each feature to that systm. The wights Tsk Termination
should not chae as one aes fro one system 1/0oWM90oant
to another, provided one loo ,s at syte in Co ly called Code Sgeqaeos
only one class. If the clats of syste- is Target lbxwSkeein.
changed, the weights will chuqe.

The RIE eleent ra-A V the rm- for the
Datermining the weights for the prioritization matrix. fla eleents ara

CWM r/EM clas irolvod two stepa. The assigned rates. Me rating is for cnmti ying
first %,s to understand which features were the effect that an IE clec3t has on the
lportant and to begin to quaftify their perfomance of an ECS feature. Riting an
inportance by studying the systen element gai t an ECS feature is indcp.ndont
reVuir ts. For this stly ch raWremcnt of the class of s)ysts of interest.
was rapped to the particular E feature to
u4ich it pertained. 7hds step resulted in the A rating scale is use to rate an
majority of the reqaupimnts being Lipped to elcnt. The following scale was used in this
Z/O oo l. prioritization ratrix. Following the cale,

each classification is defined.
Th is firt stp? gave an indication of

uhich featurea were irvortant and ubat niuner
to assign as its weight. It did not take into Intrinsic - 9
account isues that affect the performance of Suortivo W 5
a system. Th primry onrn was with Extrinsic - 1
concurrent control and tire control. The
requirements may define the need for Intrinsic (9): An IE element that is
concurrency, but they do not represent the foundational to the performance of a
solution, uhich is the algorithm that is used particular feature.
to teat concrruny needs. Also, the
raireents may define the tim limits Dupportive (5): An WE element that,
iod on the systa, but they do not although not intrinsic, has a role in the
reflect the stringency of those limits. performance of a particular feature.

Step two was to adjust the weights by Extrinsic (1): An mE eleent that at
stutiyiig the requlxements and determining most has a rinor role in the performance of
their effect on the perforranco of the the particular feature.
systs. Then, taking into aocount the
results of step I and step 2, we ghts ware The two doc -=nts previously cited were
subJectivaly =igned to each ECS feature influential in the rating process: the ARIMC
(see Tzblo 1). docu;nt, "A Frarework for Describing Ada

Rmtio Environments" (AMER5 1988) and the
TTlh I SEI docunent, "Ada for Dbeddod Systes:

Mia Final Weights rsignod to the Features Isues and Oestima" [Weiderman 1987). The
rating process involved concentrating on one
ECS feature to determine whether the e1-ent
was intrinsic to the performance of the

Concurrent Control 20% feature. If it was, a "9" was entered into
Time Control 20% the squar. If it uws not, the RiE ele-ent
I/O control 25% us determined to be either suportivo or
E-ror llandlIng 10% cxtrinsic.
h=uric COaut, '-ion 10%
Internal Reprt ,taticn 15%

APLICATIC7I OF M ME PRjgMMal

After all the weights and rates had been
Tho rows of the prioritization ratrix are determined the next step was to ziltiply the

the eleven RTE el,-.nts. They were cohbtid weigts by the rates. T1his step integrated
from the docrcnt "A Framew.ork For Describing all of the c oernnts of the prioritization
The Ada RMtitre Envirnent" (AraWG 1988). matrix: the ECS features, theL- relative
These RIE elants are the following: irportance to the class of systes (the

weight), and the RIME el rnts' ratings.F--try K~nagcme.t
Processor igement The last step was to sum all the products
Interrupt Manage.-nt in a given row. The result was a prioritized
Time Hnagement list of RTE elarents. The elmt with the
Exception Mnagement highest total for a row %as the rost critical
Rendezvous YMaunent elc-nt, and the elent with the next highest

was the next rost critical, and so on.

140 7th Annual National Conference on Ada Technology 1989



Figure I presnts the prioritization Imo las-t ztep urs to map bwdr)us to
ratriXc for aK /EUM1 systez. the RTE olc~ents they romura. T2he

ca*Inmtion of a prioritized list of In1Th* following is the prioritized list of alc~cits w4I brs:1-~ rerd to eca o -citRMh ola~xnts. prodoood a prioritized list of groupa of
1.Iit y m rg-ei bL-dmif. Mls Is bmauza for oach olcment2. i jre bC= 70a~et...... 0 there um a group of bw~r3 Ott roppod to2: Tra ,: :: : : :660it. 11=s, it um to gv~ that t3. 1/0 r6V%3qmxnt . . 6 ... C40 prioritized andi not the inl!ivichjal bnd=1r2'.

4. Proo=ssor mrkvgcxnt . . 560. C
5. mV.Vixnag t . * 560 soe or=c of b= 1arks thAt can be6. Droeption, nnagnt . . . . ... 4o A~p to M~ clcit.s aid thus prioritited
7. Irntan41 mv-ant . * 500 ar h d corpie Evlato capablity
8. Task Activation ....... 380 (A=C) (Le 1988] bwct~rY-s, the Wea-'flre9. TW:4: T~~darmtlon . * 380 Ficrforvan cm Den r~s for kla [Goal 1988) anl10. Target WAI0~i ng . . . . . .300 the rv.-forranctm Issues Working Group (PIWG)

11. C==1lY Called OWie Sojnce .280

This liset is the driver for prioritizing
grop of btn1=Y-s.

____- ECS FEATURES

-WMN4 RMIuc" I II

E M

E 160A L 71 2 J_
wldA~UrH1 '00 ~ j 4

_ _4rt I _ _o

___TO ItI-1-0"

SUP-OTIVE
XTRINSIC- m

Fiur 1.J Proiiain640 o tmr/E~ yt~s

7t nna atoa CnerneonAaTeholg 98 4



MMM M!2=r M r =2M me ==m -

The rajority of bechrks available A peliinary description for a ccapita
either test a spocific clcnt of the RI In benvark was developed in this suxty for
Isolation, or exerciso savrl ela!ents In a "IY/EEhrT syst w. The goal was to develop
some unspecified cobivation. Riat Is nooj3ed the ItiO and anu afproach for developing a
Is a slgle ber rk that tects alaents of composite benchmark. The preliminary
an RF= .thila interacting in a m==r that Is composite benchmark models the five
cnistet with their interaction durhi capabilities of COKIlNT/ELINT systems:
actual sey se operation. Such a benar intercept, direction finding, emitter
muld evaluate an Ma RTM by forcing the M, location, analysis, ad reporting. 7his

to perform Operations that would Airror the descr!ption was given to another opany,
operations perforred by the systes to be T-SO, for orde develcpnnt.
deVeloped. A oaveita benchmark Is such a
V1del of the capabilitls of a particular
class of y .
au=I or A MMM~xM The final phase of thils study '-s to

determine how the prioritized benchmarks and

Tha purpose of a crxo ite benchark is the opGite bic imrk should be used ufen

to stress a crzyuter and its ME to check selecting an MI!. It was detemined that
thir ability to perform the capabilities of a choosing an = is a threc-step procs. The

particular class of xyta. A c It first step is to eliminate all RIEs that
be-mark allows a software cannot perform beyond a zlnix= reqiirad
one bendArk, %h.ch will give him a general threshold in each area critical to system
idoa of whether a particular rT can perform perfor-me. The seod stuop is to begin with
the capabilities of a given claw of system. the set of ran that satisfy the minim
A o-ite b nhMrk tests each capability threshold reguiXments and select the small
individually a"d, irportantly, the interaction set of that perform best In the arel
magtheapabilities. critical to syte parformno. 7t* final

sta is to a ipare the costs, the vendor

fZ E MO OE A K.WPIE MIOKv M*=plrt-rNvided, and ary other iitigating
UMZEII irUs=ne for the final selection of an

WIE or ompiler. The first two steps involva
Developing a composite benchmark the use of benchmarks.

dscription for a particular class of systems
is not a sirple task, but once developed it The copoits beud=Ark is to be used to
can be used to aid in the selection of an RY! test the minimum threshold of RFMs. This
for any system in the given class. The mans the deeloper would only have to run o
following three stae should be followed wn benchark to eliminate RiEs not suitable for
developing coaposite bendcarks: his particular class of system. Then the

other bancd=ks would be used to test the
1. Identify the commn capabilities of the reaining RI to see i.ftdih XIs perform the

particular class of systems by studying best in the areas critical to systew
the roguixemnts and functions of the performance. Because the RIE elements are
systems within the class. prioritized, the critical areas and the

benchmarks that measure those areas are known.
2. Define and analyze each capability. Tm

description shold include all functions At this time the develoment of the
cuom to the systems in the class. If a composite benchmark is still in the
particular function is oam.n to several preliminary phme. Util the cmposite
of the system within the class, it benchark matures, only the prioritized list
should be ixnluded in the description of qrou of bmrks can be used to test
because the function may be performei in RIEs.
a new system being developed.

3. Docw=ent the interactions and interfaces q O
a-ng the capabilities in a format that
facilitates computer progran code The objective of this study was to
development. When writing the provide software developers with guidance
description, there needs to be contionu the selection of a ooipiler and its RIE to
interaction between the description ensure that all the timing and storage
writer and programmer to ensure that the requirements of their real-time cdeke
cimposite benchmrk will be accurate and systemas can be met. Because there is no
uderstandable. The description writer "universal best" RI, the selection of an RIE
rust have an in-depth technical knoledge is based on the needs of a specific class of
of the class of system being studied. system. This means the selection of an RIM is

142 7th Annual National Conference on Ada Technology 1989



domain specific, and the use of a
prioritization matrix as doscribo in this
poper will allow for the prioritization of RL AiIt . A U-- Lfor F cD1WwM& A ZuiM
al Py "ts for a particialar dcuwmin. 7h DJMM=. SI~a 19
prioritized = elamts am then u.Ad to
prioritize groups of bexarks. Gool, Mvind Mrar. BMIrs Pedgm=

k&th domain specific way to test MU Cener- forFif-m "'nl , 32c 4. 293
is throuh the use. of a -xc b* -C -o f r r nc k.
OmpoiIta benhrks, would test each cridate z..evitt, T.,* Terrell, K. hda QIli~r
WUE and alininato those that don't i ec t Eva tu tion CQabllYtv fACd Wr lon
of mnim= raquiktaats. Uhliko existing J~"JDC%,C AmA!Jrl-68-1093. Dm~ing
bon*rrks, a coposita berd-irk will tak xilita] xirplam for Ai F W1right
into =:=int the interactions and Interface- Arnuic al Labatories. 1908.
that go on within a systm.

Weldernan, tl'.ln, et al. Ada for Dab.
Thus, when selecting en RE, the , - TPtu and oei.. Soft.r

!-a--sitg bwand-ark would be Used to test the nioim rctua(E.CregeMln
rIniu threshold of IRTE. Then the ( )ity. Pittsburg, PA. 198l.
prioriti: ed grcup of bonct:dzr Uould be usoA
to test the critical RIE ell ts to detorine
utich RIEs perform best in thoe critical
areas.

Ren deelopin this nethcd to prioritize
M~ elements, two preliminary steps, rapping
system capabilities to MAa constructs and
rapin Ma onstructs to Ada ME~ elements
were done. Mha steps are not dismsed in
this paper to the rorae significant results of
the later stops can be highlighted. Te
cbjoctive of maping the systm capabilities
of nM/ W systes to Ada o tructs %as
to datrmine what Aa cUntrocts would be ue . Sharn R. IAfkwitz is a Softwxe Engineer
in real-time d d syst=. 7e reults with the zrr Plsoarch Xnatitubt (zIrlM). s-.
were that all Ma constructs would be used. ufyowitz was the tahnlcal lead in research
The objective of rappix a or to Ada on establishing and evaluating runtir
RIE eleents Was to deteine Uilhich of the foabes of interest for real-tim -.1-tcs..
eleven RTE claients were not irportant in kr resarch interests include real-time
real-timin emk~od systim. Dring this step, e.-badded syst-s, software application
one ME elemit, target h ing, w developent, and database design and analysis.
determined not to be izportant. h find~g & roaived her B.s. dogroa from the
however was contradicted after the Universit of M'.ryland in Information S yt

rplementation of the prioritization matrlx.
As a result the original awmptlon that
target howeping %w not irportant %w
reversed.

For the proces of prioritizing RM
eleents, it is ro nod that after the
particular doran (class of systen) has bon
seldct, the first step is the irple-entation
of a priorltization -atrix. If the ratrix is
applied to an ECS the rms and colnns of the
natrx are already in place. If the matrix is
to be applied to any other tye of systL:, a
new s ot of colu=n title would have to be
developed. hils is because the feabres
ocron for all DcSs might not be cacn to P.Yr. Henry Greene is a Software Engineer with
other systes, but there ray be sorm overlap, the ITr Research Instituto (IrITI). His

research interest are in Ada reusability and
There ar two future directions for this achine-independence characteristics. He is

research. one is to zoture the preliminary also interested in object oriented
description of the composite benchark into an roquiZents and design with respect to real-
in-depth speac.ication and to cevelop the tine systems using Ada. Mr. Greene received
actual bench-ark. Second is to apply this his B.S. degree from Dordt College in
approach of prioritizing RlE el _ents and Mechanical Engineering. He is currently
groups of benchmar~s to another class of working tcumrd an M.S. degree in Coxuter
systeSs. Science at John Hopkrm University.

7th Annual National Conference on Ada Technology 1982 143



Rms. ary E. Dmxkr is a Oarptxr Scientist
with tho Cciftcr for Soturm E~noerr3, U.S.

"rm LTOM Ft. Hrcth, N.J. She is the
project laadox for thaix tecdmology pro;=~ in
Ada real-tine applicatiom ard rantfrc
emirr~ts. Sho rrocevod 1=r D.A. dagme in
amputer scionco fzm Wbttjo University in
OrnsWiCk, N.J.

144 7th Annual National Conference on Ada Technology 1989



Real-time Performance Benchmarks For Ada

Arvind Goel

TrANISCO

Abstract; This paper describes lte Ada suitability of Ada compiler systems frt ernfddcdbenchmarking effort undertaken by lte author under applications. Existing benchimitks have been researchedcontract to Advanced Soft~varc I cchnolos.* aixd hava b~een miodite as necessary. New benchmnarksDirectorate, Center for SonfwAre lingintering, US were added as well as existing benrchmirks wereArmy, Ft. Monmouth, NJ. Ada benchinarks- have mnodifled. lthe scopc of this bcchinarking effort is tobeen developed to measure flit perfrmnance or Ada determinecompilers meant for real-time embedded systems.5 lte runtime performance of Ada featuires an aI bireThree kinds of benchmarks have been developed:.is[ssefirst kind measures thit performiance or Individual ressefeatures or Ada language important for real-time the runtimec systemn implementations of varioussystems, second kind or benchmarks deal with feitures of a particular Ada compiler systemdetermining the runtime systemn implementation in t ae performance or commonly used Ada real-timecthe areas or tasking, scheduling, memory prdgs(lorfre oa icocntutmanagement, exceptlions, Interrupt handling etc., and plabedigmsaso efeored toase macnrn conaucts)
rhethnd kin d reltie ede systeammigaloitm compiler targeted to a Motorola 68020 barc target. Theifoun in ealtimeembededsystms.results or running thea benchmnarks is stated in another

report published by thia author (l).

1i. in2tro~uuer&n 2. Adai Beaintarking
lte principal goal of Ada is to provide a language Ada benchniarking ean be approached in 3 ways:
supporting modern software engineering principles to * design benchmarks to measure execution speed ofdesign and develop real-time embedded systemns individual features or the language,software. A motivating factor in the developmecht of * design benchmarks that determnine amon variousAda as lte Department of Defense standard linguage ole hnsipeetto eedn tr~tslkwas thea high cost of embedded system sof tware ther sching imlndtioeneent alithmuls lk
development. Current Ada compiler implementations are Ii ceuigadsoaemngmn loihs
unable to support thes demands due to several reasons: * design benchmarks that measure thea performaince of

" they ure written by software engineers with commonly used real-time Ada paradigms.
experience in largc-systemn aesign, 2.1 Al easure Perfornuance Of Individual Features

" lack or operating system knowledge and real-time Thiis approach measures the execution speed ofissues, individual features of lte language and runtime system
" more concern with passing thea Ada Compilor by isolating the feature to be meamsured to thea finest

Validation Capability Test suite, extent possible. Such benchmarks are useful in
understanding thea efficiency of a specific fcat'ire of an" implementation and size of thie Ada runtime system Ada implementation. For example, a benchmairk thaitwhich differs widely front one compiler to another, measures the time for a simple rendezvous can be run onThea performance and implementation approach of two Ada compiler systems. Based on tlia results, anvarious Ada language features and lte runtime, system application can choose one compiler system over theahas to be benchmarked to aissess an Ada compiler's other. The problems with such an approach issuitability for a real-time embedded application.t Ada determining and isolating the features of lte languagebenchmarking is much more complex from oilier and runtime system that are important for real-timelanguages because of lte powerful and sophisticated embedded system applications. Also, this approachruntime system that supports Ada features such as requires a significant number of tests and lte numbersmemory management, process scheduling and control, produced have to be statistically evaluated to determinetasking, etc. and whose implementation varics from one general performance.

compiler system to another. A benchmiarking effort has
been undertaken by TAMSCO to determine the 2.2 Determining Runtime Systemt Implemnentaion

7th Annual National Conference on Ada Technology 1989 145



Thesle benchafaks aire concerned prinurily with For benichmnarks that measure time values usioagthe
dclermininq the impleinilation characteristics of an Ada system function CLOCK, the ideal design would bto
Kuntinie System. The schcduling algorithml, storage determine the spec-ific fcature that needs to be measuredl
allocation[dcallocatioa lgorithm. priority of rendezvous and pcrform that feature sandwiclrd bewccr calls to the
between two tasks without explicit priorities arc sonie of systemn CLOCK. Th'lc difference In time is the execution
the niny Inlementation depentdent characteristics that1 tme fr that feature. For this imsurciment to be
need to be known to determine If a compiler system is accurate, the resolution of the CLOCK should be
sultibki' for a particular leltillcan etided application. considcrably less than the timec required by the operation
Sonic Iniplemuentatlon dependencies cannot be to be treasured. Generally. the sysiin clock that are
benclinmarked and that Information has to be obtained available to a benchmark designer maybe xcurac t0 a
front the compikcr vendor as well as the documentation tenth of a second and that Is Inadequate to measure
supplied by the vendor. Thec ATWr %G document evets ini thc mnillisecond and microsecond ranges. Some

Catalog of Ada Runtimec Implementation Dependencies" of the problems that have to be overcome when
(2) Is a compiled 161r or feitures that a.re implementation accessing the internal CLOCK function includlc:
dependenit. This documnrt has been consulted 1. Clock Precision: In designing poriablc
extensively In determnining which 41iapmcn1riation benchmarks, one cin only assunx the presec of
dependcrncies need to be benchmarked for real-trie the function CLOCK In the package CALEN$DAR.
emnbedded systoms. If lte prec Ision of the CLOCK function
23 Reabtftwm, Paradignis IsysTIL\ LTiCT) is not very high It can cause

error% in the timing mecasurements. Generally theThere arm a number of characteristic% of real-time execution time of a Ada feature Is much smaller
embedded systems that do not corrspond to a specific than SYSIlESLMCK.
Ada reature. but those characteristics can be constructed
using~ a combination of Ada features. Thiis approach also 2. Clock Overhoead: Another problem is the
Involves progratmming algorithms round in embedded inconlsistent time required for the CLOCK
systems. For example, a situation in real-time systems function. Sonic compiler Implentation return an
may be a producer that monitors a sensor and produces agregate data structure and this mnay requaire thle
output asynchronously and sends it to a consumer. The, calling of storape manageinent functions resulting
producer task cannot wait (or a rendezvous with the itt inconistent timing for the CLOCK function.
consumecr (who might be doing something else) as the 3. Clock Jitter: Clock readings are subject to the
producer task might miss a sensor redanp. To proprm usual statistical variations associated with physical

ti anaig in Ada requires three tasks: a producer measuremenats and can be expected to show
ask ufer task that receives input from the producer r'donvrain nown ais jiter.

task and sends time input to tlae consumer task. For real- idr iiin
time embedded systems, such paradigmns can be To overcomei the~se problems, a technique known as the
identified and programnmed in Ada. Thiese: benchmarks dual loop techniqlue 121 is used to measure the execution
can be run on Ada compiler implementations and time (or a specific feature. In this technique an
statistics gathered on thcir pecrformance. operation is perfornrad repetitively, and the aggregate of

mlultip!k executions is timed, By performing the
3, lcocpcBnhak operation repetitively, the time duration of a test is

Micoscpk k~aa~nrksincreased and the system clock can measure this time
Microscopic benchmarks are designcd to measure thme precisely. In fact, this is done twice, once in a control
performnance of individual features of the Ada loop without the feature being measured, once in a test
programming lingui~c. Blenchamarks have been loop with the feature. Subtracting time execution time of
designed for all the major Ada language features that -ire thes two loops, and dividing by the number of
important for real-time embedded systems. Since executions yields a calculated time for one execution of
optimizing coampilers generate different code for the the feature. Thei dual loop technique solves a number of
same feature dependiang oat thme context in whmich the problems that have been mentioned above.
feature occurs, it has been attempted to benchmark a 3.2 Tasking Ikncaniarkr
particular feature under different scenarios. The results FrAat ufl t oeta o meddsses t
will demnstae theturae o ef aceascae model of concurrcey - the tasking model -must be

witha laguag feauresufficiently fast to met the timing needs of such

After a detailed analysis of existing benchmark suites, it systems. Concern over eficiency and semantics of Ada
was determined that the methodology developed by the tasking could force many organizations using Ada to
University of Michigan 11IJ is best suited for avoid the tasking facilities entirely, relying instead on a
benebmarking specific Ada language and runtime separately written executive. There are specific concerns
features that are important for real-time embedded in the real-time appiato community regarding the
systems. This suite addresses the issues that are of smemnti ofehe a Ada tasking model disptnil
concern when designing benchmarks some of which are: imlmnainoeha. Aatsigmdli
isolation of features, accuracy, and thwarting compiler significantly different from current real-time paradigms
optimizations[2]. such as cyclic executives. In fact translation of

concurrency paradigms may force creation of
3.1 Benchmark Timting intermediary tasks with the risk of compromising real-

146 7th Annual National Conference on Ada Technology 1989



tame jiforrmnc. overhead affiets the efficiency of the system in both
1.24 Ttdsk Activasionf~crmina tion Some points to note sizfflj and tinnug. Beccause of the timiing constrints in a
about task activation! termination bcnchmarks are: real-tiumecanism be systefiet Is ssialhatth

1. The time to elaborate, activate and terminale a task cievu;m hasmbascfintspoil-
Is measured as one value- Tmc individual 3.3.1 Simple !Pcmde:vous '(he ;Imple reczkxous time-
componentis of the measurccnins arc too quick to gives a lowcr bound on tht rendekZVeus time because no
meaisure with the available CLOCK resolution. extraneous units of axtcution are comppeting ror thle

CPIU. Ths overhea is cipocted to occur each time two
2. Some Implcmentitions may Implicitly deallocate tasks are In a rendezvous wicd doef not include any

the task storage space on return from a procedure execution time for the statcnientg withii thea accrpt body.
or on "xit from a block staitement (when the task Simple rendezvous bcenmrks:
object Is declared in a procedure or block Mesr tim for simple (eftilevfs where entrystatmnt)l. It task sp~ace is Implicitly callocated, ,
the number of iterations can be increased to gt calls with no parametecrs a#t ma&- to tasks decared
greater accurAcy (or task activatiorulenminatioti in the main program~, block slatennts, packages.
nicasurcinant. If task space is not deallocatcd on procedatres, Benichmarks arc 4wr dksignicd to
return from a procedure or block statement, thecn dteirmnine if it is advantagcout for an app~lication to
thia attribute STOR ACE S17I; can be changed have more tasks with less vitrics cr less tasks with
such that the number -of iterations can be more entries
Increasd. * Benchmarks have also been designed to determine

The first set of benchmaiks measure task activation and the affect on entry call timec as the number of accpt
termination time under various scenarios: alternatives in a select statemecnt increases. For some

implementations, time for a rendezvous may also b
Th'lese bcxhmarks MeAsur task acted by tlia position of the accept alternative In
actlvationftcrznination timings for task objects the select statement. Based on these tests,
decrd in block statements, procedures. packages, application designers can choose to place the most
othitr tasks, airrays of tasks, and as pant of a record. timte-critical accept statements in a certain manner.
1he effect of existin; active tasks on task %leasure the affect of guards (on accep( statements)
activation/termination timings is also determined. on rendezvous time. where thea main programn calls an
Th'lese benchmarks; Measure task entry in another task (with no parameters) as the,
activation/termnination timings for task objects created number of accept alternatives In thc select statement
via the new allocator. Trimings are measured (or tasks increases.
created in a block statement, procedure, and arrmy of 33.2 Complex Remide.vous Complex rendezvous
tasks. The 0act of existing active tisks on task becmrs
activation/termination timings of tasks created via the becmrs
new allocator is also deterined. Since access objct *Measure the time required for a complex rendezvous,
does not exist on exit front the block statement, the where a procedure in the main program calls an entry
timing measured includes both allocation and in another task with different type, number and mode
deallocation timinps for the task as well as task of thea parameters. Rendezvous time may depend on
activation and termination tames. the size and type or the passed parameters which

Some conclusions that can be drawn are: may involve both the task stacks or the allocation of
I . The activation and termination time of tasks (or a separate area for passing large structures.

thea various scenarios that are described above Increasing rendezvous times (or array parameters us
determines if a real-time programmer should the size ot the arra y increases implies that the
declatre tasks for timec-critical modules in packages imp lementation uses pass by copy instead of pass by
or in thea main p.-occdurc, in procedures that are reference.
repeatedly called by other procedures, or within *iketermine thea affect on time required for a complex
other tasks in thea system. rendczvous, where the amain program calls in entry in

2. It an implementation does not deallocate thea another task with different type, numbexr and mode of
storage space occupied by a task on exit front a the pairameters as ilhe number of accept alternatives in
procedure then thea timings for task thea select statetncnt increase. For some
activation/termnination using arrays and without inmplenmentations. time for a rendezvous may also be
arrays should be compatible otherwise the timings atfected by the posation of ilia accept alteraative in
for task activation/tcrmnination using arrays can be the select statement. Also, the time for rendezvous
significantly higher. may increase as the number ot integer parameters

3.3 Task Sy'ichrontiation passed during the rendezvous increases.
In Ada, tasks communicate with each oilher via the *Determine the cost of using the terminate option in a
rendezvous mechanism. Rendezvous are effectively select statement. It the overhead due to the terminate
similar to procedure calls, yet they are much more option is high, then this option should not be used
complex to implement,. and therefore create a tremendousesecayitheeltvewtisnidalop
amount of overhead (or tlie run-time system. Th'lis .Determine the overhaead due to conditional and timed

7th Annual National Conference on Ada Technology 1989 147



entry calls whn a) tho rendezvous is completed b) size of the objects is known at compilation time, but
the rendezvous Is not completed. This benchmark spacc for tle objects is allocatcd on the stack at
measures the cxccution tim ovcrh"d of the runtime.
conditional and timed entry calls when the
rendezvous does and does not take place. This • surc time for allocaing vaiable amount of
ove rhad has to be considered whenever polling Is storage Variable storage allocation Involves
used to establish synchronization betwcen tuks. allocation of a variablc amount of storage when

entering a subprogram or declare block. In this test
Measure the affect on timc required for a complex case. arrays of different dimensions bounded by
rendezvous, where a procedure In thc main program variables arc allocated and tle size of the objects is
calls uw entry as the number of activated tasks in the not known at compilation time. Tests arc also
system increases. Time for rendezvous can degrade designed to detcrine thc threshold when objects are
with the number of eligible tasks due to the search allocated fron the heap rather than on the stack.
and soning Involved with prioritized dispatching. . Aot via thc Ncw Allocator. Based

3.4 Scheduling and DcLhy Stat:cnin on thes. timing nasurements real-tWime
Task schcduling is an important consideration for a programmers can decide, whether to usec the new
multitasking application. Rcal.time embedded sys!cms allocator for object elaboration or to declare the
contain jobs with hard deadlines for their execution. object as in fixed length case.
Failure to meet a deadline reduces the value of thc job's • Detcrnine the effect on time required for dynamic
execution possibly to the extent of jeopardizing the memory allocation when memory is continuously
system's mission. It is the responsibility of the runtinic allocated without being freed. Time for dynamic
system's scheduling mechanism to guarantee that tli allocation can depend on the state of storage
most important deadlines arc met while also meeting as management following previous allocations due to
nmny of the less Important deadlines as po;.iblc. For the need to recover storage and efficiently manage
scheduling tasks at a particular time, the delay statement the available space. If memory is allocated in a loop
can be used in conjunction with tl CALENDAR via the new allocator, and the memory that is
package. The precision of the timing depends on the allocated is not freed, then the time required for
implementation of the package CAIXNDAR and on the dynanuc mcmory allocation can bc affected as more
granularity of the underlying scheduler. The semantics space is allocated.
for tl delay statement, howcvcr, provides only that the
delay specified Is a minimum amount of the delay tinc. Determine the effect on time requid for dynamic
For real-rime embedded systems, it is the maximum memory allocation when memory is continuously
delay not ile minimun delay which is of interest, allocated without bein freed and also as the number
Another reason why Ada implementation of periodic of tasks in the system increases.
tasks Is not reliable Is the possibility of an interrupt 3.6 Exceptions
between ihe timea the delay is computed and the tinc ih
delay is requested. ence thea time at which delay Real-time embedded systems should be able to handle

in general, be predicted in advance, unexpected errors at run-time. Unexpected errors could
xpires cannot, ndnhave disastrous consequences if not handled properly.Determine the minimum delay time. This beichnrk Many real-time systems operate for long periods of time

determines the actual delay lime for a desired delay in stand alone mode and there is a need for efficient and
time specified in the delay statement. This extensive error-handling for such systems. The Ada
benchmark starts by ca!culating the actual delay time exception handling mechanism provides a means by
for a minimum delay of DURATION'SMALL. The which errors can bc detected and reported without
desired delay time is increased in steps and hei actual catastrophic results. Two kinds of exceptions can be
delay time calculated. raised when a real-time embedded system is running: a)
Determine if user tasks arc pre-emptive. Does a user-defined Ada exceptions and b) predefined Ada
completed delay interrupt the currently executing task ex.eptions (like NUMERIC ERROR,
to allow the scheduler to select the highest priority CONSTRAINT ERROR, TASKING ERROr, etc.).
tasks. Predefined exceptions may also be- raised because

pArticular conditions are detected in the underlying35 Afemory Aanagetent computing resource. Exception Benchmarks:
Ada is the first high order language intended for mission • Measure the overhead associated with a code
critical, real-time applications that requires dynamic sequence that has an exception handler associated
memory allocation and deallocation. The amount of with it, yet no exception is raised during the
storage required in these circumstances cannot be execution of that code. Sincc cxccption, are used to
determined by static examination of a program and indicate "exceptional situations", exception handlers
benchmarks must be executed to determine the efficiency should not be executed during normal program
of an implementation's storage utilization, execution.

These benchnmrks determine the time for allocating * Measure exception response time for a) user-defined
storage known nt compile time. Time is measured to exception and b) pre-defined exceptions
allocate and deallocate a fixed amount of storage NUMERIC ERROR, CONSTRAINT ERROR, and
upon entering a subprogram ur a declare block. The TASKINGERROR raised both Ey the raise

148 7th Annual National Conference on Ada Technology 1989



statement as well as duc to abnormal situations in the - Mcasu'€ the time to do an onchecked conversion of
application code. If the cecption hand-n times are different types of objects to other types.
significant, real.time embedded Sytcm prognttnlmr% • Measure the tim to store and extract bit fields using
can check and react to error situations in their loolean and Integer record components. There arc 3
program body rather than using using Ada scririm:
exceptions.

" Measure a) timing overhead duc to exceptions and b) NT tim i to store ans etract bit fields that arc
exception response time when exception nd Inclauses.
the block statentont when additional t,'ks are present • The time to store and extract bit fields that are

in tho systcm. Real.timc embedded systems have defincd by representation cla~u.cs.

multiple tasks existing in the system. The ti .es - Ilia time to s'ore and extract bit fields that are
measured by these benchmarks detcrine the affect packed by PRAGMA PACK.
of mult Ic existing tasks onl exception respcnse Measurc thc time to perform a change of
tines and tinting overhead due to exception. representation from one record representation to

" Measure Exception handling time when exception is another. Measure the time to perforn a change of
raised and propagated one (two. three) level(s) below represcntation from a packed array to an unpacked
where it is handled. User-delined, and pre.detined array.
(CONSTRAINT ERROR, NUMERIC ERROR, and • Mcasure the time to perfrm P0S, SUCC. and PRED
TASKING ERROR) exceptions are raised via the o rati n meto yewi represntation

raise statcxnint as well as abnornal situations in ortrations on enumeration type with rcprscnlation

code. ThCre are :hrce scenarios: a) no idle tasks c au citication.
exist in the system when the exceptions are raised, b) 3.8 hzierrupt lIlandllnq
a Idle tasks exist in the system when the exceptions In real-time embedded systems, efficient handling of

reraiscd and c) 10 idle tasks exist in tr systmts is very important. Interrupts are asynchronous

when the exceptions are raised, events. In a real.time embedded system, interrupts ar
" Measure time to handle TASKING ERROR critical to the ability of the system to respond to rcal-

exception in the callin; task. This bencrmark is time events and perlbonn its required functions and it is
executed with 3 scenarios: none (5, 10) idle tasks essential that the system responds to the intempt In
existing in the system when the exception is raised. some fixed amount of time. Benchmarks for interrupt
If task exception handling time within a rendezvous handling include:
is costly when compared to exception handling time * Measure Interrupt Response Time. Techniques for
in a prucedure or block, then serious consideration Measuri Intrupt Response Time Tches for

must be given to providing an exception handler ocasuring intrupt response time are very difficult

within the accept body of the thme.critical tasks. as hardware extern'4 to tile CPU must be involved in
order to generte lntrrupts. This measure is totally

" Measure drite to propagate and handle exception dependent on the hanware involved, although son
when a child tik has an error duing it% elaboration, general criteria for measuring the interrupt response
This benchmark is executed with 3 scenarios: none time is discussed in this report. External
(5, 10) idle tasks existing in the system when the instrumentation (.1.. electronic equipments, real-time
exception is raised. timers etc.) is required to accurately capture the time

3.7 Chapter 13 Benchn arks of interrupt occurrence.

Ada defines some features which allow a programmer to 3.9 Clock Function aut TYPE Duration
spc'y the physical representation of ait entity, i.e., map For rcal.tine embedded systems, the CLOCK function in
the abstract program entity to physical hardware. These the package CALENDAR is going to be used
features are implcmentation.dcpelndent: an extensively. The implcnitation of the system clock is
implementation is not required to support these features. an important factor in the overall capabilities of the
For real-time embedded systems, it is necessary to that systen. The CLOCK function reads the underlying
the Ada LRM Chapter 13 features be implemented and timer provided by the system and returns the value
made mandatory as the application designers have to associated with the timer. If the time taken to execute
deal with two levels, the abstract and representation the CLOCK function is less tian the time resolution,
level. Some Chapter 13 benchmarks include: successive evaluation,; of CLOCK will return the same

* These benchmarks measure time to perform standard value. Most computer architectures have two kinds of

boolean operations (XOR, NOT, OR, AND) and hardware for timing. Th,, cnunter timer chip used to

assignment and comparison operations on records drive the system clock defines the minim granularity

and arrays of booleans. The tests are performed on of time available to the system. The second !-.--el of

entire arrays as well as components of arrays. I granularity is the basic clock period which can be found
in the Ada package SYSTEM (SYSTEM.TICK).

arrays are PACKED with the pragma 'PACK', Typically, some reasonable value is chosen for the size
representation clause is used to specify array size and of the CLOCK period, and an interrupt is g.neratd at
the arays are NOT PACKED with the pragma this rate.
'PACK'.

7th Annual National Conference on Ada Technology 1989 149



Thea Ada type DURATION is not required to have the From our own exicricncc as well as aftcr analyzing
same resolution as the clock period. It is required by ihc existing benchmarks. subprogram overhead has to be
Ada LRM to be at most 20 milliseconds and that it be measured for inter- and intra-packages as well as generic
no morc than 50 microseconds. A real-time cmbcklcd and non-gencric instantiations of code. Procedure Call
system has timing constraints that require response Latency is the elapsed time between thc moment of the
within a predetermined time interval. The clock period event to the start of the statement execution following
or resolution of type DURATION must support these the event. In all tih benchmarks, simple and composite
requirements. Benchmarks include: paramctcrs arc passed with rdcs in, out, and in out.

" Measure CLOCK function overhead. If the overhead ilia following cases arc considered:
associated with executing the CLOCK function is • Intra package reference: both caller and called
high, then real-time embedded systems will be subprogram arc part of ihc same package. Procedure
hesitant to use thc CLOCK function. Also, as call overhead is also measured for intra package calls
discussed previously, the CLOCK overhead does add with pragma INLINE. If the timing for subprogram
to the tme required to make a benchmark overhead for intra-package calls (without pragnma
measurement. But the dual loop becnchmarking INLINE )is nearly zero, then i is possible that the
stratc,.y can negate this effect by subtracting the compiler is INLIyng procedure calls.
control loop from the test loop. I er is Refren ce urelia lls.

• Measure CLOCK resolution. If the resolution time * Inter Package Reference: The motivation for inter-
of the CI.OCK function is not high, then for real- package tcsts is to compare thc subprogram call
time applications a higher resolution clock is needed. overhead and procedure call latency rme betweenintra- :rnd inter.package calls.

3.10 Numeric Compuation • Insiantiations of Generic Code: In the tests for inter-

An embedded system must be able to represent real- and intra-package calls, the subprograms arc part of
world entities and quantities to perform related generic packages that are instantiated.manipulations and computations. There should be
support for numerical computation, units of measure
(including time), and calculations and formulae from The main purpose of pragmas is to select particular
physics, chemistry etc. Ilcnchmuirks include: runtime features of the language or to override the

" Measure the overhead :ussociated with a call to and compiler's default. There arc certain predcfined pragmas
return from the "+" and -" functions provided in tile which are expected to have an impact on te execution
package CALENDAR. For real-time embedded time and space of a program. These include:

it is necessary to dynamically compute CONTROLLED, INLINE. OPTIMIZE. PACK,systems, SHARED, andJ SUPPRESS.
v:ilues of type TIME and DURATION. If the
overhead involved in this computation is significant, lThe benchmarks for pragnma SUPPRESS dctcnine
the actual delay experienced will be longer than the improvement in execution time when pragmas
anticipated which could be critical for real-time SUPPRESS is used. These are test problems which
systems. contain the same source text where the only
Determine time required for float matrix difference between the problems is the presence (orDeemn-ie eurd fr la arxabsence) of pragmas. Pragma SUPPRESS causes the
multiplication and addition, factorial and squareroot compiler o oit h repni Eceptocalculations. compiler to omnit the corresponding exception

checking (RANGE CHECK, STORAGEI CIECK
3.11 Subprogram Overhead etc.) that occurs at runtime.
In Ada, subprograms rank high among program units - Determine if pragma CONTROLLED has any affect
from a system structure point of view. Systems designed for a access type object.
and implemented in Ada appear as a collection of Benchmarks for pragma INLINE and PACK are
packages and subprogram units, each of which may have covered before.
multiple procedures. For real-time programmers to use
good programming techniques and structured system 3.13 lnputlOutput
design methodologies, it is important that subprogram Embedded systems depend heavily on real-time input
call mechanism be as efficient as possible. and output. An Ada embedded system must have
If the subprogram overhead is high, then the compiler potential access to I/O ports, to control, status and data
can generate INLINE expansion at the cost of increasing registers (for a memory mapped scheme), to direct
the size of the object code. However, if calls to that memory access controllers, and to a mechanism for
subprogram arc made from a lot of places, then the enabling and disabling interrupts. An excellent
pragma INLINE defeats the purpose due to increase in discussion of 1/0 is provided in the paper by Wciderman
size of object code. In embedded systems where 191. Real.time 1/0 is subject to strict timing
memory is at a premium using pragma INLINE may not requirements and can be either synchronous or
be a practical solution. Also, a compiler implementation asynchronous. To handle 1/0 for a specialized device, a
may not support pragma INLINE. If subprogram special interface is needed. This interface provides the
overhead is high, programmers may be forced to use attributes found in device drivers and interrupt handlers.
assembly language for time critical regions. I/O benchmarks:

150 7th Annual National Conference on Ada Technology 1989



• Detcrmine if true asynchronous 1/0 is implemented. • What happens to tasks declared in a library package
when the main program tenninates? For sonic real.

These benchmarks deal with TEXT 10. The tests ltedc crnbcdded applications, it is desirable that such
are designed to open data ile fOr reading and tasks do not tcrminatc. System designers nccd to
copying the data to another file. Time is measured to know this information.
achieve the above for each type of 10 mentioned
above, create an output file and then copy the fixcd * Determine order of evaluation of tasks named in an

type values from the input ile to [tic output rle. abort statcmcnt. Abort statcnicnt provides a
convenient way to terminate a task hierarchy. When

4. Runtine Implmntnlion BHenchnurks a task TI aborts a task T2, the result
T2'COMPLETED is true when evaluated by TI,

The Ada Language Refcrcnce Manual (LRM) has a lot Other tasks may net immediately detect that
of implementation dependent features that are of conccru i1'COMPLETED i, true. In real.tmc embedded
to real.time programmers. A list or the implementation systems, tasks may have to be aborted in a certain
dependent features is compiled in a document published sequence. The scmantics of the abort statement do
by the Ada Runtimc Environment Working Group (5]. not guarantee immediate completion of the named
The large variance in implementation options for a task. Completion must happen no later than when the
feature affect application program behavior and task reaches a synchronization point.
efficiency. This is a clear signal that simply adopting the
language as dcfined in the LRM is not enough for real. • Sonic other runtime implemcntation dependencies

time embedded systems. T7he implementation approach that concern the abort statement and cannot be

of various Ada language features and the runtime system benchmarked arc:

has to be bcnchmarkcd to assess an Ada compiler's • When does a task that becomes aborted beconsi
suitability for a real.time embedded application. completed?

4.1 Tasking • What are the results if a task is aborted while

Tasking runtime implementation dependencies: updating a variable ?

Dctcrmine if task space is dcallocated on return from • Determine algorithm used when choosing among

a procedure (when a task that has been allocated via branches of a selective wait st:tement.

tie ncv operator in that procedure tcrminates). In • Determine algorithm used when choosing amcng
real.time embedded systems, where space is at a branches of a selective wait statement.
premium, it is necessary that task space be
deallocated when that task terminates. s Determine that on queued entry calls if a compiler

ises the FIFO method of accepting the entry calls
Determine if tasks that are allocated dynamically by that arrived first, irrespective of the priorities of the
the execution of a allocator do not have their space
reclaimed upon termination when access type is entry calls queued up.

declared in a library unit or outermost scope. II * Determine the order of evaluation for guard
might be impossible for the runmime system to conditions in a selective wait.
deallocate the task storage space after termination.
This is because the access value might have been * Determine nethod used to select from delay

copied and an object might still be referencing the alternativcs of the same delay in a selective wait.

terminated tasks task control block. • The following information needs to be supplied by

* Determine the order of elaboration when several the compiler vendors about task priority.

tasks are activated in parallel. When several tasks I. Determine priority of tasks (and of the main
are activated in parallel, the order of their elaboration program) that have no defined priority.
may affect program execution. 2. Determine priority of a rcndezvous bciwecn

* Can a task, following its activation but prior to the two tasks without explicit priorities.
completion of activation of tasks declared in the 3. Determine if a low priority task activation
same declarative part, continue execution. The could result in a very long suspension of a
activation of tasks proceeds in parallel. Correct high priority task.
execution of a program may depend on a task
continuing execution after its activation is completed • Does delay 0.0 simply return control to the calling
but before all other tasks activated in parallel have task or causes scheduling of another task.

completed their respective activations. 4.2 Memory Management

* If the allocation of a task object raises the exception • Determine STORAGE ERROR threshold. This tests
STORAGE ERROR, when is the exception raised? are basically concerned with determining at which
The LRM does not define when STORAGE ERROR point exception STORAGE ERROR is raised. If
must be raised should a task object exceed the memory is allocated in a loop via the new allocator,
storage allocation of its creator or master. The and the access variable that is pointing to the
exception must be no later than task activation: allocated memory remains throughout the run, then
however an implementation may choose to raise it STORAGE ERROR will be raised at some point. A
earlier.

7th Annual National Conference on Ada Technology 1989 151



real.time embedded systems programmcr needs to
know the amount of memory that can be dynamically * Intermediary Tasks: Many real-time implementations
allocated without raising STORAGE ERROR. rcquire buffercd and unsynchronizcd communication

betwcen tasks. Rendezvous is the mcchanism u cd" Determine if Garbage collection is performed on the in Ada for task communication. Due to thefly. Detenninc if Garbage collection is performed on rende'vous being a synchronous and unbuffcred
scope exit. tnies., passing operation, intermediary tasks are

* Determine if Unchcckcd Dcallocation is needed to uncouple the task Interaction to allow taskS
implemented. more indcpendcnce and increase the amount of

43 lconcurrency. Various combinations of intermediary3Iterruipt Hanlinfg tasks arc used in different task paradigms to create
The following inforniation about interrupt handling is varying degrees of asynchronism between a produccrneeded by the software designers This information has and consumer. Intetdiary tasks introduce a lotto be obtained trom the compilcr vcndor. more rendezvous in a real.time system titan if ato etermained irt terr c ery cl iproducer and consumer were directly communicating

" Determiine if an interrupt entry call is implemented as with cach other. The use of intermediaries also addsa normal Ada entry call, a timed entry call, or a to the cost of executing a real-time design in Ada.
conditional entry call. Implementation restrictions on The benchmarks in this section evaluate the cost ofthese interrupt entries. Cnn they called from the introducing intermediary tasks for various real-time
application code? Call they have parameters ? tasking paradigms. The goal of these benchmarks is

• Dctcrmine if an interrupt is lost when an interrupt is to give real-time programmers a feel for the cost of
being handled and another interrupt is received rom using such paradigms in a real.timc embedded
the same device. application and to avoid using such paradigms if the

cost is unacceptable for a real-time system. Sonic of, Determine the restrictions imposed by an the scenarios that have becn bcnchnarked include:
implementation for selection of the terminate Producer.Consumer, Buffer Task, Use of a Bufferalternative that may appear in the same select and Transporter, use of a Buffer and Two
statement with an accept alternate for an interrupt Transporters, use of a Relay etc.
entry. Selecting the tcrminate alternative may
complete the task which contains the only accept * Asynchronous Exceptions: Quick restarts of tasks
statements which can handle the interrupt entry calls, are required in a number of real.time embedded
leaving the hardware unscrviced. systems. Ada model of concurrency does not

provide an abstraction where a task may be" Determine if an interrupt entry call invokes any asynchronously notified that it must change its
scheduling decisions. current execution state. One way to implement

asynchronous change in control is to abrt the taskAn interrupt need not invoke any scheduling actions. and then replace it with a new one. Aborting a task
" Determine if accept statement executes at the priority may not be appropriate for an application because an

of the hardware interrupt, and if priority is reduced abort can take a long time to complete or because the
once a synchronization point is reached following the asynchronous change of control needed is something
completion of accept statement. other than termination. Abort and task initialization

arc expensive operations and a abort could take a" Determine if interrupt entries can be called from long elapsed time to complete.application code. a Selection of Highest Priority Client during an Entry
5. Real-Time Paradigms Call: The LRM states that in a select statement if

more than one accept is open and ready for aThe designers ot r ,c-time embedded systems have to rendezvous, then any one -,ccept can be chosen andlive with the problems of Ada until a solution is found the choice is left to the compiler implementor. In
(maybe by revising the language). Users, system real-time embedded systems, it may be necessary to
programmers, and academicians have found a number of choose the highest priority waiting client.
useful paradigms for building concurrency. Real-time
systems will be designed as a set of cooperating This benchmark implements a a generic package that
concurrent processes (Ada tasks) using the Ada tasking orders client requests so that they are processed by
model. Translation of concurrency paradigms may force the server in a priority order. This package logicallythe creation o intermediary tasks with the risk of exists as an intermediary between the clients and the
compromising real-time performance. This includes server. The overhead to this solution is threeintermediary tasks, monitor/process structure, additional rendezvous for each prioritized
asynchronous message passing, interrupt procedures, and adevous.
even' signaling. These paradigms can be coded in Ada rendezvous.
and benchmarked. Also, a compiler implementation may . Monitor/Process Structure: A monitor is commonlyrecognize these paradigms and perform optimizations to used tar controlling a systems resource. Such a task
implement that paradigm much more efficiently. Some performs a watchdog function and would be
paradigms that have been benchmarked include: classified as an actor task (Actor tasks are active in

nature and make use of other tasks to complete their
function). Semaphores are an effective low-level

152 7th Annual National Conference on Ada Technology 1989



synchronizinp primitive. Ilowever. ilie ust of [1"aaou fItraeFaue n pin o

semaphores in an complex application can result in(6 CtlscoInefeFciuiadOposfr

disaster if an occurrence of a semnaphore operation is ilia Adai Run Tinic Environment', ARTEWG

omitted somewhere in tlie system or if ilhe use of a Report. October, 1986.

semaphore is erroneous. A mn1fitor relc. ilia (7) "Technology lnwertion For Reail-tine Embedded
need to perform operations on semaphores. Entry to ytos.LbcIn.Ju,19.
a monitor by one process excludes cintry by an Sytms.LtheIn.rJl. 96

process. A monitor thereby ensures that if it has 1S) Tiscr's Manual For thle P'rototy'pe Ada Compiler

exclsiv acessto reoure, hena mnho's serEvaluation Capability (ACE(C)", institute For

hexclusive access Dotatrsurefeitisi~ nse Analy-sis, October, l9S5.
proram amonitor is developed in Ada. 'ilia

problem is having a pool or datm common to a group About the Author:
of processes. 'Ili data in ilhe pool may be set by one
or more processes or u:~d by one or more processeS. AridG ecvdhi13Tc.dcr ntlcrcl

Any number of processes are allowed to read the Arvindeci froceve 1 is 8.nprh.da in ElecrialdM

pool simultaeusy but no reads arrmite re inCmue13ecsfrn h nvriyo

dufg . write opelration. The monitor developed is degmar in 9liuSc. iens theronde f Univprst ofc

used to control thea reading and writing of data to ila Dlwreie92 Il isothin onderloing coposIte.

pool.benchmarks to model a1 Class of real-time systems. I e is

Mailbox: In message passing, a question that arises al1so working onl CASE too)s and their npplication to
is where messages are to be deposited. A common real-time systemns. Ili, neet nld rgamn

paradigm involves "miailboxes" which are global languages, Ada compiler evaluation, APSE research and
variables upd~ated by processes to provide evaluation, and developing software for embedded
asynchronous communication. These are specially aplcations and distributed targets.
suitable for such situations as the prod ucerlconsu mer mailing Address:
scenario in which a producer produces some output Unixpros Inc.
which is consumned by a consumer process. T"he
mailbox implementition of this involves a global 16 B~irch Line

mailbox visible to both these processes, and a send Colts Neck. NJ 07722
operation by the producer into tils mailbox. The
consumer then perromis a receive operaki ,' on the
mailbox to retrieve the data.

6. Conclusions
Bcnchmarking Ada implementations to determine their
suitability for real-time embedded systems is an
extremely complex task. This job is made even more
difficult due to differing requireme~nts of various real.
time applications. Ini the near future, the authors plan to
develop composite benchmarks to model some real-time
systems used in thle US Army.

REFERENCES

(1) A. Gocd, "Real-time Performance Benchmarks
For Ada", TAMSCO Technical Report, October,
1988.

(21 R.M. Clapp et al., "Towards Real-time
Performance Benchmarks for Ada", CACM Vol.
29, No. 8, August 1986.

(31 N. Altman, "Factors Causing Unexpected
Variations in Ada Benchmarks", Tiechnical
Report, CMU/SEI-87-TR-22, October 1987.

(41 N. Altman et al., "Timing Variation in Dual Loop
Benchmarks" , Technical Report, CMU/SEI-87-
TR-21, October 1987.

(51 "Catalogue of Ada Runtime Implementation
Dependencies", ARTEWG Repurt, November,
1986.

7th Annual National Conference on Ada Technology 1989 153



REAL-TIME Ada DEMONSTRATION PROJECT

Mary E. Bender Thomas E. Gricst
U.S.. Army CECOM LabTek Corporation

Center for Software Engineering 8 Lunar Drive
Ft. Monmouth, NJ Woodbridge, CT

ABSTRACT included tasks that investigated guidelines to sclect
The Ada programming language has been and use an Ada Runtimc Environment (Ri), an

available to software developers for several years, approach to tailor and configure a R'I' benchmArk
yet its acceptance into the real.time embedded evaluation and dcvelopnent for pcforumnce te-ting,
applications for which it was intended has been less reuse handbook cxtcnslon for real.time, a real.time
than universal. This project was designed to study methodology framework, and transportablihy
the capabilities of Ada in the most difficult real.time guidelines.
applications which have traditionally been done in After establishing this set of prmblen, the
low level languages. A compille; with essentially all next step was to pick a prominent difficulty and show
of the optional features of Ada and very good tasking how to solve it. A large percentage of those
performance was selected to assess the state of the interviewed pointed to the lack of performance
art in Ada compilation systems. The project is provided by an Ada RTE compared to what is needed
described as well as specific real.time reluirements for real.tinm embedded systems. In particular, Ada
that were imposed on its implementation. Details of tasking facilities have perforned poorly In
the problems encountered and the findings of the comparison with alternative approaches. It should be
development team are provided to guide others who noted that performance is always an issue in real.
will be using Ada for similar applications in the near tinc systems, even when programmed in assembly
future. language, but the problem is made more pronounced

when a high order language such as Ada is used.

BACKGROUND

APPROACH
There is an ongoing program at the Center for

Software Engineering at CECOM to explore Ada An approach to solving this performance
rcal.time/nuntimc technology for the purpose of problem was defined through the denonstration
providing guidance to the developers of Anny project which is the subject of this paper. It proposed
embedded real.time Ada systems. A large number to develop a rtal.time application with a single Ada
of research tasks on various real.time topics have program containing multiple tasks and measure its
been completed and others are in progress. Work in perfomtance. Then the program would be distributed
this program area has been supported by CECOM, as appropriate onto multiple CPUs to obtain the
STARS, and AJPO. desired performance that couldn't be obtained with a

The program is based on recognized problems single CPU. This approach rezognizes that to regain
and the consensus of experts in this area. It began tie performance lost through the use of a high order
with an extensive study to identify the root problems language, users must take full advantage of the
causing difficulties in the development of real-tima language which allows complexity to be managed
systems written in Ada. Program managers and more easily. Additional complexity can take the form
developers were interviewed and a list of problems of a sophisticated algorithm which irE more efficient or
was defined, analyzed, and compiled into a by adding additional processing elements to increase
database. From this identified set of problems, throughput. In order to improve the performance of
studies were initiated on varioas topics. These systems developed with Ada, developers should

154 7th Annual National Conference on Ada Technology 1989



take advantage of parallel structures within the commercially available Ada compiler and supported
language which facilitate the use of additional the Ada scmuntics by extending the runtinc system.
processors to increase system pcrformncc. laving The vendor supplied runtime code was not nodified
the ability to add processors to achieve system except to customize interfacc routines for a specific
performance requircmcnts allows for substantial risk hardware tiner and Interrupt controller. lic unit of
reduction, distribution supported was the Ada tzsk. The issue

In addition to solving an Identified problem, of shared memory has frcqucntly been addressed by
tho overall goals of the project werc many. The totally restricting its use. Although distributed
dit 'a!tics in real.tine Ada programming wcrc shared variables weren't needed for this Initial
aresscd from an Ada technology perspective. The prototype, an analysis was done on what would be
demonstration wanted to show how to work through required, to support such variables because they
a problem and not work around it as may be would givc greater generality to what can reasonably
necessary in the "heat of battle" associated with be distributed. Full Ada semantics Including the Ada
hrdwaresoftwarc intcgration. The project wanted rendezvous were prcscrvcd across the distributed
to how there can be neartern solutions to critical system so that no source code changes were
problems while continuing research on long.tenn necessary to alter the allocation of tasks to
solutions. The results are Intcnded to provide processors. This allocation was done using a simple
accurate details on some of the "perceived" problems distribution table that specified the object names, the
with Ada for real.time to dctcrninc if they arc "real" processor ID, and relevant characteristics.
problems or rather problems created, for example,
because of the preconceived mindsct or the developer
or other non-Ada causes. It was also designed to PROJECTIDESCRIPI'ON
study and document difficulties in distributing tasks
within Ada programs onto a multiple CPU RT. It The project Involves the development of a
indicates what is achievable using Ada and how typical weapon system application with severe
performance can be improved by judicious use of pcrformnce requirements. The application Is
language features. Finally, the project attempts to synthetic, but resembles many similar weapon
show that it can be practical to use distributed systems in DoD applications in terms of scheduling
systems cfrcctivcly within the Ada model of and real.time requirements. It includes target
concurrcncy and that the difficulty of adding additional tracking, weapon guidance, graphics and user
processors can be minimized. The work done on this interface functions all integrated into a complex
project is expected to be made aviable to other application. In some cases, simplifications were
researchers, developers, compiler writers, and adopted because they did not alter the naturc of the
members of the Ada real.time community to aid in application significantly and to reduce some of the
understanding and resolving the real.time Ada detail that was relt to be redundant for demonstration
issues. of capability. The scenario chosen describes the

Two scparatc but related topics are covered problem and solution in tcrms recognizable to many
by this project: a real-tine application developed to users and developers of real.time applications
be run on a unlprccssor, and the distribution of Ada without being tied to any one particular system.
programs for loosely coupled multiprocessors. The The hypothetical weapons application is
software was developed to be independent of the called the Border Defense System (BDS). It is
target architecture. Therefore it was developed with designed to provide short to medium range protection
the intention or running on a singl. CPU essentially against a massive annored attack. The BDS tracks
divorced from the underlying implementation ground targets and attempts to des'roy these targets
architecture. The distribution aspects were with guided rockets. In addition, a simulator was
intentionally deferred until after the detailed design developed that provided target und rocket motion.
to prevent the characteristics of the distuibution The BDS receives target position information from a
mechanism from influcncing the design. The intention surveillance system (simulator), generates a real-
was to make the distribution process as simple as time graphics display for an operator, launches
possible. Current approaches require using non.Ada rockets to intercept targets, provides real-time
tasking primitivcs. Using non-Ada tasking rocket guidance data, updates tie color graphics
primitives mreans modifying the source substantially display to indicate the rockets' flight progress in real.
when distribution occurs a'd understanding two time, and provides post attck assessment
distinct tasking models. This project utilized a information and the number of active targets and

7th Annual National Conference on Ada Technology 1989 155



rockets to the lDS operator. calculations. A key component of the method is to
The performance requirements of the BDS rrototypc those algorithms that arc known to be

specify a one hundred percent hit nte whilc operating rcqulred In the system, but their execution time is
in the absence of effcctive cnuntcrmcasurc and with difficult to accurately estimate. Thc resulting
the conditions specified in the Paramcter Data llasc prototype data Is used to develop tinting budgets and
(PDII). The PDB enumerates target and rocket design a softwarc structure to Insure correct timing.
parantcr ranges for factors such as velocity. turn- Emphasis Is placed on meeting softwarc dcadlines
rate, thrust, and position. The BDS specification also first, and to get the cxact functionality later.
states that the softwar shall be developed in the lowever, functionality must be sufficiently correct to
"full" Ada language. No assembly language is modcl the timing accurately. This approach is driven
pcrnttcd. Ada "codc" statements may be used, but by previous experience that it is often much easier to
are limited to a total of fifty. All application "fix" the functionality rather than the pcrfonance.
concurrency Is expressed using the Ada tasking Put another way, it can be extremely difficult to
model (rendezvous) exclusively. 111c system improve the performance of a system that Is grossly
includes heavy computational requiremnents such as out of specification. Systems that arc initially five to
squarc roots, tangent, and arc tangcnt, and twenty times too slow arc not uncommon and
rocket/target correlation. Also communication with frequently result in complete redesign. This places
the underlying nctwork implementation is stressed. timing on top of the "risk" list. When the

The liDS is a hard deadline driven functionality of some processing is not well
application -failure to meet timing requirements will understood, these are also appropriate areas to
result In mission failure. The total system demand is prototype. Prototypes may be utilized in the final
a combination of rocket guidance, graphics display product providing they arc upgraded to insure
update, and operator intcrface requirements. compliance with coding styles. The process

associated with the design method used is described
as the Ada Time Oriented Method (ATOM). By

IROJECT IMPIEMENTATION knowing the difficulty of the real.time aspect, the

program can be writcn to maximize maintainabilityThe implimeaton of tce demonstration while still meeting the perfonnance objectives. The
project was accomplished by a tem conslsting o general philosophy is to always have a spectrum of
contractor and government personnel. The lBDS and choices to select from that provide increasing
distribution effon was done by the contractor with performance, at the sacrifice of memory, complexity,
the simulator being developed by the govrnment, and case of maintenancc. A program that is
The development was at geographically separate maintainable but does not function because of
locations. The contractor's facilities were perfonnance problems is just as useless as a
installation. Alhough frquent trips And phone program that functions but is not maintainable. Both
conversations wr used as well as electronic mail objectives arc essential.
Scoertionsrwereousedxasewellas lectronicumlt tThe implemented application code consisted
the coherency of a complex design is difficult to of 3,200 lines of Ada and 31 code statements. There
maintain in this type od environment. ligh speed were 31 library units/subunits containing eleven
modems wer installed to reduce comptuter.to tasks, one of which was an interrupt handler. The
computer delays and shared access to a development runtime code to support distribution was 900 lines of
system. Even with these serices, it was generally assembly language. This was done to be compatible
fcht that the project suffered from communication withl the vendor supplied runtim which was

errors. Due caution should be exercised whenever iplete entir liem lngue Th top

multiple design sites are planned for software implemented e ntirely in assembly language. 1he top

development. level design of the BDS is shown In Figure 1.

The design approach is time/risk driven to
address the areas first that are perceived as most PROBLEMS AND SOLuriONS
difficult. This software design technique is targeted
for hard real-time embedded applications where the The most crucial demand for real.time
most difficult aspect of the project is meeting the performance came from rocket guidance
timing requirements. In these applications, the requirements. To achieve the accuracy necessary to
correct functioning of the system depends on proper correct for flight trajectory errors and target
timing as much as the correctness of the acceleration, each of twenty rockets had to be

156 7th Annual National Conference on Ada Technology 1989



providcd ncw guidance aimpoints cvey l00ms reticle, and statistic infornation cach being revised.
Fixcd point calculations werc used to improvc as many as 1,235 screcn updatcs per second were
processing throughput. Previous cxpcricnce had rquircd. An update consists of crasing and
provided warning that It was difficult to gct fixed redrwing a symbol containing bctwen six and
point numnbers with a 'SMALL that is not a powcr of thiny.thrce pixels. This provided an avcrage pixcl
two (most Implermentations restrict representation write tim of 20,600 pixclssceond or 4Ouspixcl.
clauses on 'small to a powcr of two). 11ercforc, it Tlhis wAs the only place where inlinc codc
was Imposed on thc systcm design that thc statements wcr utilized for performance. Thcsc
hardware provided all dimensions as a power of two statements provided variable shift operations that
value. could not be achieved with the Ad codc gencrator.

Another task that was throughput intcnsive Pinally, thc opcrator pointing device imposed
was the graphics display update. Although much the most severe intcmpt rcsponsc.tlnc
less computation orientcd then rocket calculations, requircmcnt. To achieve a system specification of a
the shcer volunc of transactions madc rcil.timc .0ns updatc ratc, the harttware had to be configurcd
response difficult. With 100 targets, 20 rockets, a to respond every 28is with :t fivc byte data stream

BDS Top Level Desiqr
Sh t tGtus MISC.

T Updae Dat
Arce TomTonc

Gid P, get

Interut PFrrfern op. . J
=~ £-7

Rc ":ket T.. rck
Control G-raphics

pD. lDsptoy

_ _oc _T r ,a,

Simula t e
R[ . Sensor

Figure I - BDS Top Level Design

7th Annual National Conference on Ada Technology 1989 157



at a rate of 2msslbysc. 11c solution was to use an expression. The failure nodc was to select the zcro
implementation dependent inmipt handler pragma color. black, -,hich gavc the appearance that nothing
to execute the Intcrmpt code without a full task was working, when In fact invisible targets wcrc
context switch. As data fromi the poln:ing device moving on the screen;
was colkectcd, a small amount of processing was 4) The pragna to cstablish task storage size
pcrformed in the Interrupt routine and the time did not function. This resulted In the program
consuming functions wer off.loaded to a background tcrminating before Initial elaboration was complete.
buffer task. nhc program would simply crash with no exception

Sonic of thc major problens encountered were trace back duc to the fact that the progam had not
because the "cxtcndcd" fcatures of Ada are not completed elaboration. Tlis required singlc.stcpping
widely used and thcy have the greatest rhumeor of through the code to locate the problcm. Thc solution
anomalies. The notable ones arc as rollows: was to use a linker option to set the library stack

i) LONG..IXED division was unreliable, size, although it then applied the same stack size for
Ccrtain numbers (resulting in bit pattcrns very close all library tasks; and
to IIR-FIn) caused divide error. This was 5) Package CALENDAR elaboration check
manifested by causing a NUNIERICJ3RROR after was niot pcrfome:d properly. A number of problems
hours of operation and hundreds of rocket launches with claboration were encountered due to library
and target intercepts. It was solved by using an tasks starting execution before other units .'rec
exception block which altered the expression slightly elaborated. One strange problem was caused
and recomputed thc value; because no elaboration check was performed prior to

2) There was improper Inlning of code calling the CALENDAR.CLOCK function to
statmcnict If the last instruction of the calling establish the periodic start point. Apparently the
;..quencc used the sai.4 register as the first CALENDAR package body had not been elaborated
Instruction of the machine code procedure to be and the CLOCK function returned the time of a few
inlincd, the code generator would exchange the two hundred microseconds of uission time. Then after
instructions, for example, the calling task was suspended for a rendezvous the

nov lRp.1l.x CALENDAR package was elaboratcd, which set the
inov e. Itp-201 ...cod, sucmcnct gin TIME value to sone time in 1987 (a very large

txd e number). When the task resumed execution, it

Mov CA. tw-] reached the end of its loop and attempied to compute
r, ov lbp. 10J,cx.imdred, tslts in stong the delay neccssary to achieve the desired Interval.

-inrrect . Since the delta timc was almost 2,000 yewrs, it
Note that this problem appeared after the code in exceeded tlhe range of duration and a
quesion had already undergone successful NUMERIC.ERROR was raised (although a
integration testing, I.e. after a rc-compllation cased TIME._ERROR should have been raised).
diffr.nt registers .o be used (with no changes in Finally, a problem with the Ada language
compiler switches). The solution was to use "mov surfaced. There are no provisions to perform a
cx, cx" which can be re.ordered with no effect; sequence of application statements and a runtimc

3) Complex expressions did not always service such as ACCEPT without the possibility of
generate the correct code sequence. Actual intervening preemption. The application has a
parameters containing array aggregates, which in requircment to accept frequent interrupts, buffer the
turn consisted of multidimensional array references data to a certain point (based on the input stream),
with non.integer subscripts, resulted in a failure for and then perform a considerable amount of
the appropriate segment register to be loaded processing on the data, while new data is arriving.
correctly. ie graphics task takes a parameter list This is done by having an interrupt task perform the
consisting of the old and new positions of an object buffering, then passing the data off to a background
(x,y), the object type (rocket, target, etc.), and a task. The problem is that the interrupt task nay not
color. To determine the color, an array indexed by be suspended for any reason other than to service
the object type was used in one dimension and a higher priority hardware interrupts. This implies that
status flag indicating if it was engaged for intercept a conditional rendezvous is required. However, what
was used in the other dimension. This causes is really required is the ability to queue the buffer and
targets to "light up" when engaged for intercept, request, then signal the background task if it is
However, it did not work and the code was rewritten suspended waiting for new data. Essentially there
to creatc temporaries during each step of the arc two approaches to handling this problem: 1)

158 7th Annual National Conference on Ada Technology 1989



provide a sufficicnt number of buffer tasks so that Initial consideration, but does not require detailed
they can act as surrogates on the entry queue of the information regarding the configuntion of thc target
background task, or 2) maintain a flag that is only set hardware, i.c. the number of processors. Limiting the
when the buffer task Is ready to immediately accept a amount of shared data is a general objective to
rendezvous. This requires that the background task facilitate distribution. To fully utilize all available
disable any type of precmption, check if there is more processors, a deign should implement independent
work to do, and if not, perform the accept stmtemnt. activities of reasonible size as tasks rather than as
Presunably the runtime will then allow preeniprion procedures. If one complex sequence of calculations
only after placing the background task in a position to is not dependent on a previous set, it potentially
immediately accept the rendezvous. The Interrupt could bc done on more than one processor.
task obviously will not attempt a rendezvous with "Reasonable" must be defined as a function of the
the background task unless the flag Is set. Both of overhead associated with a rendezvous as compared
these solutions have scrious drawbacks. The with a proccdure call, weighed against the execution
surrogate task approach requires substantial time of the activity.
optimization on the pan of the compiler and runtimc. 4) A software nnager should not use Ada on
Funhcrmore, it may make it less clear about the a serious real.tine pmrject without source code to
intent of the various rndczvous. The second the runtimc. This is not for the purposes of modifying
approach is very implcnntation dcpendcm, and is It, but to understand Its detailed execution whcn
prone to error if used by other than very experienced necessary. This infornation Is not available even In
and careful programnes. What is clearly needed is the best vcndor documentation (which Is often
a simple asynchronous foint of task conummunication. Incorrect anyway) and can only be verified by
Pcrhaps a standard pragma designating a task as a exaining the source of the nntime
surrogate, in which a call to its entry is guaranteed to 5) The Ada rendezvous lhodel is practical,
have the same effect as a "signal" to the third p.ny although not necessarily ideal, for distributed
task would be a solution. To depend on communication. Unconditional rendezvous with snmll
Implementation optimizations for such a crucial real. parameter lists can be achieved with off.the.shelf
tin operation is a poor approach to language design. communication hardware in under Iris. Although

this is significantly higher than the 100us ivquired for
local rendezvous, it Is still acceptable for many

PRINCIPLE FINDINGS applications. More complex rendezvous mech.nisms
such as timed entry calls and selective waits with

Some of the principle findings of this project delay alternatives impose substantial additional
are as follows: overhead. As with non.distributed applications, the

I) Although Ada compilers arc near to being synchronous nature of the Ada rendezvous imposes
"full' implemcnntioni of the language, some of the additional task constructs in order to "uncouple"
most complex features may not be sufficiently many inter-task communications;
reliable for lifc.critical applications. Several errors in 6) In programs using tasks, default values for
runtime code hia:-c been detected under special task stack size and task priority, as well as compiler
operating conditions. Thesc conditions include selected elaboration order arc unlikely to be suitable
essentially random coincidence of executing groups of for most applicationt Inuead. dczign 'e, ,houh
instructions while an external event invokes a cxpticitly specify values for all task priorities and
context switch. This type of error may go undetected storage.size. Also the appropriate elaboration order
after years of operation, only to result in total system must be conveyed to the compiler via the E-laboate
failure at a panicular instant; pragma;

2) Tic execution rate of both generated code 7) The impact of having many failures in the
and the runtime code is considerably better than that runtimc and generated code is demoralizing to the
of compilers of 1986. lowever. checking code engineering staff. It becomes apparent that the most
rcmains verbose. This will tempt real.time difficult problems to find are those of the runtimc and
application developers to suppress the checks, which generated code. since one expects the Ada to work
has a consequence of taking different paths through as specified. No matter how good the developers
the code generator. Since these paths may not have arc, the system will not work if it won't do what it is
been tested as thoroughly as the primary path. the instructed to by the Ada source code. This is
resulting code could be less reliable. unusual for real.time programmers who are familiar

3) Design for distribution must have some with assembly language where there are far fewer

7th Annual National Conference on Ada Technology 1989 159



discrepancies bwccn the source and generated CONCLUSIONS
Code;

8) The speed Improvement or distrbuted Ada 11c latest release of Ada compilers are now
is net necessarily scalablc. Although the parallel supporting the reatures required for real.time
nature of embedded applications make them ideal for cmbedded applications. Pcrformance of Ada tasking
multiplc processors, the Individual tasks arc not operations is better than an order of magritudc over
usually balanced In processor loading. On z shared compilers of just a few years ago and optimizations,
memory multi.proccssor, scheduling can occur on a such as the execution of interupt tasks without the
"next available processor" basis but this Is usually cost of a full task switch, arc now available with very
not practical on a distributed system due to the good execution performance. As with any new
locality of data. The "vectorized task" is a partial software product, these new features must be used
solution to this problem. To implcment the guidance with special attention to insure that they pcfronnm as
opration for up to twenty simultaneous rocket expected. Users should anticipate that these
trajectories, an array or tasks was used. Thc actual features may be less reliable as compared to more
aize of the array was controlled by a configuration tested features, until they have rcceivcd the usage
paramcter. EBach task in the array was passed a list necessary to work out small anomolics.
of rockets to guide. If additional processors become The use of Ada tasking constructs for
available the size of the array can increase and the distributed processing extends the benefits of
tasks can be distributed. The size of the individual compiler checking and a unifori model of concurrency
.work" lists for cach task would decrease beyond individual processors. Flcxibility is enhanced
correspondingly. This chieves; a "ncar scalable" since migration of function from one processor to
pcrfornance increase as processors areaddcd; another is now restricted only by communication

9) Achieving distributed Ada via pre- requirements, which are being reduced substantially
processing the source code, or post.processing the by the next generation of fiber.optic daa links,
generated code/runtime is acceptable for research, Using distributed Ada to help relieve thc processing
but unlikely to be usable for a prtvitxtton requircments on a single processor appears to be a
environment. What is really needed is an integrated viable solution for many real.time applications.
compilcr/linker/cester that supports distribution. An
ideal compilation system would support a hybrid
approach of distribution, i.e. clusters of shared.
nmemory multiprocessors connected by a network:

10) Sonm aspects of the Ada language
definition are silent about what should happen in a
distributed system. For example, if a node fails,
should future rendezvous to a task in that node get
TASKING-ERROR or simply deadlock? What about
a rendezvous already in progress with a failed node?
What ir the node fails, but then returns to service?
These are all likely scenarios in typical distributed
systems. Another area is the interpretation of the
timed entry call. If ihe delay duration is greater than
0.0 and yet the delay expires prior to a message
being sent to the remote task, should the rendezvous
be terminated even if the accepting task is ready for
an "immediatc" rendezvous? A clear statement
about what can be expected in these situations (or
possibly control over what happens via pragmas) is
necessary in future language revisions. Although
many of these have been identified previously, no
resolutions have been adopted and it is hoped that
this work will shed some insight into how they may
be resolved in future interpretations/revisions of the
language;

160 7th Annual National Conference on Ada Technology 1989



Mrs. Mary R3 Becnder is at computer scecntist mr. Thomns r-. Gricsi s president or Latrck
with the Center for Soflwanc linginecring, U.S. Anny Corporation. WVoodbridge. Cl' anti enginceti'l;
CIRCOM. ft Monmouthi. NJ. Shte Is the project manager on LabTek's real-time distnibutcd Ada
leader for their technology prograin In Ada real-imen project. tic has been a principal member of the
applications and rnini environments. Shc recived SIGAda, Ada Runtinic Environment WVorking Group
a 0 A. degree in Computer Science front Rutgers; since Its Inception, and serves as leader or tic
University. &New Brunswick. NJ. Implementation Dependencies Subgroup as wecll as a

member of the Distributed Ada 'risk Force. Mr.
Gricst received his bachelor's degree in Computer
Science firom the State University of New York.
College at Oswego.

71h Annual National Conference on Ada Technology 1989 161



MODIFICATION OF LU FACTORIZATION ALGORITHM FOR PARALLEL

PROCESSING USING TASKS SUPPORTED DY ADA LANGUAGE

Shantalal N. $hah

Norfolk State University, Norfolk, VA.

An Algrithn t-* factor a given nron- matrix are computed.
singular matrix A into two Lower and
Upper triangular mrtriees s modified so At the Ith ktep, to compute the
that the Lower triangular matrix van Ith column of L, the algorithm requires
be computed by one task and the Upper the element" I(J,KJ, where J I .. N. K a
triangular matrix van be computed by a I .. (1-11; and the elements UiI),
serond task, with both tLaks running in where 9 - I.. (1-1). To compute the Ith
parallel, row of U, the algorithm requires the ele-

ments L(IK), where K * I . (I-): id
the eloment,5 U(KJ), where K a 1 .. ( -
1); J - (111) .. N.

fxttim r alAlgorithm: For example, if A in A 5x5 matrix
and we arc At the stage to compute the

To transform An NxN nonsingular third column of 1. and the third row of U,
natrix A into the product of two matrices 'he computation of the third column of L
L and U, where L is a lower triangular is as follows:
matrix and U is an upper triangular
matrix with I's on its min diagonal, the L(3,3) A(3,3) - I(3,1) * U(1,3) 6
algorithm used is as follows: L(3,2) U(2,3)1

DO FOR I - I to N L(4,3) A A(4,3) IL(4.1) " U(1,3) *
L(I,.) m A(1,1) L(4,2) U U(2,3)1

END 0(1).
DO FOR J 1 to N L(5,3) - A(5,3) - IL(5,l) U(l.3) 4

U(lJ) * A(l,J) I L1,1) 1,(5,2) U(2,3)1
END DO().
DO FOR I a 2 to N The computation of the third row of U is

DO FOR J a I to N as follows:
DO FOR K 7I to (1-1)

accumulate the SUM of U(3,4) r IA(3.4) - IL(3.1) U 0(1,4)
L(JK) " U(KI) L(3,2) I U(2,4)11 / L(3,3)

END DO(K).
L(J,I) - A(J,I) - SUM U0(35) * IA(3,5) - IL(3,1) " (1,5) *

END DO(). L.(3,2) a 0(2,5)11 I L(3,3)
U(,I,) a 1.
DO FOR J - (1*1) to N

DO FOR K aI to (1-1) Requirenents for a Parallel Algorithm:
accumulate the SUM of
L(IK) " U(K,J) The analysis of the above computations

END DO(K). shows that the computation of the third
U(I,J) a (A(IJ) - SUM) I L(II) column of L uses the elements 0(1,3) of

END DO(J). the first row of U and U(2,3) of the
END DO(I). second row of U. It does not require any

element of the third row of U. Similarly,
In this algorithm, at each step I, the computation of the third row of U

where In 1 .. (N-1), a column of L, the uses 1(3,1) of the first column of L,
lower triangular matrix is computed first L(3,2) of the second column of L and
followed by a row of U, the upper trian- L(3.3) of the third column of L. If L is
gular matrix in a serial mode. This computed by one task, (task LOWER), and U
process is continued until all the is computed by another task, (task
columns of the lower triangular matrix UPPER), in parallel, then at the third
and all the rows of the upper triangular step, task LOWER, computing the third

162 7th Annual National Conference on Ada Technology 1989



column of L does not require any informa- rather th4n in separate mAtrices L and U.
tion from the tank UPPER, computing the This will require matrix A to be declared
third row of U, provided that task UPPER as a global variable (shared variable)
has communicated the results of its corn- for the LOWER and UPPER tasks. This will
putations of the first and second rows to elininatt the need for communications be-
task LOWER before it begins computations twCfen the two tasks as the computations
for the third row of U. Task UPPM does, of each row antd each eolumn are avail-
however, require the value of L(3,1 trm ablt. Each task will still be required to
task LOWER, computing the third column of cominneAt with the other task to mdi-
L. This is the first and only element Cato that it has completed computation of
whose value is needed by task UPPER for the column or row that it was working on
the computation of the third row of U before It Starts to compute the next
trom task LOWER. coltmn or row. Numerical expnriments to

compAre the CPU time of thae various
Therm are two means by which this Approaches with different sixe mA rarce

requirement my be facilitatedi are in progress. The results of theme
studies should be available by the next

(13 After task lOWER has completed the joint Ada meeting. The modified algo-
computation uf L(3,3), it may communicate rjthm for LU FACTORIZARION, usi ilg in
the value of L(3,3) to task UPPER and place storage of L and U, and its im-
then comp*te the rest of tie third plementation in Ada language are listed
colunn. below.

(2) Task UPPER computes the value of Modified hU FArTORIZATION A ,qSrthn
9(3,3) by itself and does not wait on
task LOWER to communicate to it. Begin

It Is assumed here that each task, Task LOWER:
UPPER and LOWER, communicates the rosults
of its row and column computations, to 1. Accept N, the sixe of matrix A.
the other task, before it starts an the
next row or column. Either of these 2. Create tasks X(I), I a 1 .. (N-2)
alternatives will then allow task LOWER to compute the elements of a
to compute the third column of L and task column of the lower triangular
UPPER to compute the third row of U in matrix.
parallel. The second alternative is the
more desirable one for the following 3. Compute U(1,2), the second element
reasons: of the fzr&t row of U and store it

in A(1,2).
(1) Task UPPER does not have to wait A0, 2) v MCL, 2) 1 A(1,i)

for task LOWER to communicate this
result. 4. Compute the columns of the lower

triangular matrix
(2) It reduces the communications be-

tween the two tasks. DO FOR I 2 .. (N-1)

(3) Tak LOWER can skip the computa- 4.1 DO FOR J (1*1) .. N
tion of L(3,3), because it does not need CALL task X(J-2) to compute
it for the computation of the third the L(J,I) element of L.
column of L. END DO(J).

This situation is true for every Ith 4.2 DO FOR J w (IT*1 .. N
column of L and Ith row of U, where I a 2 CALL task X(J-21 to check

(N-i). whether it has completed the
computation of the element

At the Ith step, where I a 2 .. (N- L(J,I).
1), task LOWER has to compute (N-I) END DO(J).
elements of the Ith column of L and task
UPPER has to compute (N-I) elements of 4.3 Rendezvous with task UPPER to
the Ith row of U. Computations of these check whether it has completed
elements do not depend on each other and the computation of row I.
it can also be accomplished in parallel
using several tasks by each LOWER and 4.4 End the task X(I-1) which is no
UPPER tasks. Communications, between the longer needed.
LOWER and UPPER tasks, required to pass
the results of the computations, can be END DO(M).
further reduced if the factors L and U of
A are stored in matrix A (in place) 5. Compute A(N,N).

7th Annual National Conference on Ada Technology 1989 163



DO FOR K N I 1. (N-1) Tasks X(T) and Y(I), I 1 1 .. (11-2):
arrumolate tile SUM of

AtM.K) • A(K,N) 1. Accept the indices J and K of the
END DOCM). element to be computed and the in-
A(N.N) v A(N,N) - SUM. dex L ORU for LOWEll or UPPER

matrix.
6. Communicate matrix A to the

calling program. 2. Compute the element LCJ,K) or
UCJ.K) and store it in A(J,K).

END task LOWER,
2.1 If element of 6 (fr OR UaO) then

DO FOR Hl * 1 .. (K-I)
accumulate the SUM of

TAik UPPER; A(JKI) 4 A(KIK)
END DOKI).

1. Acrept N, the nixe of rwtrix A. A(JK) * A(J,K) - SUI.

2. Create tanks Y(II. I w I .. (N-2) else
tu compute elementu of ., red of
upper triangular matrix. (L.OUOU'l)

DO FOR KI 1 .. J-1)
3. C!mpute the first row of U and accumulate the SUM.1 of

store It in the first row o( A. A(J,Kl) 0 A(KI,K)
A(1, 3..N) * A(l, 3..N) ! A(I,1) END DOK).

ACJ,K) x IA(J,K) - SUMI /
4. Compute the rows of the upper tria- A(J,J)

ngular matrix end Ir.

DO FOR I - 2 .. (N-1) 3. Accept the index or the task X or
task Y to check completion of the

4.1 Computo 1.1,I), the Ith row ind computation.
the Ith column element of L.
needed for computation of the Ith 4. accept index I to stop task X(I) or
row of U. Store it in ACI,I). Y{I).

DO FOR K 1 .. (1-1) END task XI) or YCI).
accumulate the SUM of
AC!,K) ' A(C,I)

END DOCK).
A(I.I) , A(I.I) - SUM.

Ada Code.:
4.2 DO FOR J - (I*1) .. N

CALL task Y(J-2) to computo generic
the U(I,J) element of U.

END DOCJ). BOUND : in INTEGER;
package LUDECOMPROUTINESL. is4.3 DO FOR J (1.1) .. N

CALL task Y(J-2) to check type MATRIX is
whether it has completed the array(l .. BOUND, 1 .. BOUND) of FLOAT;
computation of element U(I,J). procedure LUDECOMP(A : in out MATRIX;

END DO(J). BOUND : in INTEGER);

4.4 Rendezvous with task LOWER to end LUDECOMP ROUTINESLL;
check whether it has completed
the computation of ti •column 1.

4.5 End the task Y(-1) which is no package body LUDECOMP_ROUTINESLL is
longer needed.

-- Procedure to factor a given matrix
END DOI). procedure LUDECOMP(A : in out MATRIX;

BOUND : in INTEGER) is
END task UPPER

LU DONE : BOOLEAN : FALSE;
SINGULAR : exception;

-- procedure to compute the sum of
-- A(INDXI,K) A A(K,INDX2)

164 7th Annual National Conference on Ada Technology 1989



-- for row and column elements COLUMN DONE BOOLEAN : FALSE;
NEXT COLUMN BOOLEAN * FALSE;

procedure SU t LPDONE BOOLEAN :. FALSE;
INDX1, INDX2 LIMIT : in INTEGER; S FLOAT 0.0;

S : in out FLOAT);
begin

-- task to compute LOWER TRIANGULAR --set index to compute column element
-ACTOR L OR_U :* 0;

Iop
tank 1.EWR is select
entry NIN.OWER(

BOUND in INTEGER); -- get bound in LOWER
accept NIN LOWER(

entry STOPLOWER( BOUND : in INTEGER) do
LU_DONE in BOOLEAN); N :V BOUND;

end LOWER; end NINLOWER;

--compute second element of first
--row of U and store it in A(I,2)

-- tansk to compute UPPER TRIANGULAR A(L, 2) :m AI, 2)/AI, 1);
F.CTOR NINL :- TRUE;

task UPPER in or
entry N_INUPPER( delay 0.1;

BOUND : in INTEGER);

end select;
entry ROWCOLU$N.CIIECK( exit when N_IN_L;

COLUMNDONE : out BOOLEAN); end loop;

entry STOPUPPER( declare
LUDONE : in BOOLEAN);

end UPPER; -- tasks to compute elements of
-- column or L
X : array(l..(N - 2)) or COMPUTE;
X_DONE: array(l..(N - 2)) of INTEGER

-- task to compute an element of :, (1 . (N - 2) a) 0);
-- row or column of factor matrix

begin
task type COMPUTE is

entry ELEM( FIRST, SECOND, for I in 2 .. (N - 1) loop
CHOICE : in ZNTEGER);

-- begin computations of elements
entry ELEMIDONE( DONEI -- of Ith coulmn of I using tasks

out INTEGER); for J in (I 4 1) .. N loop
X(J-2).ELEM(Jo 1, LORU);

entry STOP-TASK( DONE end loop;
: in INTEGER);

end COMPUTE; -- check all tasks X are done
-- with Ith column of L
for J in (I-X) .. N loop

X(J-2).ELEM DONE(X DONE(J-2));
-- body or the procedure SUM end loop;
procedure SUM( INDXI, INDX2,

LIMIT : in INTEGER; -- rendezvous with task UPPER to
S : in out FLOAT) is -- check whether it has finished

begin -- computation or Ith row
S :Z 0.0; UPPER.ROW.COLUMN CHIECK(
for K in 1 .. LIMIT loop COLUMNDONE);
S :n S + A(INDX1, K)*A(K, INDX2);

end loop; -- stop task X no longer needed
end SUM; X DONE(I-) := 1;

X(I-1).STOPTASK(XDONE(I-1));

-- next column of L
-- body of the task LOWER end loop;
task body LOWER is
N, CHOICE : INTEGER; -- last column of L
NINL : BOOLEAN FALSE; SUM( N, N, N - I, S);

7th Annual National Conference on Ada Technology 1989 165



A(N. N) :* AN, N) - S; -- tanks to compute row elemctu of U
LDONE :a TRUE; Y : array(l .. (N - 2)) of COMPUTE;

Y_DONE: array(I (N - 2)) of INTEGER
-- terminate task LOWEll :- (1 (N - 2) Kj 0};
loop begin
select

when LDO4E a) for I in 2 .. (N - 1) loop
-- compute the first element of

accept STOPLOWER ( -- Ith column of L
LU DONE xn BOOLEAN) do SUHI(, 1, 1 - 1. S);
L. DONE LU DONE; A(I, 1) :, A(I, I) - S:

end STOP, LOWER.
exit whcn L-DONE: -- begin computation of Ith row

-- of U using task8
or for J in (I 3 1) .. N loop

Y(J - J.ELEX(3, JL OIU);
delay 0.1; end loop;

end select;
end loop; -- check all tanks Y are done with

end; -- Ith row of U
end LOWER; for J in (I.1) .. N loop

Y(J-2).ELEDDONE(YDONE(J-2));
end loop;
ROWDONE :n TRUE;

task body UPPER is
-- stop task no longer needed for

N, LORtU : INTEGER; -- row computation
ROWCOLUMNDONE : BOOLEAN :x FALSE; Y DONE(I-l) :a 1;
NIN_U : BOOLEAN FALSE; Y(I-1).STOPTASK(YDOE(I-l));
ROK.DONE : BOOLEAN : FALSE;
U DONE : BOOI,EAN :u FALSE; loop
S : FLOAT :* 0.0; select

when (ROW DONE or UDONE) -0
begin

-- rendevous with task LOWER to
-- index to compute row element -- check for Ith row and column
LORU :x 1: -- completed
loop accept ROWCOLUMN_CllECK(
select COLUMN_DONE: out BOOLEAN) do

COLUMN-DONE :z ROWDONE;
-- get bound of A end ROW COLUMN CHECK;
accept N_INUPPER( UDONE : FALSE;

BOUND : in INTEGER) do ROW DONE := FALSE;
N :- BOUND; ROWCOLUMNDONE :a TRUE;

end NIN-UPPER;
NINU :z TRUE; or

delay 0.1;
-- compute first row of U; end select;
if (AI.,1) a 0.0) then exit when ROWCOLUMNDONE;

raise SINGULAR; end loop;
end if; ROWCOLUMNDONE :a FALSE;
for J in 3 .. N loop
A(1, J) :a All, J)/A(1, 1); -- next row of U

end Icop; end loop;

or -- all rows of U done
UDONE := TRUE;

delay 0.1;
-- terminate task UPPER

end select; loop
select

exit when NINU; when UDONE )

end loop; accept STOPUPPER(
LUDONE : in BOOLEAN) do
U DONE := LUDONE;

declare end STOP UPPER;
exit when UDONE;

166 7th Annual National Conference on Ada Technology 1989



or exit when (DONF.C a1);
delay 0.1; or

end select; delay 0.1;
end loop; and %elect;

end; end loop;
end UPPER; and COMPUTE;

task body COMPUJTE in -- begin Lte LUDEC.'P procedure
begin

INDX1, INOX2, LXXIX :INTEGER;
DONEC :INTEGER :u 0; -- phas the bound of A to tans
S :FLOAT :X 0.0; -- LOWER And UPPER
JNDX :INTEGER ; LOWER.NINLOWCR (BOUND);
BDONE BOOLEAN :x FALSE; UPPER.INUPPER(IOUND!;

begin -- teminAte tasks LOWER And UPPER
loop LUDONE :a TRUE;
select LOWER. STOPLOWE1 C LUDONV ;

-accept the indices of the elem- UPPER. STOPUPPRR C Ly)ONE);

a- nt to be computed and index for -- Abort tasks If matrix is singular
-the matrix exception

accept ELEMCFIRST, SECOND, . ORU when SINGULAR n)
:in INTEdER) do abort UPPER, LOWER;

INDXi :a FIRST; end L.UDECOXI'z
INDX2 :a SECOND; end LU.DECOMP.ROUTINFSIL,
XNDX :a LORU;

end ELEM;-- - - - - - - - - - - - - - - - - - - -

if (INDX x 0) then Thin research work has been sponsored
-- computing column element by a research and equipment grant from
LIMIT :a INDX2 - 1: the United states Army 1ARO proposail
SUM(IN)X1, INDX2, LIMIT. S); 125510-EL-111 by way of the Army Research
A(INDX1, INDX2) :-office and AIRMICS.

ACINOXl, INDX2) - S;
BDONE :a TRUE; About the Author

else Shantilal N. Shah is a P~rofessor of
Computer Science in the Department of

-- computing row element Mathematics and Computer Science at Nor-
LIMIT :v INDXi - 1; folk State University. fie received his
SUMCINDX1, INDX2, LIMIT, S); Ph.D. in Mathematics from the Syracuse
if (A(INDXI,INDX2) a 0.0) then University in 1972 and his M.S. in Comn-

raise SING.ULAR; puter Science from the College of William
end if; and Mary in 1975. H~is current research
ACINDXi, INDX2) :a interitsts include Parallel Proccssing and

CA(INDX1, INDX2) - S)/ Parallel Algorithms.
A(INDXi, INDXI);

I300NE :a TRUE;
Department of Mathematics and

end if; Computer Science
Norfolk State University

or 2401, Corprcw Avenue
when BDONE a) Norfolk, Virginia 23504

-accept index for element done
accept ELEM.DONE(

DONEl out INTEGER) do
DONEL : DONEC:

end ELEM DONE;

or
-accept index for task to be
--stopped

accept STOP TASK(C
DONE in INTEGER) do \ \

DGSEC DONE;
end STOP-TASK;

7th Annual National Conference on Ada Technology 1989 167



Learning Ada From Ada

Lawrence E. Smithmier Jr.

University of Mississippi
Undergraduate Student Paper

On-line tutorials can provide an effective toaching Ada was chosen because it so readily supported
tool within a computer environment, They can be software engineering principles. Software
designed In such a way as to accommodate users with engineering goals realized by Ada arc:
different levels of knowledge and who work at different abstraction, automation, information hiding,
paces.This paper discusses a tutorial written In Ada on localized costs, portability, preservation of

an IBM 370 using the Alsys compiler. Our system, information, simplicity, and structure.
designed and written using Ada, allows the users to This tutorial was the final group project of
move forward or backward within the tutorial because the semester and combines the knowledge we
three screens (the current screen, the next screen, and learned of both Ada and software engineering in
the previous screen) are kept in memory by background one package. The tutorial was written modularly
tasks. When the user proceeds to another screen, a
background task brings the next appropriate screen into to aid in the maintainability of the code itself. It
memory while the foreground task displays the is also portable because all but one command is
requested screen. This facilitates a quicker response standard Ada. The tutorial also uses a buffering
time when moving through the tutorial. A balance package which provides it with a level of
between maximum speed and minimum memory usage information hiding. And finally, the tutorial is
Is achieved through this use of Ada tasking. Through the abstract because the names of lesson and quiz
use of packages, the screen driver and the questionnaire abst becuse te na ofle an qi
driver can both use the same background task. The files to be used are stored in a file which can be
tutorial Is written entirely In Ada using only one IBM changed to ;,dd or delete lessons.
system call, done via a call to low.level 110 an Ada library The tutorial was written in Ada about Ada
call supported In the LRM. by students who were learning Ada as they were

completing the assign.,nent, The lessons and
quizzes were also written by students who were
learning as they tried to teach others. ThisAda is very similar to Pascal in the types of makes the tutorial a much better teaching tool

control structures available, the types of because the writers still remembered what was
operators used, the use of subprograms, and hard for thei to learn and took thc time to

most of the data types available. It does, present these topics in a little more depth and

however, have some subtleties which are not fron several angles. A good example of this is in

intuitively obvious, for example: it is important the lesson tasking in which two program outlines

to look carefully at the way tasking is handled te lessn t n in wh two program

and how and when it should be used. It is also which readily lends itself to tasking: tis , p. 2g
important to look at generics, private types, and
variable passing. procedure SHOPPING Is

The on-line tutorial has been used task GET._SALAD;
effectively for some time as a teaching tool in a
computer environment because it gives the user task body GET-SALAD is
a hands-on feel for the subject. This makes such begin
a tutorial a natural tool to teach a new and e BUYSALAD;ultrialanura because ito teend GETo eSALAD;difficult language because it will allow the user

to determine which language features he can
review and which he needs to study in-depth.

Our tutorial was written as part of a
software engineering course using Ada as a tool.

168 7th Annual National Conference on Ada Technology 1989



task GET..WINE; sleeping' and geoting gas, can not be done
in parallel)

task body GETWINE is

begin BUYWINE; If the user gets a qucstion wrong he is told the

end GET.WINE; right answer and is given the total number
missed upon completing the quiz.

begin Thc more sophisticated user will be able to
BUYMEAT; skip topics he is well versed in because the

end SHOPPING; tutorial is menu driven and the user need not
review a subject unless he wants to, and even

where BUY_WINE. BUYSALAD & BUYMEAT ire then he is given the option to quit that lesson.
procedures and GETWINE & GET-SALAD are The option menu looks like this:
tasks. The other example shows a program
which does not use tasking efficiently: "'Ada Tutorial"'

procedure FIX.A_FLAT is 1) OPERATORS
task TAKE.OFFTIRE; 2) TYPES

3) CONTROL STRUCTURES
task body TAKEOFFTIRE is 4) SUBPROGRAMS
begin 5) TASKING

REMOVE_LUGNUTS; *6) GENERICS
end TAKEOFFTIRE; 7) LIBRARY UNITS

8) EXCEPTIONS
task PUT..ON_.SPARE;k - Please enter the number of the lesson you would like to
task body PUTONSPARE is run or a 0 to exit:
begin

REPLACELUG_NUTS; This menu allows the user to not only choose the

end PUT ONSPARE; topics he will study, but also the order in which
they will be studied. The order in which they

begin appear on the menu does represent the orJcr

GELSPARE; which we felt they should be covered. The files
end FIX_A.FLAT; which are displayed oa the menu come from a

file which holds the name of each text file and

where REPLACE.LUGNUTS, REMOVELUG_NUTS quiz to be offered. The form of tie file is:
& GET_SPARE are proccdui..s and TAKEOFFTIRE
& PUTONSPARE are tasks. OPERATORS

The tutorial allows the beginner to proceed OPERATOR

at his own pace and to check his mastery at the TYPES

end of each topic using the quizzes. The quizzes CONTROL STRUCTURES
are written as a series of question and answer CONTROL
sessions of varying length. The questions were SUBPROGRAMS
designed to test the user on the concepts we felt SPROGRAM

were essential that tie user know for effective TASKING
TASKING

programming. The quizzes are provided at the GENERICS
end of each lesson and the user has the option of GENERIC
t'iking them or skipping them. They are LIBRARY UNITS
displayed by a separate process from the tutorial LIBUS
text. For example, the tasking quiz presents a EXCEPTIONS
problem definition and asks whether tasking EXCEPT

EXIT
should be used. NOFILE

2. Should tasking be used in a program which where OPERATORS is the text file and OPERATOR
will simulate a cross-country trip by car, is the questionnaire file. The control word
assuming yot, don't need to eat? (no, NOFILE is used when no questionnaire is
because the operations left: driving, available and the code word EXiT is used to

7th Annual National Conference on Ada Technology 1989 169



indicate the end of the topic list. This system timcs, while a third buffer is held in the
,tllos the tutorial program to be easily updated procedure currently running.
or evcn changed to a different subject cntirely. The tutorial uses two background tasks to
This can be done by simply updating the file update the buffers, thus speeding up screen
M.FILE to rcpresent the current state of the updating and allowing the user to move both
tutorial. forward and backward in the text. One task

The lessons are displayed by a screen holds the prtvious screen while th other holds
handler which receives the information in an the next screen. Each task reads from the
unformattcd state from a text file. This increases tutorial text file and holds one page in memory
the ease in which lessons can be corrected or at a time. The text in the files is unformatted,
replaced. The screen handler allows the user to that is, the text is saved in the files in the same
move along at a quick pace over subjects lie is way it will be shown on the screen. The
somewhat familiar with or to go slowly through buffering system is defined as a pa,'kagc, which
those subjects which he has not seen before by is used by both the text and questionnaire
allowing the user to decide when the next screen drivers. Through the use of the package, we
is displayed. It also gives the user the option of made the code more readable and more compact.
backing up to the previous screen, or even This use of background tasks and packages
quittint that lesson entirely. The lessons in the redur~es both the complexity of the code and the
tutorial are taken from Prnorammin in Ada amount or code in memory during execution.
Sgcgnt RLitim, by J. G. P. Barnes, and are listed The tutorial is written entirely in Ada using
roughly in the same order as found in the book. only one IBM system call. The system call was
The lesson screen looks like this:tss-m,. P. 1".6 done via a call to low.level I/O, an Ada library

call, supported in the LRM. This system call is a

generic CLRSCRN command, used to clear the screen, and
typo ITEM is private; is accomplished as follows:

procedure EXCHANGE( X, Y: In out ITEM):
procedure EXCHANGE( X, Y: In out ITEM) Is EXECUTECOMh&AND(CLRSCRN');

T: ITEM;
begin This is the only command which is not fully

T:e X; X:= Y; Y:= T; portable to any Ada machine.

The tutorial was written and tested using
The subprogram EXCHANGE Is a generic subprogram the Alsys IBM 370 ADA compiler for VM/CMS,
and acts as a kind of template. The generic mechanism version 2.3. The compiler was run on the
takes the form of subprogram specification which Is University of Mississippi's Amdahl 470/V8
preceded by the generic formal part consisting of the running IBM VM/SP CMS Version 4.0. The
reserved word "genonrc followed by a (possibly empty) Amdahl 470/V8 is architecturally equivalent to
list of generic formal parameters. Note that we have to
give both the body and the specifications separately. the IBM 3083JX.

In conclusion, we feel that a tutorial
The generic procedure cannot be called directly but from written for Ada can be a valuable teaching tool.
It we can create an actual procedure by a mechanism We think that having students who had recently
known as generic Instantiation. For example, we may learned Ada write a tutorial on the subject was
write useful because, as stated earlier, they

remembered what was difficult for them to
Enter an N, a P, or an E to move forwards, backwards, or lern. t ht as haveibeen go ohe Ad
to exit: learn. It might also have been good io have Ada

programmers at several higher levels of

The tutorial is able to allow the user to knowledge participate in the tutorial design.
back up through the use of a double buffering They could have given insight into more
system. One buffer holds the previous screen, advanced implementation strategies used in

the other holds the next screen, while the current complicated applications. Ada made the tutorial
screen is being displayed. Both the questionnaire easier to write as a group because it supports
and the lesson procedures use the same separate compilation which allowed the parts to
buffering system. This is facilitated through the be written separately and then combined. The

use of packages. The buffering package use of tasking also provided quick screen display,
maintains two twenty-one line buffers at all while packages allowed for better abstraction

within the code. Writing this tutorial in Ada

170 7th Annual National Conference on Ada Technology 1989



gave us a first hand experience in how the
structure of the language encnurages good
software engineering methods and shows how
Ada allows a design group to work in parallel.

Tlarncs. 17. . PIrogramingi in -aIi. 2nd. cd.
Reading. MA: Addison-Wasley Pubtlishers
.11nited. 1983.

Lawrence F~. Sithmlier, Jr.
11. 0. Box 8317

University, Mississippi 38677
Larry is a senior in tlia School t if Engineering tit 'Ilia
University of Mississippi. Ile will grIduii in Augus~t
1989 with a B.S. in Computer Engineering and ai B.A.
in Mathemaitics. Larry is currently cniployecl as a part-
time programmer for thc Nactionail Center for Physical
Accustics.

7th Annual National Conference on Ada Technology 1989 171



Problems in Using Ada as a Development Tool

Allison Juanita Null

The University of Xissisuippi

ABSTRACT RESPONSE TOPIC OF INTEREST

The purpose of this paper is twofold: 0 Table of Contents
firstly, to take a look at how ADA was used I Introduction
to support and uphold the goals and 2 Runtime Environment
principles of software engineering within 3 Subprograms
the context of dzvoloping a major 4 Packages
interactive tutorial program to teach ADA, 5 Exceptions/Handlers
and, secondly, to describe some of the 6 Generics
pitfalls of using ADA as a development 7 Tasks
tool. The primary problem examined a Tasks (in brief)
concerns the issue of portability as 9 Quit
related to the implementation of a required
function which could not be provided within The user enters a response ard the file
the ADA environment. consequently, this corresponding to this response is passad to
caused the tutorial to be non-portable. procedure Topic. Procedure Topic then

reads the information in this file and
displays it on the screen, filling the
screen with each display. The user may

(X) INTRODUCTION : BACKGROUND either quit at this point or continue the
tutorial. When all of the information in

Realizing that ADA was one of the the Topic file has been displayed, the user
most significant developments in is queried as to whether or not he would
programming languages and wanting to like to test his knowledge by being asked
promote some degree of ADA literacy at the a series questions concerning it. If the
University of Mississippi, one of the user responds yes, Procedure Topic calls
software engineering classes developed a Procedure Runexer which allows the user the
tutorial program on ADA and its programming opportunity to respond to a series of true
environment. The tutorial, called ADA2, and false questions about the material.
was developed as a team effort. It consists Once the user has finished testing his
of a single package, consisting of three knowledge, or if he determined not to do
procedures. It is fully interactive and so, he is returned to the menu of
was written to run on the university's selections (Procedure Menu)once again.
Ai hdal 470 V/8 running IBM VM/SP release 5.
The Amhdal 470 V/8 is architecturally
equivalent to the IBM 370. The compiler
used in developing this project was
Telesoft's Tolegen2 ADA development system (II) A DISCUSSION OF HOW THE ADA LANGUAGE
for the 370 -- A370 version 1.0. WAS USED WITHIN THE CONTEXT OF THE

Briefly, the operation of this program ADA2 PROJECT TO UPHOLD THE GOALS AND
is as follows. The primary procedure PRINCIPLES OF SOFTWARE ENGINEERING.
called procc.dure Menu is responsible for
displaying the main menu which consists of With the ADA2 project in mind it is
the topics which can be chosen by the user important to determine the way in which ADA
during a particular session. This was used during the development of the
procedure also controls the flow of project to uphold the four basic goals of
operations during a tutorial session. The contemporary software engineering
selection of topics available through practices. According to Booch, the four
procedure Menu in ADA2 is as follows: basic goals of software engineering are:

172 7th Annual National Conference on Ada Technology 1989



(1) Modifiability, reliability. The fifth principle,
(2) Efficiency, uniformity, supports the software
(3) Reliability, and engineering goal of understandability b,
(4) Understandability. ensuring that all the modules use a

consistent notation and do not have any
Modifiability refers to the ability to unnecessary differences. The sixth

control the impact of changom in a software principle, completeness, ensures that all
product; whereas, efficiency refers to the the important elements in a mcdule are
optimality with which a computer system present. The seventh principle,
usev its available resources especially conCirmability, refers to the case with
tim and space. Reliability refers to the which a system can be tested to confirm
degree to which a system is failure free whether or not it meets requirements. Both
and its ability to degrade and recover support the goals of reliability,
gracefully. Finaly, understandability f fficiency, and modifiability by aiding in
refers to the degree to which vorious the developent of correct solutions. 1
people who examine the project can Within the context of the ADA2
comprehend it and the degree to which they project, the ADA language and environment
can isolate t e objects and operations in assisted in realizing these principles in
the solution. The principles which ADA following ways. The principle of
was designed to support which lead to those information hiding was realized in our
goals are the following: project through the use of the three

procedures mentioned earlier. Each
(1) Abstraction, procedure comunicated to the other via a
(2) Information hiding, well definod procedural interface with only
(3) Modularity, the essential information available for its
(4) Localization, use. In realizing the principles of
(5) Uniformity, abstraction as wall as information hiding,
(6) Completeness, and the power of the language was not fully
(7) Confirmability. a exploited as can be seen by examining the

The first principle, abstraction, package specification, which appears below.

refers to the extraction of essential
details of a given level of reprosentation. WITH TEXTXO, SYSTEM;
The second principle, information hiding, USE TEXTIO, SYSTEM;
makes inmccessible certain details which PACKAGE ADA2 IS
are not necessary for the proper
functioning of the rest of the system. PROCEDURE MENU;
Both abstraction and,)nformation hiding aid
in the maintainability and PROCEDURE RUlE(ER(FT:FILETYPE);
understandabilit:y of software by reducing
the amount of details a developer must know PROCEDURE TOPIC( FT : FILETYPE);
at a certain level of representation. In
addition, the reliability of software is END ADA2;
enhanced when, at each level of
abstraction, only those operations which do
not violate the logical view at that level Appearing in the package specification
are available. Modularity, which is the are some unnecessarj details about the
third principle, is the grouping of tutorial mechanics. Specifically, since
functions or operations into modules both procedure Topic and procedure Runoxer
according to some criteria. Localization, are subordinate to procedure Menu (as has
the fourth principle, is a principle aiding been previously described), and since it
in the creation of modules with loose would be unnecessary for any user to know
coupling, that is, modules that are highly of their existence, these two procedures
independent, and in the creation of modules rhould have been embedded within procedure
having strong cohesion, a quality exhibited Menu so that from the specification level
when all the inner elements of a module are only the declaration for procedure Menu
closely related. Both modularity and would be visible. In this way, the
localization support the software principles of abstraction and information
engineering goals of modifiability, hiding would have bcen better realizcd.
reliability, and understandability. This The principle of modularity was
is because if a system is structured well, realized by grouping the tutorial package
the Ability to understand any given module ADA2 into three separate procedures
should be enhanced, and since design according to the following criteria:
decisions have been localized, the effects (1) the operations to be performed in
of modification to a module or modules will procedure Menu were to be only those
be limited. Also, if code is modularized associated with displaying the menu of
well, then interconnections among modules available topics to the screen. This
will be limited, thus serving to enhance included preparing each file for its

7th Annual National Conference on Ada Technology 1989 173



possible selection by the user by function for the smooth operation of the
performing an open on each. This also tutorial was the ability to clear the
included querying the user as to which screen so that information could be
selection he would like, and then passing displayed a screen at a time. (It is
the information file corresponding to his important to realize that this project was
selection to procedure Topic. beiig done in a mainframe environment with

(2) The operations to be performed minimal support for external devices.
in procedure Topic ware to be only those There was no library support for clear
associated with displaying the information screen.) Without this function, the
from the file to the screen, a screen full alternative were either to output the
at a ti.*, until the end of the file was information line by line, which eventually
reached. Once that had been accomplished, results in a screen full of material that
rocedure Runexer was called if the user has already boon read with one now line at
ndicated that he wished to test his a time appearing at the bottoA or to use a
knowledge of the topic he had just viewed, series of new line's, a solution which

(3) The operations performed in could not be guaranteed to always
procedure Runoxor are simply those required completely clear the screen, especially
to read in the test quectiona for the user since system information would be printed
and to notify his of the status each to it occasionally, thus throwing off the
response. Runexer also provides a final functioning of the rest of the output
test score for the user. statements designed to print information

to the screen. It was assumed that the
The modules are not as loosely coupled now ago subprogram provided within the ADA

as might be hoped, but this is due in large environment to page files with the mode of
part to the nature of the project. For "out" could be used to page the screen, but
example, both procedure Topic and procedure this did not work. This presented a
Runexer depend upon the functioning of dilemma. After attempting and failing to
procedure Menu to obtain and pass the bind and link an assembly language module
user's topic choice. In addition, all of with the purpose of clearing the screen to
the modules exhibit a large degree of the tutorial It was discovered that Pragna
cohesiveness since the operations within Interface could be used to interface a
them are directed toward achieving a common system dependent assembly language
goal (i.e., displaying the menu of choices procedure which could be called at
and obtaining the user's topic selection, different points in the code to clear the
etcetera). Furthermore, the modules are screen. The use of this assembly language
all uniform since they were all designed in procedure caused the program to be non-
a top down manner. They are all complete portable to installations not possessing
since they have within them all of the this feature, a problem one would not have
important elements necessary to perform the expected to encounter within the ADA
disired operations. This completeness can environment. It should be pointed out,
be confirmed by hbving a user operate the however, that since the arrival of the
tutorial. Alsys ADA compiler at the University of

Finally, it can be seen that, of the Mississippi and the development of
seven basic design principles stated subsequent versions of tutorials writtezA
earlier, some are upheld to a greater in ADA, thin problem has been solved.
degree than others. It can, therefore, be Another problem which could be viewed
concluded that even a language developed as a pitfall from which the ADA2 project
with the idea of supporting the software team suffered was having to deal with the
engineering principles canrot ensure the large amounts of spaca and time it took to
perfect application of these principles, compile and execute the code each time thim
Though ADA has the power to support these was necessary. Though student computer
goals, any language, even ADA, can only be disk space allotments are generally small,
as powerful as its users allow it to be. they are usually sufficient for most
That is, writers of software must still be projects developed using other languages,
carefully aware of software engineering even when these projects require thousands
principles and violate them only with care of lines. However, even for a modestly
and only when no other solution seems to be sized ADA program of a few hundred lines,
available. temporary disk space of 10 to 20 extra

cylinders would have to be se- up and
(III) PROBLEMS ASSOCIATED WITH THE USE OF programs had to be shifted back nd forth

ADA. frou the teuporary space to a studeat's
permanent space between log on and log off

Now that the way in which ADA served sincc tamporaiy space dionppears upon io j
to support the software eng.neerinq goala off. Also, if there wns Pny load upon the
through the ADA2 tutorial project huis been system at all when recommoiling and
discussed, it is appropriate to consider executing the ADA2 program, it was no!
some of the pitfalls which the ADA12 profct urusual to have to wait from thirty minutes
had to overcome as a result of using ADA as to an hour to riceive the results. N
the development language. A necessary equivalent sized Pascal program would ha"n

174 7th Annual National Conference on Ada Teo ,nology 1989



compiled under the same system load in R2Fz~zxczs
under two minutes.

There are several other factors which Booch, Grady. 1-oftywagg &Gnaoinci With
could have contributed to this time Un&.Te Unai/umns Pbi h
inefficiency, but anything approaching this CManyTn Copyrmight 1983. Pulishing
amount of inefficiency Is generally viewed opnln.cyrgt18.P.235
an being unacceptable. Yet again, since
the arrivAl of =h Alsys compiler, it has
been reported tht thia time inefficiency
has disappeared and ADA programs on the
only a few minutes. at most, to roturn
results.

(IV) CON~CLUSION.

in conclusion, 5ince many of the
problems ixparienced with the ADA language
soem to have disappeared with the Allison~ AMI Nii a Ct AjIt Sfukent
introduction of the Alsys ADA compiler, it i~q c~StjVK at II-q univit"Otr of
leads one to think that these problems "Isst.*ivi.
might be due, in some part, to the Tologon2 14 l Is' ot t rIrY 4 ma0tt of zeCqf*
ADA compiler u,.'qr which the ADA2 project InC 9*I't~rIstic dInf pfl9~(.e t.
team worked. Furthermore, because
subsequent student teams have boon very
successful in aroaoi where the writers of
ADA2 failed it can be concluded that many
or the difficulties which were thought to
be Ada rolatud ware compiler related and
not always due to limitations of the

language itself. Even so, a project having
experiences such as these wo~.ld tend to
cause the members of its project team to
look much more critically at a language and
certainly much more carefully at compilers.
Also, as has been previously stated and as
can be seen, though ADA has the power to
support the goals of software engineering,
it does not have the pouer to enforce them.
Therefore, software engineers must, not look
to ADA for some sort of magical panacea#
inztead they should sec it for what it is:
a vary good tool; albeit, still a tool,
which is subject to the limitations of its
uscra.

NOTES

with1AA , he Dtunjahin/Cummings Publishing
Company,anc., copyright 1983, P. 29.

2Booch, pp. 29-31.
3 Dcoch, p. 31.

'Booch, pp. 32-35.

7th Annual National Conference on Ada Technology 1989 175



AN Ada SYSTEM FOR THE PARALLEL EXECUTION OF 1P PROGRAMS

Norman Grahm

Oklahoma State University

,l ulgebra of programns.' ..8 One goal of this sys-
tern is to provide the benefit ofprogran proofs to

This paper describes an attempt to bring portions of Ada projects that are originnily
progratm correcuLess proofs to the Ada envi- written in FP, and then autotnetically trans-
ronmtowt by providing a FP to Ada translator lited to Ada, This allows Ada prograuss to use
and a run-time systean for FP written itt Ada. subsystems that have beti proven to 1. correct.
The FP run-time itytem uses Ada tasks to take
advantage or thQ itah! grain paralelism Ada also provides the task type that allows
inherent in Fit progranms. A tree of tasks is programmers to manage explielt parallelism
generated dyowmically to cnompute Vie FP in their prograns. E-xplicit control of purat.
function in a mhnner that is based on graph lelismn becomnes extremely diricult when there
reduction, An unexpected discovery is that Adn are large numbers or parallel processes. I
is unable to kill branches in this task tree as it contrast to the explicit parallelism allowed in
is generated currently. To circuniventL this Ado programs, functionil languages, such as
problem, the-run-tiue ystem ,is prevented FP, contain large amounts or implicit pntral-
from generating branches in the task tree until lelistn-parallelism that is implied by the
the bra;ch is known to be required. structure of expressions. The programmer does

not control this parallelism, and titus, is not
concerned with its complexity. The second goal
or this system is to provide the benefits of

Motivtion parallel program executioa to portions of Ads'
projects titat are written originally in F1, then

Ada's traditional scope of applicability translated to Ada automatically. This is done
includes real-time systems, scientific pro- by using Ada tasks to exploit the implicit
granmning, datiabase systems, and distributed parallelism inhercut in IPP programs.
systems. To ensure the correct building of these
systems, Ada supports and promotes the use of A Over.iew GLE
software engineering techniques. These tech-
niques, when used with a referentially opaque This ,ction presents an overview of the Fl'
language such as Ada, prevent proving that a -ystem ha' has been imvplemented at
prograin is correct. John Backus has proposed a Oklahoma State University. It is similar to the
functional language, FP, that is referentially FP1 system deflined by lackus in his Turing
transparent and overcomes this limitation.1 Award Lecture.' Most of the differences are
FI) has an associated aigebra of programs that syntactic and were motivated by a desire to use
makes it possible to-reason about programs by this system with ASCII terminals. The FP
using the laws of this algebra. John Backus, K. system is composed of:
M. George and G. E. Hedrick, and J. II. *a setofobjects,
Williams have provlded examples of program * a set of primitive functions that map objects
correctness and equivalence proofs using this to objects,

176 7th Annual National Conference on A'Ja Technology 1989



" a set of functionil forms that produce new It :x ax = <yz> & y z - T;
functions from existitig functions, x= y,z> & y z z - F ;.L

• a definition facility for naming functions,
and 10:x U x = <yz> & y - - T ;

" an application operator (denoted by :) that x = <y'z> & y > z -} F ;1
applies functions to objects.

cjt:x Kx = <y,z> & y > z -) T;
DI&II, x = -C<yz> & y:9 -) F;1.

An object is one of: an atom, a spquenct n vn:xf x = cy.z> & y ?. x -0 T;
objecL, or undefined (denoted to BOTTOWA. , x = <y,.-> &y <ix -z F ;.
atom is one of: an integer, a'boolean value
(denoted by T or '), or the ampty sequence oq:x 0x g .yz> & y = z - T;
(denoted by EMPTY). A sequnce 91" objetts is x = Cy'z> & y . x -0 F ;J.
denoted by <xw,..., .% whre each xt is AR
object. The empty sequenre is also a sequence, no x x <y,z> & y * 7 -1 T;

x = <. z> & y= -l, F ;1
Priiitivt\' lunctioois

ndda:x. x = <y,z> & y, z are niumbers -) y ; .1.
The Following primitive functions are defined
in this IP system. The runctiuns are given on -sub :x x = <y,z> & y, z are numhees - y-z ; J.
u left with their mieniings onlie right. (The

symbol . is read bottom and f is re d emptly). nul :X -x = <y,z> & y, are numbers - yxz ; .L

I:x x= <x...,x>& 1: in - xi ;.L div:xn x= <y,z> & y, z are numtbers &zVO
- yz :.I

length:x x = <x,,..x> -it ; x ;. Functiorin Fin

null:x- a= 7; ;l The functional forms are actually second.

id:xux order functions that nccepl functions (or objects
in the case of constant) as arguments mid

hd:x ig x vr....,x> & n 1 - x, ; .L produce a new function as the ;esult. The fol.
lowing functional forms are provided by this

tl:x ax Fi system.
x = <x1,...F^> & it Z 2 -) <x2,...rX> ; Composition

r.ns:x a x = <,..., C; (f compose g) :x xf : (g:x)

x . - ... . Construction
where x, . .4CIM> and yj = <y ...,j>, :x f :x,...f. : .

1 <i5 1, 15j:5 i. I: f ..f

and: x ax = <7,2> .- T; Condition
x= <7,'> v x = <F,7> v x = <,F> (p->f:g) :x (p:):-) = f:x;

- F;1 ;JFp:x) = F-) g:x; .

Constant
or:x a x =<,T> v x = <TF> v x = <F,T> 4 T; (constant 0) :x = i=J.;0

x = <F,F> .- F ; where 0 is any object.

not:x Ux = T-4 F = F -4 T ;J

7th Annual National Conference on Ada Technology 1989 177



Insert speciicntion defines Elhe etries (ifnny) ror thie
/f:X u x = <X>-) x1 ;task. Theo task body deincs the executable 5)or.

X= e 1 ,. .. > & nt 2 tion or trisks or the type being dieined.

- f <X' If <X1 .. IX>>;As a limited typeC, a task type may be desig-
Apply to aill tnted by Elie definition or all aces type. This

alphaf.-xvX= 0- 0 allows the dynamic creation of tasks, each with
X= <X1..r,>its own logical processor, by the evaluation or

-fx ... f ±, n allocittor. It is important to note that Elhe
master of a task aillocated in this way is not.

CFunction Definition neccasnrily the unit that created thie task. The
master of a task allocated in this way is thie

lit hisFP sste, fuctin deiniion s o unit that elaborated the definition of the access
in tis ytfntindfnto so type. flis has important implications as to thie

Dof :uznae - expr, unit. that is t-ble to terminate a task aind its
where name is n alpha-numeric string andi slave tasks.
expr is a function expression possibly contain. Synchronization and communication
ing primitive functions, defined fucios between tasks is accomplished by thie ren-
and functional forms. For example, one dert- dezvous. As stated earlier, this occurs when

nitin ortheractrialruntionis:one task culls n entry in it second task, and
Vat~ SUt1* Aub compose lid, cosat1 the second task reaches rt- accept statement fr
Vat COO - aq compose lid, constant 01 that entry. As n example or this consider thie
DeC FACT - COO -:o constant 1: following.

mul com~pose lid, FACT composo SUilil
task A is

After these definitions have been provided, thie entry Blockln (P:in Block);
upplication of thie factorial function FACT: 5 end A;
will yield 120. tank body A 1s

-- declarations
An Overview of Ada Tasks begin _ o3mttn

This section describes thie Ada tasking accept IUlockln (P: in Block) do
racilities used by the FP run-time system. -- decode block
Further details on Ada tasks can be found in end Blockln;
several books.4.0  end A; -- do someothing else

lin Ada, thie task type is provided to give taok B;
programmers explicit control over thie concur- task body B is
rent. execution or programs. Each task is pre- -- declarations
sumed to be executed on at logical processor of begin
its own. These logical processors execute their -- do somne stuff
tasks independently except at points where two A.Blockln (P);

tasks synchronize. In Ada, this synchroniza- -- do some mnore stuff
tion is called a rendezvous and it occurs when end B;
one task calls n entry in a second task, andHeewhaetsBclinntetrinak

Eli seondtas acept Ele cll.A. T1he rendezvous takes place when task B
As one of thie four forms of program units reaches the entry call and task A reaches the

(thie others are subprograms, package, and corresponding accept statement. The rest-
generic units), thie task unit contains a task dezuous continues until A has decoded the
specification and u task body. The task block and reaches thie "end BlockInM state-

178 7th Annual National Conference on Ada Technology 1989



ment. During the rendezvous, task B is sus- could be applied from left to right, from right to
pcndd and does not resume until the ren- left, or simultaneously. This property is the
dezuous is completed, result or the referential transparency of FP

programs and leads to their parallel execution.
Evnluntinn Strategy for FP Progerams

The FP Run.time FyJa~uatgr
Brief ltroduction to Grnh Reduetion

The FP run-time system exploits the paral-
Graph reduction is a popular method used lelism revealed by the graph structure of FIl

in the evaluation of functional programs.' To progiams. As an example of this, consider the
illustrate this technique, consider the follow- graph of the FACT fiction defined earlier (see
ing FP program and its evaluation via graph figure 2).
reduction.

Dof£ - (mul, add)
f:<5, 7>

a)/X: b)/

~57 /\ECO constant I compose

mul add

7>: 3512

Mul <5,7> add <5.7>

Figure 2

e) <35 2> This graph guides the run-time system in
tie creation of a tree of tasks that computes the

Figure 1 desired function. To start the process, the run-
time system dynamically allocates a task and

Figure 1 shows the steps that are performed asks it to apply the fictional expression rooted
by a graph reduction of Oie function f. In step a, in te condition node shown at the top of figure 2
the function is applied to its argument. Step b to the object of the computation. This task, and
shows the expansion of f. In step c, the argu- each new task that corresponds to an interior
menL has propagated down to the learfunctions. node in figure 2, is responsible for three
Stop d shows the reduction of two branches in actions:
the graph and step e shows the final reduction • dynamically allocating tasks to compute
to the function result. its subexpressions (this corresponds to the

function expansion shown by figure 1b),
This simple example illustrates the graph * passing arguments to these new tasks (this

structure of functional programs and their corresponds to the argument propagation
evaluation via graph reduction. It is important step shown by figure 1c), and
to notice that the reduction of independent sub- - collecting the results from these new tasks
graphs can occur in any order without chang- when their subexpressions have been com-
ing the result of the computation. The reduc- puted (this corresponds to the reduction step
tions performed in moving fron step c to step di shown by figures ld and le).

7th Annual National Conference on Ada Technology 1989 179



The tasks corresponding to leaf nodes in figure This prevents us from killing one or the
2 directly compute their result and return it to branches in the task tree rooted in a condi.
the parent task in a reduction step. At each tional node and raises the possibility of a run-
reduction step, the corresponding task becomes away task branch. To execute the condition
terminated and disappears from the task tree. functional form in parallel, we need the nile.
As reduction continues in the task tree, interior caring task to be the master ofeach task that it
nodes become lent nodes and are reduced. This allocates.
process continues until only the root node of the
task tree survives. At this point, the run-time Currently, the whole problem is avoided by
system retrieves the result of the computation simply ignoring the parallelism inherent in
from the root node and execution is complete, the condition functional form. A possible solu-

tion is to place a new access type definition for
While the graph in figure 2 is cyclic, its our task type in each task. Allocating tasks

corresponding task tree is always acyclic. A with the new access type should make the task
partial tWsk tree corresponding to a possible dependencies match the conceptual task tree
evaluation sequence for the FACT graph is and allow the aborting ofentire branches in the
shown in figure 3. Some of the branches in the task tree.
task tree have already been reduced.

T'rnnslnti o 1r F) to Adn

The FP to Ada translator is written in Ihe C
programming Innigun-e and uses a Yncc gen-
erated parser and a Lex generated scanner.
The translator generates Ada source code that
builds objects and FP program graphs at run-
time. Both the objects and program graphs are
composed oV nested lists. Each node in the list
contains a tag that identifies the node's type
and determines the node's contents. The
translator places code at the end of the module
that applies the main function to the main
object and collects the result

Prowael S!ntus and Future Work

As it is implemented now, this system pro-
vides the possibility of program correctness

3 and equivalence proofs for portions of Ada pro-
Figure jects originally written in FP. To further this

goal, this system needs a tighter integration of
Of the functional forms in this FP system, Ada to FP. In particular, Ada procedures

only construction, condition, and apply to all should be able to construct FP objects and call
have the potential to execute their child tasks in F1 functions directly with these objects as
parallel. Unfortunately, the dynamic task parameters.
allocation strategy that was chosen preven. the
run-Lime system from taking advantage of the The system automatically takes advantage
parallelism inherent in the condition func- of the implicit parallelism of FP programs by
Lional form. The elaboration of the access type executing these programs in parallel, thus pro-
used in the allocation of new tasks occurs in the viding a potential for the increase of execution
package specification of the run-time system. speed on a multi-processor machine. However,
Thus the package that defines the run-time more work is required to exploit safely the par-
system is the master of every task created.4

180 7th Annual National Conference on Ada Technology 1989



ullelisin of thm condition functional form. Norman Graham rceived Lte B.S. degree
Other possibilities for improvement include the in% Computer Science in 1985 from Louisiana
development or code optimization vin program Tech University. lie is currently puirsuiing ai
transformation and Lte developmcnt of a Ph1.D. in Computing mnd Infortoation Science
heuristic algorithim that will prevent the cre- at Oklahoma State University. His research
ationt of new tasks for computationahly inex- interests includec programming langunge
pensive functions. TVhese improvements designt and implementation.
promise to improve Lte execution cfliciency for
FP programs. Mr. Grahm is a member of the ACM and

Upsilon Ili Epsilon, anid is Lte recipient, of thte
IterretepSAMOCO 1110). Fellowship A Oklahomam State

University.
1. J. Blackus, "Can programming be liberated

from the von Neumann style? A functionitl
style and its algebra of programs."
Communications of the ACA1, Volume 21,
Number 8, August, 1978.

2 K. M. George and G. E. Hledrick,
'ransrormations in Lte algebra of func-

tional programs," Proceedings of IEEE
Coumputer Society 1986 Interno~tionmal
October 27-30, 1986, Miami, Florida, PP) 40.
46.

3 S. L. P). Jones, "Using futurebus in a fifth-
generation computer," Department, of
Computer Science, University College
-London, Cower Street, London WMlE GOlT,
UK.

4 Reference Manual for thme Ada Program-
in g Language, "ANSI/MI L.STD. 18 iSA-

1983," New York, NY: Springer.1 ering,
1983.

5 It. Wiener and R. Sincovec, Programt-
Ming in, Ada, New York, NY: John WViley
& Sons, 1983.

6 J. 1-. Williams, "On Lte development of the
algebra of functional programs," ACM
Traits ctions on Programming Lan-
guages and Systemts, Volume 4, Number 4,
October, 1982.

7th Annual National Conference on Ada Technology 1989 181



ThA?4SFERRINC: FILOM PIASCAL OIL C TO ADA

iessi $(Asu, 4end ismi Wiedence&
Vecinjufcr S61sice IPqrcrimnt

Urnrrtty of d%414 414&
1L4ictil, S 6SM~

aJUI1L5Ar must b, %Zquired to uist the new edit
Thit paper repoqti ema a pfrliminry, study of programmers IN rogamming, %ilil'e text ettingt atv ceeo

trained in Pascal or C trantfecriag to Ada. We vid oapeiI sub.- perfosmance and learning, which would be applicable to transfer,
3esss whlo spokte aloud "s they wroe thetir first Ada program., Wie do Not curmsitly exist. In Oeder to mnake theoretical progres we
developed a miodel 01~#ON.W Its a neiS Isit44 And~~ osts. usedi~ a, databaset of empirical eviolence About what tirnnlferts and
Pared out oibservatioss to the ittsoilki As might bc expctedJ, we how. Our purpose In this $tuly was to Observe a small Number 0f
observd that a great deAl of timei 6I ipet~litichu docuimientAtlon programestitt trans~feringI to Ada and use these obsservations to
A"d trying to translate the kmowledgle C:Iined hornm the documencta. crealt a model Of the activities programmer. qatgage In a,.. thet
tei" into weehle~ ctde. Theft was Also A great, ileal 0( iteration .trategles they usfe In traser. We also wantA~ to characterist msy
of activicio, Us ititil solution ats~t fil ed N tAnd new Apiproachies special dufficules p gr nmv" siemed to fAct [a beginningt to Use
were t4ie. We found th~at subijects had little ilificulty with the Ada Because of the exploratory mature Of the study anld ii. $mal
syntax *f Ada or with the semanticsi of constructit which hadl close number of subjects, we did not Intend to do any statistical ast%-
ceitntgrparits tIn their known lattgu.Ngei. T!,ty dili~hve difficultics ly"Se Of the data.
Wilth t *emanIce~s of unl.ut conistructsi amd with iltvelping Alpa.
itimsi which wiolit beeay to Iimlemet In Ada.

EXl'ERINIENTAL "Ith-111D
For thin initial study wt videotaped two programmetrs who

L,4TaonC~tnNormally work iasca orCa" they wrote their first program Im
The transfer of skill fronm one ptogramnaisg lanhguage to Ads. One Of the subjects wals at computer sciesice graduate student

iaother Is Near transfer because it involeca trrder between two ad was a highly experienced and skiled studlint prgafewr
skIll which Art closely related to each other The opposite of Thto other subject had wored "s a preifelisinnal proigrammer for
Newr transfr Is far transfer, which Involves ".N'1ufer front one skill three years in BASIC, COBOL, aad Pascal. Bioth ha previously
or knowledget domain to another far Afield front it. Studyig near learnedl aw proigrarnming languages Indetpendenstly from heels andt
transfer between programming lantuage. Uv of ccgnitive interest mnsloah. The sublject, were Instructed to speak alou frely all
betcause It Is an extenision of the study of learnsrj.to program am they worked, and their velrbalisitloas were reorded. They were
area In which much recent work has been 'lonel'S 1 , In Addition, allowed to consult drcumntalo, IncludIng an Ada textboosk
theft are practical reasns for Inttiveji in skils transfer In program. whenever they wished . The subect. were allowed a maximnum Of
miag. Programmersm at all level frosts students to profesionals are two hours. As expected, uteiher Of them finiehe the progrann In
faced witht the task of learning aett gasnan languages, often that tite.
on their own and without formal Instruction. Thet cursent situat.
ties with Ada Its a good example. Ada is seldom taught In unir. Figure 1: RJE Problem
skty computer sclec progrm, yet it is widely Used in tOoVrcgig osmlaea(smlfidfesino armt
ient Bad iadustry. Sometimes programmers are given In-houseYomegigtsmuaea(mpfedvrinofaeoe

training In Ada, hut not always, and the training courses vary job entry facility which modifies and transmits data between
widely In their lengthl and content. Whther training Is givent or two computers. Your program will do three things to sack
Not, there Ik a strong underlying assumption that programmers cam list of text read In:
fairly easily trainser the knowledge amid skills they have developed
in Other procedural lnugesM, lke Pscal amd V, to Ado,. Yet our 1. Reverse the order of the characters.
experience taching counse in which student progvrmmers have 2. Translate the upper case characters to lower case Ad vice
transfred to a niew lagaeIdeednl ugtgut that they Versa.
encouniter peat languagtes.Atog ind nsfe to a rtw 3. If a line is less than 60 characters long, fill It with
language is alwayseasierthin Arlthuhtserng Ir" andi write out a line of length 60. If a liek

eaaie thClaaigash. agagI s tl greater than 6O, write It out as separate lines of exictly

Although there itsno existing body of work on transfer of6,fligtels in ih" fNcsay

sklsbetween programming languages, there is a growing body of
research on near transfer in text editing. Much r"cent work on The problem used in this experiment appears in Figure 1. It
transfer of skills between text editors has been based on a common is a text processing problem which calls for a series of operations,
elements theory Of transfer, Lt., the Idea that knowledge of out edi. algorithms for which would be familiar to initcrmediate and expert
tar W ' 5 fase to another only if the two share common ala, programmers. The solution to this problem in Ada has much lte
meats'' Takin off from the performance theory of Card, same outline that it would have in Pascal or C: a Nested loop
Moran, and Newell . the common elemntis theory has been opera. approach utilisiing arrays of characters or strings. However, an
tiontaliced by defining the tWhk in each edito by its own set of ideal solution in Ada terms calls for using some features unique to
productions rules. Quantitative predictions of transfer time can Ada, in particular, packages for 1/0 and attributes for solving the
then bet made by determining the number of new productions that case translation subproblem. Other Ada features which might be

182 7th Annual National Conference on Ada Technology 1989



wwSe bet ant not necoesay for solving the problemn are the lnitias. SfVI fftVO
sale of vrMas whena declared and t k~iitanlatioa e. Yuti igre 3 below shows the perrentag or time each sf ou A4atype. We do"s a pteblm which did not use tile contumaecy *ojcsset6 ah tik.SbctIw hegdue0-feature of Ada becit- to we lm:#%ded to a"e the su p""~I. to subets rvsen each activity. Subje weam.06 tilt ramn sw.
s4*t CI(rarA-to4 beq rgaoin ac"wih ontsm. i the l64 CONMAlS we have blaekied for Comparison the time for a

Pon o~coreisuboject who trferredf* freom Paoc&4 to kcon. ken a deasctndent of
SNODOL, 6 much les similar to Pascal tha is Ada, so this kom

Monf. o X INAggFr subject Wl allow us to Maile some observations ost the effect of liii
langew being tfraaqreo toe th Ie trausfer Procedure.

Our ProC e recedural model for transfer beivween pro. Fiir 3: Ditibto of Solution Tinee (percenas")
gresamelng laagcuag 6s shown I% Figure 2. The mwael is quite pa- Ada St AJa S2 kern
eral because the ploceiaort We wo4l expect tile progriamer 40 11d4r.lm* 20 .
low be tr'ferrng 140 A Mew language Is no streCtural dhifleftlt Re Polem 1.5 13.0 23.5
ftom ilt procdure he wr shit would follow when writing a, program rose forlui 4.A 2.0 210
be a fanilar language. The main dtstiotdorA between writing 6n a LOWrit ex l 4. 32.0 15.0
new luiage and writing In a lasar lagiage would he the Write code 27.9 030 14.8
sequact of variou. ucivil and the number of tloa activities vaateI code 13.0 2.0 4.5
wre iterate be carrying out a solution., ERae ode 33.021 .

Our hypotilsise moatl aC tranfer hehbvior Is baed o% 4R4 0 31 40 X
lea that program are write lacrmetsally. Oat expects that a T7he two Ada eutjecta *pent a comnperatle &aunt a( tme be

propramme writing a Program be a language that ile or shit knows wany or the acivities, sacil as reed peebhsm peslt ion, l"e Ow
wvill rv rvad tile problem, the% poft som sort of alIt haslc solu. "nple, andt wrilt coe. 110Mver, they difere greatly ill t.
Ie. Tkwill wo, liely he a kanes" Independent high level amosni Of time thA they spent 00 6e04 teds, nuleete Ced0, Ad
plan. Dte*Asag an how famailiar the individual 1. with the pro. reed keek. kt appa"e to us that tis difrece wed tile result o
graimua langce, he or she smay to iNmmedi4ey to Idalag the differtit learning styles. Subject I waa an active learw. Hie
C0d4 or 604t6a MAY check the prograImUmi manual11 for isi blat ely becan to wrile, tes, and deeg sMAl se18MeIs of
beforuklo. Oat expects that as tile propauser write* lilt code code. lit only refrre to he decuamwalI wile he: reached hn
he orshe may aeedto refr t4 Ie m al ccaioaly to hchehk oi impuise A4 hail no 16A of 4W to peCWee. A's Dows M he got
such things Ad synta, reserfed words, and eVen semantiso C corn imfi new Idea from the documseattae. he began iemnting
shructs 40t frequtatly used. Nf the desCtipelo. be the book Is ad testing it atos11ce. subject 2was a nerpassve larv . lie
unclear, tht programmoer way look for examples be tile hook or be wanted to feel familar with the lealo gu 64bfre trying to run even
previously written code. After the code Is written, many Individa.. a small program, anid he spent a goad deal of Iln scanning the
als wil check it hy hand to insure that what is writtn I& correct, textboo to ga4n AM oVvi. He spen about M Mucil tiM acta
but some wil just attempt to compile and execute the code. After alny coding Ms Subjsct 1, hal he did sot tost ad evaluate his code
tht code is tested, itMust litevaleteOd toeMlfV i it6"or. Nf aMhe wet 10,04464he wento001tosolveaNCceOlesbrolet
the code proves to he incorrect, 4t programme will either pose a saving the tesling for lawe (which he ne~e reached hecause timet
solution to fix be at read the documentation som More Vf so sale. ran ou1t).
ie . Immed6itey obvious. Ito eO Is foun("d, tilt whole foto By comnparison, the kern subject spout less time writing code,
beg process win he executea dhai to solve tile aext segmet Q( the sa time posing solutions and more time looking for ennaspime.
problem. The loop be Figure 2 will he reetered A teither read Since he was 6"e famaliar wih the nlew hinda of cosrWU used be
problemn or past solution. koe, ht had to pose m~ay solution pleas before het succeeded be

rt*dleg coot he could implement be ke. lit aWlso edd to cossult
imr examples to Me how the costructs should he coordinattd

rigs.. 21 a elte.Lt* ?rsee.aA "t Into a programn.

o"CaUPARICIR 0 11tPIROCiM1111AL UOT)PIt

Figures 4 aS04 S rePresent the behavior of subject I ad 2
wtllo *Val towrespectivtly, be graphical form. When we compare these two fig.
0046 cod Maresu withe il otloiie~ed behavioral model be Figure 2 the follow.

beg differences awe indicated. Subject 2.s behavior (passive learnet)
riore closely resmles the htypothesised model except tha Suhject

tookto 12 did act eng*ge in the teoltede activity, sad hence the
Ior * Codehypothesized lWoop involving this activity do not appear be the

actua behavior. A loop between, reed Pes-reed ba &Appar
toad~b bokIshe behavior ot both subjets which do*e not appear be our
teedbookhypothesized modeL. 'tht e occurenct of this loop might he

explained by the subjects, posing solutos be a language dept.
dent fashion rather than attempting to use a high level plan Bad

If te pogtniter usig i uninilia lanuag, w txeCL them attem"pting to implentent it utilizing lguag constructs.
tha the rbofaiterat ing o the unfaili catrt anguge, we for The actual problem givern ;a the subjects was such that the prob.

ehatmthe numbe wof iteis of ier. coderead b-ookfor ki 9pCfi; suggested a hith level plan. so subject did not
nznpe lop wuld e muh hgher Therea bo~st xplicitly state this but instead attempted to generate a more

oolutlean.writo toe loop would alsoo be likly to occur with a localized algorithm for dealig with individual portions of te prob.
higher frequency a. tile programmer attempts to implement a sole- le11. The Pose solution activity for Subject 2 was never followed
tion be the new language. If the new language 6s quite differet bY looking for an examle although it was followed by reading the
from those that the programmier Is used to, the frequency of these book, which would suggest that his solution was specific enough
loops is likely to be increased more than if the new language is that he could look up And read about constructs and syntax
similar to those the progrmmer already knows, needed to imuplemnt it.

7th Annual National Conference on Ada Technology 1989 183



i~lo~~ 41 VIt~5 *41 of $,.f4 I Ii'l 4m hoc.44,. PJl & to It" la.eii

WOl 20Y.e oval. Itt %ue~ 14 will$n WAt OV sipe egr

too is ea4ea st prve sob r 2.rnuml iheyiu

mil ay opIn %* ructurw wrti ws expectle Thifr e s as Wkpq
clay Itede 01( o b t actually wite daetot a #Wpk) progrsa m- o
mpdix% probetlme k 5 w Rhi ha they hativapprprim a eniveu.T

piohAem. sother frand thaatproach do v f sel yuut qeialto..
76% f" so" Pot.instane Wso*ll 1t ont heir otUcIas l oul the Ada om IoPa

Ical or tha 6OP6 ltlism coupl dhl fr lo qa1v Otzwemljc tA411
thes aprach"e id to aculy "I~ ous whether Mfly SOA34

dO were allowed In Ada. He felt Mat iv* ivir than lo".
suvjeit i's behavior s1"e much mwqletw- bewe lag i tip 6a tht documatice and it probably waa. Tme kw oys.

the vxrloIVI acivitlqi. Much of thuis can be eaplalsiA by his active tactic eeoes which proed to be a bt m#we sliWlchto urevO
learner appewlth. is relutasact 10 react "a look up snaay opecf. icm bu becielil they welt not explicitly amworvi in thet dloe.
ks. relyinag laoltead on *etting da6 cnpater rat~re it oist% tva. Ftaltor qxbt31m511. Subject I got a t.104 aWeAOt whft usin
traed mfore ktratious Is loops and moret pts that the cd.p'..rs. Hte lypbtkt#;sed AM he might "ee to type
hypotheil model dia Pot predict. The pat, froms Write code to . t~Jl~r& in 39 Upl!W Of A CCIVLnIN . of upperCt 1Aid
toot codt, from toot code to mt*l 64, and frm cvalvatt code to loweriat. The qisoutioa was Pot uawerelT Ike1 text, %ail tho
leak for exuamp that dod Not exist In. the hypotheusedt behavior v~unple uset do abitm&ossO5) lit yj:c eapeiwtat with all of
model can be #%sily explained by dat active Stre lbcavow. Thet the possibilitles before CcmddiAg that Silo erior had snothing to do
paths fromt sed hook: to evuluat tede, from etvaskate eat. to no withcase.
bea, fr o tdit tod 10& irI A, and from tVA6lustoilee 1o Write S(tmtic proslsss west generally fairly mixor, again 6*ca's.
code that occur Ins onse or bok subjets' behavior andl not in the Ada ks similar t0 other procedural tuag*"ge which the pubjecta
MOd e a be explained by da, subjects, Unfamniliarity with the knew alreAdy. However, they am11 tla s oimportsaci wrhens pro-
langagsge. Onace codle has been written they &"ed t0 consul t hi gramumiag constructa In Ada h1ad no close covalerparl 6s other
book1 10 set if the codle appears to he correct uai to verfty thel known laguae. This becamue very clear 6a Or ObeerVitioe Of
semantics of tke eacoded constructs. 'Eke experience level of the 1114 subjects %sing Ada packages. From overall scanning of tke
subjects amd not seem to afied their behavior, although ot would Ad% textbook. the subjets had am idea of what package wer, and

dametis might not be the cast for novice subject. This point they quickly diocovered that they had to uoe packages for 1/0.
will be Investigatedl in later studies. hiowcvcr, they had trouble actually using them. Oa.t problem was

When we look at tke behavior motdl constructed froms the, discovering which packase to uwe for 110 ad figuing out whether
subjetct writing dt samte problem i1A the dissiilar language, Icon, you could use two packages at once. The other problem was aot
oue major difference to apparent. Figure 6 contains I* path (tos understanding exactly what operations were available in the pick.
reed baak to write cegit. Sincet the language being usea In this age* and how they worked. For "aple, Subjet 2 fail to Cio.
case uses data structures and constructs quite different froin those cover the Cet operation and had to restructuret his orinAl
with which the subject was familiar, he detmonstrated the need to charactier-orieted solution approach to use the Cetline instead.
explicitly state his solution. lie did not feel that his usual Imple. Subject I discovered the Cetlne but had great difficulty Using It to
intntation plan would work In. this instance and tried to develop a read In strigs because he was used to reading in primnitive types in,
solution more in keeping wNith, the constructs available In the Pascal and did not think through what might happen in reading in
language. stroctures.

The other ame where wt observed transfer problems was in
planning solutions. The problem given to the subjects was chosen
so that subjiects would know algorithms for solving it. However,
even though they knew algorithnis they nevertheless had planning
difficulties. The trouble was that the algorithrm they initially pro-
posed, though in a tenae lnguage independent, were based on
what was convenient in other languages. For example, !a solving

184 7th Annual National Conference on Ada Technology 198



the Mrblem Of 1rtnsllag UPPOtr(t to lowercase ail vkt vina, N:Abki. :20:1.
Sssbjc I took Ike 3pproac (which %rosa We aprittelmie ist

Pw'al) 44 MIa o illor.iracia the .Itsgt lass.o 0 Ccm oot~*l.
6cg %pqraa &%4, 5kr e cliac,,r. Us~i inshc whik he PTOUS
ued for ObtAlaslas the lastsqW valt gavc hint 1A Illega 17f
coasasnloa wtor Ins Ad~a "n forced him to 464asJ0% hi~s Aiim.
Smbjvct 2 bloo tri. to 1"' lt *UK r~clw '%tap h 6(rid

lo tvhctim that w"Ml give A asasmeekal asahi for A character.
Alhoug.h he scausws., the seitlooli eisAivel lookisig for soorw
thing that wuvl help himn, his Mearch oA the tent was direted hy
what he %siew of Pascal. A* &. rvowlh he pertiotasly k.lk5J for
fiss~ctioasi ndt WW~c to lWk at huribis.,,. whkh wgUl have solved
hid pSroh1III. We alo wT ted uy urns %hile obseving our sub.
J~cud 1tat, While in glaeral their expettwe with m~oter laftgage
help*A them, kt alo .eenetinw hut them, %hen it limite the l.
dio" they "eUl tonsidgr.

=%iranmnx Sehoxq
Fromt shis small smplq it U. imspossible to draw simioutuuse Scienict mpuwta~#

vaWi coatk .loe ltow.w We cast RIA- so"e 61suiewiptlg puilia I FCMt5Oft 11 XU

tis to wattle for Sa Oom 4J4;alo ja Nyfioeh to test a we 40 LPosives ofM ut
ourw n s imslve studies. Wt coete4 Mstloie to the ahlky U1CN 0 UL1I
of peopraacse.s to 11114tsta M4e INOW whqn to 164 cokgructo -a:SLj((jaIq1
which had not direct anlogiosi Ii their usual lnguage. We also
OW"V4e that their plan. " ate a oft algorkhm. dhat they linew Sem cos ua 4octoral caR64-dae las Omser r scienc at t
w"Ul 1- eas to la4iest ;% their usualJ langua. WhenatheeUleiyo ka4.lton ir wuch Issseti intclu
algotiat"W tamed got to be mitwMAa to 14eesn In A th hummnqtieI-r i%1qfcloss. httrlcwa lass4lligncV. bed l'PJIW*
PrOV'tam M 44 Wfe hd Iiculs devioing another alOthm. Tkid
01ug4t that W ptWgaaemtre smderatoo at* ealsolm'Ct better
And had $riater slilicy to post alitrnaive lgrhmthem the
14414114%s of path. Wkhin their Ilaiekir 01a1h0 would ettiquts. If
this does Indee tutus Cut to te the cane, it w* ouldsuget that

r Imiia o( pmnrohwr fom ao algorkihm desiga ans the
mnanuki of ukique coostructit In Ada, leavinag oysta and the

remainlig oqmaiks for the piftrutim.re to ealwith Wlo thlit

1. Dlowa, J. and Soloway, .L (m94). Ptqpogrxmtsig
knowkdge A major fturta of istlsonctptlons In novice pro.
grarnmers. Ilismap..Coplutr AW446sct. 1. 1411.

2. Card, S.l(., Nforms, T.11., ad Nitwell, A. (1IM). The Susmi Witassnck
keysrokeiw4 model for usger perfor"Iace 164s with laterm. C44Pttr Scienuce Departitit
tive syptemit. CIni'nstmn .1A 4M,2,36.1.15fssn Ito

3. Olsen, 11W. and Whitlsil S.D. (1943). Ada fo J)roptri. Unlvctlity of Nebraska
mirs. RSSitof, VA: Reesoss Pulishing Compny. Uncola,. NV.WW C4 01$

4. Po"so, P.M. Ilovair. S. axd Klerae D. (1087). Trnsfer e-m4ll Susanfrvxc.usLvsl
between text editor.CM '87 J'rocediati, 27.32 Sumas Wjedanbock received her Ph.D). ('oustshe Vaiversisy oa Pitt.

5. Polisona P.C., Muncher, 11, aid Fngtlbeck, G. (1940). A test lsrth In 1944 aitt Lu itow Aisjust PtcsoeK of Cosaputer Science
of a common elements theory of transfer. Ms 15 Procced. at the lmialvrity of NeiIula.LIACol. 11cr rtkutsh centers on
imls, 74453. problents concerning the husnncosnputr Inteface, particularly

8. Salomon. 0. aid Perkins, D.N. (1987). Transfer of cognitive with respect to prograullng linguage, and kte. processing Ope.
skills front progammning: When and how? Journal of Iduce. tells$.
tiossul Computing ResuarcA, 3, 149-109.

7. Stagly, M.l(. and Anderson, i.R. (M98). A Ieystroke
analyal. of learning and transfer in text editing. husmant.
Computtr lInteroction, 3,223-274.

8. Soloway, I., Eharlich,, K., Bonar, J1., and Cretnepan, ..
(1984). What do novices know about programming? In
Diecions in h1mn41tCoMputf 1rRItct (A. Blah and D.
Shneiderman, Eds.). Norwvood, NJ: Ablex, 27-54.

9. Spohrer, J.C. and Soloway, L (1980). Analyzinig th2 high
frequency bugs in novice prograrnu. In Emnpiicl Studies of
Pro grommers (E. Soloway and S. Jyengar, Ed.s.), Norwood,

7th Annual National Conference on Ada Techinology 1989 185



Two ARpROACS TO AMA: THE PROCEDURAL APPROACH AND THE OBJECT-ORIENTED APPROACH

Gerald R. Thompson

F'ohouse Software Group

for non-computer science purposes. He
wrote and help design a computer model
of the contrast sensitivity of retinalABSTRACT: ganglion cells. The developer has

Pscal is often used as a reference experience with PASCAL, FORTRAN,
point when approaching the Ada ASSLMBLY, C, C++, and ADA. The
language. When a program developer developer had absolutely no experience
used this procedural approae:r to In object oriented programing.
Ada, he encountered problem of
overloading and ambiguity. After PROCEDURAL (PJSCAL) APPROACH
learing an object oriented approach
to programing, the developer The developer was faced with the
rehashed some of his design and task of writing a prototype of an
solved his problems. His opinion is authoring tool. He decided to test the
that the procedural (PASCAL) Ada language on such a task. With no
approach, alone, is insuficient when formal introduction to the Ada language
approaching the ada language. A or object-oriented programing, the
knowledge of object-oriented developer used a procedural (PASCAL)
programing is also required. approach. The PASCAL language is often

used as a reference point when
approaching Ada. This was the approach
taken. The two languages are similar in
structure and syntax; similar, but not
the same. This was thn source of
initial problems. Struggling to learn
the language and develop in it

INTRODUCTION simultaneously was frustrating at first,
but once the developer internalized the

This paper is based on one program style of Ada, structure and syntax
developer's experience with Ada. It is became intuitive.
not intended as some profound conclusion
to years of research. It is a log of The major problem occurred with the
what happened when cute program developer use of packages. When the developer
chose Ada as a development language. tried to use more than one instantiation
This is where the significance of the of the same generic package, he
paper lies, for it is the program encountered overloading and ambiguity
developer who must use the language. problems. In his particular case, he

used more than one file of the same
DEVELOPER'S BACKGROUND type. Intuitively he expected that when

a read or write operation wa requested
Since the Fall of 1983, the and the file name was given, that the

developer has been a member of a appropriate file information would be
software development %e m. Over the accessed. This was not always the case.
years he has developed software for a In so.e instances the package names had
variety of tasks. Tnese include the to be provided. At the time, the
development of: CAI packages for developer though that this was peculiar
teaching Ada; graphics primitives for and that the file variable should be
use with a microcomputer based PASCAL; a sufficient to determine the package.
specialized data presentation tool for
use with a mini-computer based THE OBJECT-ORIENTED (C++) APPROACH
statistical analysis package; and tools
for automation of semi-repetitive tasks During the summer, the developer
and documentation. The developer also was exposed to the C++ language. C++ is
has experience in developing software an object-oriented language. The

186 7th Annual National Conference on Ada Technology 1989



lessons learned studying this approach
to programing would prove valuable.
After extensive use of objects with this
project, the developer looked at the
design of the authoring tool in
retrospect. In redesigning parts of the
authoring tool, the developer avoided
the problems of overloading and
ambiguity by treating each file as an
object.

CONCLUSIOHS

The developer Is even more
impressed with the AdA language after
learning an object oriented approach.
In his opinion, Ada is an excellent
software development language. Ada is
oriented to both procedural and object-
oriented aspects of the real world.
Also, Ada's suport fur data with
unknown constraints is ideally suited
for real-world representation. Neither
PASCAL nor the procedural approach alone
are a sufficient prelude to the Ada
language. It is important for a
developer to understand object-oriented
prooramr ing.

Gerald R. Thompson
Morehouse Software Group
P.O.BoX 131
Morehouse College
Atlanta, Georgia 30314

Gerald is a Senior Computer Science
major at Morehouse College. He has
been a member of Morehouse Software
Group for almost six (6) years. He
has worked on special projects for
E. 1. Du Pont and Bell Labs. His
experience also includes Biochemical
research at Morehouse School of
Medicine and Computer Modeling of
some aspects of vision at Cornell
University.

7th Annual National Conference on Ada Technology 1989 187



ON INCLUSO1N OF TE PRIVATE PART IN Ada PACKAGE

SPECIFICATIONS

Siturnnan Muralidharan

Department ofComputer And Information Science
The Ohio State University

Columbus, Ohio 43210

in many possible ways, and exposes to a potential
client exactly what should be known to use the

In Ada, if a package provides a private type component, without having to be concerned about

(encapsulated type), it must Also include a full the actual implementatien details. Specifications
declaration of thy representation of th, ttp in th should also facilitate information hiding5 , i.e., the

private part of the package Intertace syntax (p a sgpecifications should reveal no more than what is

speclfications). Potential clients of a package are necessary. The principle of information hiding
allowed to use all the information In the package complements the notion of abstraction. If the
interface syntax except the private part. This paper specifications state more than what is actually
discusses the possible reasons for including the required, the developer is limited in what can be
private part in package interfaces. The claim that done to implement the specifications and the clients
the private part facilitates the compiler of a client are overwhelmed with information that they need
program to generate efficient executable code is not know.
analyzed in detail. It is shown that the privato part
is undesirable, and that the e!nrination of the The separation of he specifications from
private part need not result in any serious ex-icution implementations provides developmental
Inefficiency. independence, essential for software reusability,

and for programming in the large. It is important
that modifications to an implementation of a
component do not affect the clients of the component
(and hence the client components need not be

Tritrn an recompiltd). as long as the specifications remain
unchanged. Actually, many possible

Software reusability leads to two distinct implementations with different performance
programmer communities - the developers of the characteristics should be possible for the same
reusable software and the clients who reuse it. (The specifications, and the clients of a component should
developer of one software component may be the have the flexibility to choose an implementation that
client of another component.) This dichotomy suits their performance requirements. Ideally, a
necessitates that the specifications and client program should not have to be recompiled
implementations of reusable software components even if it changes the implementation it chooses for
be kept separate. The specifications serve as a a particular component.
contract between the developer of a component and
the clients. Ada is one of the first widely-used languages to

support the notion of separate component interfaces
Ideally, the specifications of a component and implementations. Typically, an Ada package

should precisely state what the component does, and providing an abstract data type declares the type as a
nothing more. An implementation should show (limited) private type, and provides a set of
how the specifications are realized in a particular operations to manipulate variables of that type.
way. Every package has two separable parts - a package

interface syntax and a package body. The package
The specifications should provide a good interface for an encapsulated type pr~vides the

abstraction of the specified concepts by exposing all name of the type, and the interface syntax for the
the important details. Proper abstraction gives the operations on that type. In addition, it includes a
developer the flexibility to realize the specifications private part which shows the representation used

for the private type provided by the package, and this
is the topic of discussion in this paper. The package
interface syntax does not formally state what the
package does, arnd hence should not be called

188 7th Annual National Conference on Ada Technology 1989



specifications. However, weo will use the terms elaborated in the package body. In this case, thespecifications (Ada terminology) and interface compiler of a client program essentially has the
syntax interchangeably in this paper when there is same information that it would have in the absence
no chance for confusion. The package body shows or the private part. If the private part were notan implementation for the operations listed in the specisfd, then the compiler can automatically
package Interface syntax. represent a variable of A private type As an access to

an arbitrary data structure, and the actual dataThis paper examines closely the reasoning structure can be filled in at run.timeo3 . So thebehind the inclusion of the private part in the compiler can generate code for client programs
interface syntax of a package, and shows that scch without using the private part.
inclusion - a clear violation of the principla of
information hiding - results in no appreciable CopilrratEffiintde
advantages. If it is possible to compile client programs

without using the private part, then the reason for
Why thoM Prlvl' Part? the private part must arise from considerations of

execution efficiency of client programs3 . The next
In this section, we critically examine the section explorez this possibility in detail.

p0sible reasons for including the private part.
The Client Pron-anmmer beeds It Is Thk Private ParNe f 'erimlng adM,

The private part of a package interface has
been termed private, because it is not intended to be We will now analyze whether the claim that avisible to the users of the package. compiler can use the private part to generate

efficient executable code for a client program isThe clients of an Ada package are not allowed really true by considering various apparent uses of
to use the information in the private part of the the private part.
package interface syntax. In fact, clever
environments should hide the private part from the Before making this analysis, however, we noteclients of a package. While referring to the private that even if this is a valid reason, there is a muchpart, Feldman 4 notes that "unfortunately Ada better solution than including the private part in therequires that the data structure implementing a package interface syntax. Ada can introduce a newdata type appear somewhere in the specification pragma wh!th lets a compiler refer to a packagepart of a package, and not in the hidden' part of a body for tho actual representation of a private type.
package, as we would like in the ideal' and that Since Ada already includes the pragma ININE
"Fof reasons having to do with how compilers for which lets a compiler refer to a package body,the language will be implemented, Ada compels us inclusion of this new pragma should not raise anyto write the private part in the package specification, serious objections. This new pragma can be used
Clearly, it would be preferable to hide those details after the developmental phase is complete.
away in the body." Obviously, the intenton of the
private part is not for use by client programmers. An Exnmlal

The Compiler Needs It to Compile Client Prorams We will use the generic 'BoundedStack'
package shown in Figure 1 as an example in this

If some part of the package interface is not for discussion. This package provides an abstract data
use by potential clients, why is it there at all? type 'Stack'. A representation "or the limited private

type 'Stack' has been shown in the private part.
Apparently, the private part in a package Figure 2 shows a client program that uses this

interface is for use by the compiler of a client package. 'IntStack' is an instantiation of theprogram. To make developmental independence generic 'BoundedStack' package with the item type
possible, an Ada compiler should be able to compile 'Integer'. The procedure 'client' has a local variablea program just by referring to the interfaces of the 'a' of type 'Int.Stack.Stack'.
packages the program uses, as long as certain
prognias (compiler directives) which require the generic
compiler to refer to package bodies are not used. type Item is private;
(The pragma INLINE6 makes the compiler expand
procedure calls in line, and this will require looking package BoundedStack is
at package bodies.) type Stack(size : Positive)

It is possible that the private part shows the is private;
representation of the private type as an access procedure pop(s : in out Stack);
(pointer) to a data structure thrt has not been shown
in the package interface, and instead, has been

71h Annual National Conference on Ada Technology 1989 189



private Representations of Encapsulated Tvoes Cannot
type Store is array Bie Arcessed firectly Direct representations will

(Positive range <>) of Item; save an extra memory reference when the
type Stack(size : Positive) is representation or a variable can be accessed without

record calling a procedure, for example, if the procedure
top : Natural :, 0; client' can refer to 's.top' without calling any
contents : Store(1..s:); operations on 'Stack'. If 'a' is represented

and record; indirectly, it will need two memory accesses to refer
end Douuod.Stack; to 's.top', whereas only one :memory access is

needed if's' were represented directly. But, this is
not possible since the abstract data type 'Stack' has

Figure - Interface Syntax for the been encapsulated as a private type in an Ad&
'Bounded Stack' Package package, and hence the only way to access the

representation of a variable of that type is by calling
one of the operations provided by the package.

declare
package Int Stack is new In Figure 2, the procedure 'client' makes a call

BoundedStack (Item am> Integer); to 'pop', one of the operations on the encapsulated
use Int.Stack; type 'Stack'. If the compiler hatt directly

represented the variable's' (using the information
procedure client is in the private part), it can either pass a pointer to 's'

s : intStack.Stack(si:e -> 100); or can pass the actual representation. Ada leaves it
begin to the compiler to decide on what is passed6. We will

discuss both cases.
XntStack.pop(s); Parameter Passing by Rferene: In our

end ciient; example, it is much more expensive to pass the
actual data structure than a pointer to it, and hence
a clever compiler will only pass a pointer to 's', even

Figure 2 - A Client Program for the if '' is represented directly. If 'a' has been
'Bounded-Stack' Package represented indirectly, then there is no choice. The

pointer is passed to the procedure 'pop'. Thus,
whether 'a' has been represented directly or

Direct and Indirect Renresentationt indirectly, what is passed to a procedure that
operates on 's' is a pointer to the data structure

A compiler for the client program can make representing the value of 's'. Thus, there is no
use of the information in the private part of the execution advantage to direct representation, if
'B,)undedStack' package as follows. It can parameters are passed by reference.
represent the variable 's' directly as a record
containing an array of 100 integers, and a natural Gannon and Zelkowitz 3 conclude from
number. In the absence of the private part, the experimental evidence that "If data objects have to
compiler could represent 's' indirectly as a pointer be passed (by rxference) to procedures implementing
to a data structure (since the actual representation abstract operations in order to perform the
is available only in the package body), this data operation, the number of memory references in the
structure to be filled in later. The inclusion of the direct and indirect implementations is likely to be
private part in the package interface syntax is similar." They propose that the compiler expand
because that there might be a slight execution the procedure calls on encapsulated data types in
advantage to direct representation, line, and thus eliminate the indirection that arises

from procedure calls even when direct
If the representations of private types are representations are used. However, if a compiler

known at compile-time, it is possible to allocate has to expand procedure calls in line (for example,
storage for variables of these types statically. when the pragma INLINE has been used), then it
Otherwise, the storage will have to allocated must refer to the package bodies of the
dynamically. However, storage has to be allocated corresponding packages. If a compiler must refer to
only once during the lifetime of a variable, and this the package bodies to improve the execution
cost may be amortized over the many operations on efficiency in any case, then there is no need to make
that variable. Furthermore, clever dynamic the representations of private types available to the
memory allocation techniques can be used in compiler through the private part in package
reducing this overhead1 . Hence, static storage interfaces.
allocation alone cannot result in any appreciable
execution advantage. There is a possibility for some Parameter Passing by Value-Reiult: If
advantage when the representations are accessed. parameters are passed by value-result, then the
Let us explore this possibility further, representation for the parameter has to be copied,

and this takes normally time proportional to the size

190 7th Annual National Conference on Ada Technology 1989



of the representation. Hence, reference parameter
passing is usually more efficient for most data to We PrivatePart?
structures. However, if the representation of an
encapsulated type is very small (e.g. an integer), Even if it is convincing that there may not be
then its representation mightly be profitably passed any significant advantages from the inelusion of the
by value. (Ada insists that parameters of scalar and private part in the package interface syntAx, why Is
access types be always passed by value-result6.) it any harm? This section Aiscitscs the many
This would be possible, only if the compiler knew the advantages that result from tho tliminnAtion of the
representation for the private type. private part.

When the representation is indirect, only a Improved Abstraction
pointer can be passed as a parameter. However, the
called procedure can dereference this pointer at the While considerations for a certain
beginning, and can use the dereferenced address implementation may usually guide the design of
thereafter, whenever this parameter is accessed, specifications to some extent, it is unnecessary to let
This is possible since the called procedure knows the implementation considerations take priority over the
actual representation. Dereferencing takes one specifications of an abstract concept. Having to
memory cycle and, such dereferencing is necessary specify the private part in the package interface may
only in the case of in and in out parameter modes. overly bias the interface towards a particular

implementation. Such an approach may result in
We conclude that whenever the representation interfaces which are far too removed from the

of a private type is comparable in size to that of a specified concept, and too close to an actual
pointer, and an operation is called on that type, implementation.
there is an extra memory reference if the private
part is not used. But, common sense and experience It is also conceivable that the interface syntax
would argue that this overhead is very small in of a package and the actual implementations may be
uctual practice, developed by different people. In such a case, it is

certainly undesirable to let the specifier do part of
Overheads from Access Check: One of the the implementation2 . Implementation decisions

findings of Gannen and Zelkowitz3 is that when an taken too early may turn out to be wrong.
indirect representation is used, the compiler needs
to genrate code to ensure that the pointer to the Better Information Hiding
accessed data representation is not null. They
report that this overhead from indirect The principle of information hiding is that the
representation is negligible when a pragma to specifications should expose no more than what is
suppress the access check is inserted. necessary. As pointed out earlier, over-specification

restricts the choices of a developer in implementing
One possible solution to this problem is to the specifications, and overwhelms a client with

ensure that representations of variables of private superficial information that is not actually needed to
types are never null. A good design pra-tice is to use the component. In Ads, the private part in a
require that every Ada package must provide two package interface exposes more than what is
operations "initialize" and "finalize" for each needed. One common suggestion that is advanced to
private type provided by the package. The protect the clients from this superficial information
"initialize" operation for a private type would in Ada package interfaces is to build clever
allocate storage for the representation of a variable environments to hide the private part from the
of the type, and initialize the representation clients. However, this suggestion can be extended,
appropriately. The "finalize" operation would and it can be argued that even the actual
reclaim the storage. In our example, in the client implementations of the operations could be listed
program, immediately after the procedure 'client' is with the operation interfaces, and it should be left to
called, the representation of the local variable 'a' the environments to hide the implementations from
should be initialized with a call to the operation the clients! Such an approach combines the
"initialize." Similarly, just. before the procedure interfaces and implementations, and is obviously
finishes execution, the storage for the undesirable.
representation of's' could be reclaimed with a call to
the operation "finalize." These operations could be Tmnroved Developmental Tndependence
invoked automatically by compiler-generated code
whenever a variable of a private type provided by the The specifications of a package are like an
package is used. The language should establish agreement between the developer of the package and
these rules, and eliminate a common source of error the clients. As long as the specifications are
in programs resulting from misuse of pointers, unchanged, the developer is free to change any

actual implementation detail. For example, in Ada
packages, a developer can change the
implementation of one or more operations provided
by a package by changing the package body, without

7th Annual National Conference on Ada Technology 1989 191



affecting clients of the package. That is, changes in
implementations of the operations provided by a B&fn M
package do not result in recompilatlon of the client
programs that use the package. However, a change 1. Beech, G., Software Components with Ada, The
in the representation of the type provided by a Benjamin/Cummings Publishing Company,
package makes the developer change the private Inc., Menlo Park, California, 1987.
part in the package interface, and thus forces
recompilation of the client programs which use the 2. Brooks, Jr., F. P., The Mythical Man.Month,
package. Recompilation is certainly undesirable in Addison-Wesley Publishing Company, Menlo
large systems, and 'removing the private part will Park, California, January 1982.
totally eliminate redundant recompilation. 3. Gannon, J. D. and Zelkowitz, M.L V., "Two

Multiple Tmplementations for the Snme Implementation Models of Abstract Data Types,"
Sngifluions Computer Languages , vol. 12, no. 1, January

1987, pp. 21-25.
If the specifications do not expose

representational details in the private part, then it is 4. Feldman, M. P., Data Structures with Ada,
possible to implement the same abstract data type in Reston Publishing Company, Inc., Reston,
many different ways. For example, the abstract Virginia.
data type "bounded stack" could be represented
using an array or a linked list. Since in Ada, it is 5. Parnas, D. L., "A Technique for Software
possible to associate only one package body with a Module Specification with Examples,"
package specification, it will be required to define Communications of the ACM, vol. 15, no. 5,
two packages with the same specifications to May1972, pp. 330-336.
support two different implementations. However, it
is a valuable feature if a language supported 6. Rfcerence Afanual for the Ada Programming
multiple realizations for the same specifications. It Language, United States Department of Defense,
is possible that the inclusion of the private part in Washington, D.C., January 1983.
the package interfaces might have been an
important reason for not allowing multiple
implementations in Ada.

The representation ofa private type provided by
a package does not belong in Ada package
specifications, and the private part which shows
this representational detail is unnecessary. The
private part violates the principles of abstraction and
information hiding, hinders developmental
independence, and does not allow the possibility of
multiple implementations for the same
specifications. Elimination of the private part, while
solving these problems, need not result in any
serious execution ineofficincy. The representation Sitaraman Muralidharan is a Ph. D. student
of a private type provided by a package belongs in the and a research assistant in the Department of
package body, and that is where it should be. Computer and Information Science at The Ohio

State University. His research interests are in
distributed systems, programming languages, and

Asoftware engineering.

I am pleased to acknowledge the contributions Muralidharan got his B.E.(Honors) Degree in
of Prof. Bruce Weide towards this work. He Electrical and Electronics Engineering from the
illuminated some of the key issues, offered many Regional Engineering College, Tiruchi, University
valuable suggestions, and carefully reviewed this of Madras, India in 1983. He got his
paper. I would also like to thank Suresh Sitaraman M.E.(Distinction) Degree in Computer Science and
and Prof. Prasad Vishnubhotla for their helpful Automation from the Indian Institute of Science,
suggestions. Bangalore, India in 1984. His Internet address is

muraligcis.ohio-state.edu, and his postal address is
Department of Computer and Information Science,
2036 Neil Avenue Mall #228, Columbus, Ohio 43210.

192 7th Annual National Conference on Ada Technology 1989



What is the Object in Object oriented Prograrming

Keng Voon Chan and Wang Tsung-Juang

University of Mississippi
Student Paper

ABSTRACT objects to respond to exactly the same
This paper examines the two protocols.

languages, Ada" and Smalltalk, and provides Inheritdnce is another important
a comparison of the nature of the object in concept in object-oriented programming
each. Smalltalk's only data structure is languages. The properties which allow for
the object and programming is a matter of inheritance include methods, class and
message sending between them. Ada, on the instance variables. Multiple inheritance
other hand, is an AL&OL-like block is the ability to inherit properties from
structured language which supports all of two or more classes and the accompanying
the simple scaler types and all of the semantics are an area of current research.
structured types available in most A typical object-oriented, message-
block-structured languages. The object in passing language will view data as
Ada is in terms of data abstraction contained in objects. Each object contains
available through the Ada package and representation information, and defines the
separate compilation. This paper types of manipulation that may be performed
illustrates, through the use of simple upon the object. This implies that objects
little procedures, the differences in the are strongly typed. A massage which
two approaches. Finally, through a careful specifies the operation and the operand is
evaluation of Smalltalk it tries to show sent to the object. The object then
what is meant by an object-oriented determines whether or not it knows the
language. message type. If it does the operation is

performed and the object if required is
returned.

The object model is an abstraction
mechanism useful for understanding the

The object-oriented style has often design and implementation of systems. An
been advocated for simulation programs, object is either active or passive.
system programming, graphics and Al Passive objects are program variables or
programming. object-oriented programming, databases. An active object is
or sometimes called message-passing instantiated in a program or procedure
programming views data as objects. An which in turn transforms or acts upon
object is an entity which combines the passive objects. Basically an object is an
properties of procedures and data since entity that combines the properties of data
both perform computations and save the and procedure and save the local states.
local state. Objects respond to messages
using their own procedures called "methods" A procedure-oriented language consists
for performing operations. An important of a main program and possible calls to
aspect of programming used by message subprograms which are procedures and
sending is Dada Abstraction which means functions. Data is shared by subprograms
calling programs should not make through several techniques, including
assumptions about the implementation and passing parameters in the subprogram
internal representation of data types that invocation. The basic view is that there
are used by them. There purpose here is to is data and there are procedures that
make it possible to change underlying manipulate the data. While Ada can support
implementations without changing the object oriented design because of its
calling program. emphasis on data abstraction its approach

By a protocol we mean messages used to to an object is fundamentally different.
define a uniform interface to objects which In an object-oriented language, each
provide a particular facility. Additional object is an instance type which refers to
leverage is provided for building a system a class or and instance variable or a
when the protocol is standardized which is method which manipulates an object or a
possible because of polymorphism. temporary variable which issued by the
Polymorphism in a computer system refers to instantiation of a method. Some object-
the capability of different classes of oriented languages permit the declaration

7th Annual National Conference on Ada Technology 1989 193



o, class variables which are shared by sent to an object of class x. Sending aobjects of the class in which they are message is very similar to calling adefined, procedure. The difference occurs when theThe first substantial interactive, message is received by the "bject. It isdisplay-based implementation of an object- the object that decides wh.,.' method is tooriented programming language was be executed. This occur " th, . uxessagvSmalltalk. The most popular version of is sent which happens whiz the program izthis is Smalltalk-$0 licensed by Xerox. executing hence the dynamic 1" nding.In Small talk most objects are divided This difference im- binding is the xc-stinto classes and inctance variables. A critical difference between Ad.a and objectclass is a description of one or more oriented programming languages. Of :oursesimilar objects. "Instance" is a term used the obvious differences of compiled codeto describe either the relation between an versus interpreted code is an issue but itobject and its classes or as a noun is more obvious than the binding time
referring to objects that are not classes. issue.
Smalltalk as a language was produced as The similarity of the two languagespart of a Dynabook project initiated by lies in the way that they deal with dataAllen Kay in the Learning Research Group at abstraction or the ability of each toXerox Palo Alto Research Center. encapsulate an object and its particularSmalltalk is Implemented by passing a attributes. Ada, through its packagemessage to an object. Each expression that feature, allows the user to write and useis evaluated results in a message being fully encapsulated object descriptionssent to a receiver. The receiver which giving to the user only the features of theevaluates the message selector, determines object which the user is required to havethe method. There are three type of in order to use the object. Smalltalkmessage selectors: unary, binary and likewise is able to fully encapsulate ankeyword. In Smalltalk, and object's class object and to allow the object to inheritdetermines how a selector is to be from other classes many features. It caninterpreted. The binary messages +, -, * limit the user's view of the object throughand / may take on different meanings the use of inheritance. It is here thatdepending upon the class of the receiver, the comparison ends. Ada is a completelyFor Instance, the selector + can be used procedural language designed to run on Vonto add integers or perform union of sets. Neuman machines with tasking added to allowThe interpretation is entirely dependent for concurrency. Snalltalk has aupon the method of an object. This might completely different design philosophy. Inbe compared to overloading an operator in the design of Smalltalk the basic principle
Ada. The critical difference here Is a was not how a machine worked but rather howbinding time issue. The Smalltalk people thought about solutions to problems.programming environment tries to provide One of the principle design goals of theevery tool for finding, viewing, writing authors was to provide an easy interfaceand running the methods. Everything is between users and machines, this was done
inside a window. Every program is just a with objects being the primary basis forpart of the whole system that is linked the interface. Humans naturally solvetogether. problems in terms of objects hence, object

In Ada, in order for a procedure to oriented languages consider the object andcall a variable, the name declaration its relation to objects as the designbinding has to be specified e.g.: issue. It is this issue which is the
X.getname(A); motivating force in software engineeringwhere A is declared as a character earlier which considers itself to be object-in the program or oriented. The design process is object
x.getname(B); oriented, the programming process, in non-where B is declared as an integer in the object oriented lanquages, is not.declaration section of the code. Software engineering, like object-This kind of binding is called static oriented programming, requires anbinding. This means that the type of the environment in order to develop largeargument, that is, the type of argument A pieces of code. Ada does not provide thator B above is determined when procedure environment but it has been the catalystx.getname is compiled with argument A or B. for the development of fully integratedIn contrast, in object oriented languages, software development tools. These toolsthe name of an object is not bound to a often function much like the environmentparticular class until runtime. The use of provided by many object-oriented languagesmethods allows an operation to be available but the programming language process itselffor the instance of a class when a message is very different using the two different

is sent to an object and its "type" is languages.
bound at the moment of the message passing
and not before. For example:

x:getname(A or B)
means to qet A or B the message getname,

194 7th Annual National Conference on Ada Technology 1989



To graphically il~aistrata the the Smalltalk-aD program the objects are
differences between the two languages let simply objects and it is not really
us look at two identical programs, one in apparent to the user just what they are.
Ada and one in Smalitalk-SO. The first The user is freed from the process of
example, in Ada, is taken from Cehani'a watching some non-disk data with the object
book Ads An Advilacd Xntrouction p. 63: of interest, in this cast disks on towers.

with14410: W Toa-so:So that true data abstraction is availablePWOCt& 1oct.10:W iMt.ta in the Smalitalk-4O program in a sense in
PtO~*~* t~4S.Y..kA.0Iwhich it is only approximated in Ada.

Pocks"r iltIler Is rwIt eC ( e:
%" IV0tlmee: In conclusion, it is now clewAr that

A a~vturalwhile there are some similarities in the
two programming languages the differences

Predure Ww'.eI(R1:u~wi X.1.It Chrt Is are vast and critical. Smalltalk is a
b."Ift . system that is composed of objects which

auwI~~i~r,,zi:can be executed indepndently and in
PuiCut~edick):Nt3i:parallel with all other existing objects,
M~fen ~NI~):Nt 1r;NIt):where the objects interact with one anotherNew Ueq: by passing and receiving aensages.
P~iiU1.Z.~t):Thereftore the concurrent object-oriented

W4 Wormod: approach has a lot in common with tha
b"InPWIVW mn dik$ t benevo-):process model in AdA.

SW III":Most exeperienced programmers will have
U116,owr f Olks):problems learning smalltalk-80 or other
K. d~3. t~Etik* .~. ~s imlar object-oriented langauges becauseWW they are new and philosopically so

A program which accomplishes the exact same different from traditional procedural
thing is written below in Smalltalk-aO, programming languages. Perhaps object-
this code is taken from a book which oriented design and object-oriented
contains a tutorial for Smalltalk-Go by Ted programming share this difficulty in
Xaehler and Dave Patterson A ateo learning. They are perhaps too close to
Smal.ln3.k (p.7 or p. 23]. It is important how we actually think for us to see howto realize here that this code would run in correct they are for designing good
the "windowed" environment of the cou~puter software.
Smalitalk-so system so that it is not so
clearly understandable when presented
purely as code.
Example: RIZUNCEB

meglernhoisht frmfe'OIn ::IrIn wirg~wacift
".ectic peoee to ewythe disk at a htqit 1. Narain Gehani, Ada An Advanced
fe. am pin te another* pin using a third pine Intr~4iaction, Prentice-Hall, Inc.,(heIit I. O)Itfrew:
self wrzhgt.)en entwngnintoi Copyright 1953.

sell rW.0iSk:oIein to-tool".
self msT*Wr:hqieigt -1) 2. Ted Xaehler and Dave Patterson, A. r~mtj

usnrrn loi 2Ztct gL.mala1k, W.W. Morton and Company,
wing~tP~n~Inc., Copyright 1986.

saw lsk:ft*Wfn tottopin
"Pove disk frn a pin to aother pin. Print the results in the

trancript window-
transcript Cr.
Transcript ahow:Cfron Peintstring.'.,%topin printstrlng).

In order to run the program above a call
statement must be issued, it might be the
following:
(Otlect nev) 0"vTowee:3 frao to:s usin: z.

In the Smalltalk-80 program above the
method is moveTower, the objects are
fromPin and toPin, the program messages are
self moveoisk and self moveTower where
moveDisk and moveTower are messages sent to
transcript which is a window in the system
browser. Self is a Smalitalk-Bo reserved
word. The flow of the program is recursive
in the same sense as the Ada program, it is
just that in the Ada program the "objectsm
are X, Y, Z and N but note that they are
actually characters and numbers where in

7th Annual National Conference on Ada Technology 1989 195



ff o~n Is~ S Pe.toti 'Ir In~ %he B.Oitteug of Ciper
Skitfic at the t.Irtlty of RIsitItPPI. Me *"It It ftlyi *
140htve f 04fq"i kI tr d~.C In Par. 1Wg.

UvA t$Is.Jwvn Is Cutfntly a Mu(lV In tht *.partont of c~amptr
SCION*. 41 the Unhiwefilly Vt I~stitIfl. at*I~ tapsi rttIvq 4
84chtf.4 of tr4114"et'N SCItoct In Mayo 1140.

196 7th Annual National Conference on Ada Technology 1989



A TWO-1P1ASE RPRODUCTION ,I4TI1OI) FOR Ada TA.S! *V; PRM;RAMS

Mcmdouth M. naJJnr nd Thlla Etlrafd

Computer Science eptirtmenl:
lIllnois Innthtuto or Tev'hlt~loV

Chlicntgo, I'iinil5 (.IU~i

ABSTRACT ItltiIU tlai. , stlupports one or both o'
these types is called the reproductlon

Diferent resultsR are produjcedj When testing problem [4. 21]. Repro ingan Ada tasking progrAm i re-executed concurrent prograus normally requireswith the same Input due to two types the reproduction of tle two typen or
of' nondetorminln. Thi problem nundo tomI im. Global nondeterminlsm
exists in cyclic debupging of Ada is usually more diricrit to reproduce
tasking programa. Nondtorminsm thnn local nondermintsm. ThIs 15
reproduction in difficult in Ada due duo to tile fact that global
to some Ada characteristics. Our nondaterminism is difficult to record.
approach uses a preprocessor to extend Recording an execution nequence for
nta Ada tasking program P' using a path Independent eventg in different tasks
specification S into P such that P, Is an example of recording global
Is a deterministic version of P. P, nondetormnlsm. On the other hand.
calln then be re-executed as man- times local nondeterminism i8 local to each
an required by tile debugger to locate task antid can easily be recorded and
the source or an error. Each phnse replayed. The problem exists inhandlet a different type or cyclic debugging or concurrent
nondoterminism. Phase One cr'oateg oio programs.
Ada task controller per tnsk. Each
controller handles th'. arrival Cyclic debugging is a well known
sequence oF entry calls to- Its process for debugging sequential
assigned task. Phase Two hitcldles programs. It in used to locate and
nondoterministIc selections by remove orrors after they have beencontrolling tile selection oF uncovered by a test case. This
alternatives within selective wait process is well undorsatuod for
statements. One advantage or this sequential progrnms but not as well
approach is that It uses more than one understood for concurrent programs.
Akia task controller for the The same process has been adopted for
reproduction process. This eliminates concurrent programs [17]. Cyclic
the need for a master controller which debugging or Ada tasking programs
can be a bottleneck to a solution. The cannot be achieved without being able
two phases are easy to understand and to reproduce the sanme results from the
to implement, snme input. Locating and removing nn

error usually requires more than one
execution. This requires finding ways

1. INTRODUCTION for reproducing the two types oF
nondeterminism mentioned earlier.There are basically two types oF Solutions for noandeterminism

nondeterminism that cause Ada tasking reproduction are different for
programs Lo produce different results different languages because of thefor the same input every time they characteristics oF the interprocess
are executed. Global nondeterminism communications and to the
arises as a result of' the relative nondeterministic control constructs
progress oF tasks within a program, supported by a language.
and local nondeterminism arises as a
result of an explicit choices of a Reproduction of global nondeterminism
nondeterministic control structure for an Ada program Is reduced in this
[10, 15]. Reproducing the same paper to the reproduction of
results from the same input in a rendezvous (no reproduction is done

7th Annual National Conference on Ada Technology 1989 197



for shared varInbles). The or to record the progrnm's state at
reproduction of local nondoermintsm each stage of the exocution [1, 9.
is reduced into the reproduction of
nondctrmntitic selections within an Another approach suggcsts using a
Ada task due to a selective wait now programming construct called
statement. preference control to control the

race conditions within Ada tasks E8].
Reproduction of a rendezvous This method handles only local

requires that the two partners of a nondetrminism and does not force a
rendeovous to match. In langunftes selection; rather It suggests one.
that support the symetric nming Other related non-Ada work is
convention, I.e., the called task presented in several references used
knows the names of its callor# nnd for this paper (l,17,l8,20,22j.
vise versa, a construct for matching
the two partners of a rendezvous i This approach basically reproduces a
usually built Into the e languages or program's rendezvous sequence by
done automatically (14]. Reproduction reproducing all task's local
of a rendezvous in such Inigunges Is rendezvous sequences. A local
obviously easier than In those rendezvous sequence Is associated
languages that adopt the asymmetric with a task In an Ada program. This
naming convention (the called task appioach is partially based on 1-he
does not know the names of its theoretical work given In the
callers). We expect that rendezvous rollowing references: (2,6.7,15,16).
reproduction In Ada will be difficult The approach suggests reproducing each
for a number of reasons: Ada adopts local rendezvous sequence independent
the asymmetric naming convention. Ada or the other local rendezvous
handles entry queues In strictly sequences to reproduce an original
first-in first-out order, and Ada does behavior of a program.
not have a mutual control construct,
I.e., accepting an entry call In this approach, a controller is
according to some value of its passed used to simulate a communication
parameters, environment for each task In the

original execution. The selection of a
A solution to the reproduction recorded sequence of nondeterministic

problem for Ada transforms an Ada decisions a task has taken Is
program P Into PI such that the enforced. As a result, a task behaves
reproduction of the same results of P In the same way It did In the original
requires one execution or P' with an execution.
additional input or a rendezvous
sequence whIch represents the The approach is divided Into two
previous execution or P E21]. The maaor phases. Phase One, which handles
solution is based on the reproduction global nondeterminism, uses an Ada
or a rendezvous sequence using a Task Controllet (ATC) per task to
controller that controls the arrival control an arrival sequence of entry
of' entry calls to the called task. calls to a called task. It Insures
Each entry call must first call a that the order of entry calls at each
controller and Identify Its source entry's queue is in a predetermined
and destination; then the controller order. The second phase, which handles
returns the call when the source is local nondeterminism, controls
the other partner of the next nondeterministic selections within
rendezvous In the destination task. individual tasks. This Is done by
The next entry call to the next using a set of conditions to disable
rendezvous is released by the or enable rendezvous in a selective
controller when the previous wait statement. Using these conditions
rendezvous has started. One dravback one can enable the next rendezvous or
of this method is that a centralized a rendezvous sequence. These two
controller, which can be a bottleneck phases distinguish between the two
to the program, is used. types of nondeterminism mentioned

earlier and handle each type
Some approaches for debugging separately. Note that each of these

concurrent programs avoid the problem two phases requires some extensions to
by building a debugger that has the the Ada source program, i.e., the
ability to discover and locate errors addition of some special Ada code to

198 7th Annual National Conference on Ada Technology 1989



the original program. This extension the called task Issues an Input
ocess in referred to as terdIng a command specifying its source task

rogrAm. (14]. ln Ada. rendezvous are more
difficult to reproduce because an

One advantage of this approach Is entry in A destination task (a called
that It uses one or more ATCs. One task) should rendezvous with t.he first
ATC Is assigned to control entry call at Its queue regardless of who is
calls to one or more tusks. This calling it, And each entry queue Is
simplifies the implementation of ATCS handled In strictly first-in first-
and eliminates the need for a master out order. This implies that I
controller, which cnn be a bottleneck destination task cannot determine
to a solution. where oAch call originates. If the

name of the calling task (source
The design of an approach that ckv task) Is included as an entry call

be divided into two saller phases Is parameter, the destination task does
another advantage or this approach. not find out the name of its caller
Each phase deals with a problem in the until the rendezvous has begun.
reproduction process, but the two )lecause Ada does not have a mutual
phases work together to achieve the control construct, this restriction
goal. When a problem Is spotted at the cannot be Avoided.
reproduction process, the nature of
the problem guides us to the phase In A mutual control construct can be
fault. Other advantages include better useful for solving the problem or
understanding of' the reproduction mismatching the two partners of a
process and ease or implementation, rendezvous in Ada. Such a solution

requires either simulatIng mutual
This approach limits handling of control by the existing Ada constructs

local nondoterminism constructs by or adding such a construct to the
using the selective wait statement language. lowver. a mutual control
(the other types of select statement construct is not needed If we are able
are not handled) and by assuming that to duplicate every entry queue order
no rendezvous nesting occurs in it. in tile reproduction execution. This
The COUNT attribute and shared car be done by duplicating (replying)
variables are also not handled. An the original arrival sequence of entry
approach for handling these constructs calls to a destination task, and as a
is given in reference (21). result, every entry queue sequence in

a the destination task Is duplicated.
A discussion of problem of This approach diminishes the need for

reproducing an Ada tasking program a mutual control construct for the
and what special Ada characteristics purpose of reproduction of rendezvous
may Influence the solution is in Ada. Such a construct will still
provided In Section 2. ?utlines of be useful for explicit scheduling of
the reproduction process are given In Ada tasks. This approach adopts the
Section 3. Explanations of the tw. approach of duplicating the arrival
phases of this approach are presented sequence of entry calls to a
In Section 4. A complete example Is destination task. This Is done by
given In Section 5, and conclusions using an ATC per destination task to
are presented In Section 6. Appendices control its arrival sequence of entry
I and II list the Ada code for the calls.
example given in Section 5.

3. REPRODUCTION PROCESS OUTLINE
2. REPRODUCING ADA TASKING PROGRAMS

In languages that adopt a symmetric Figure 1 presents the general
naming convention, rendezvous can be outline of the approach. A path
reproduced easily; the two partners of specification is a net of local
a rendezvous automatically match in rendezvous sequences that were
Communicating Sequential Processes recorded in a previous execution.
(CSP) [14]. In CSP, rendezvous match usually one local rendezvous sequence
through an Input and Output commands: per task. A path specification file
a caller issues an Output command is a file that contains a local
specifying its destination task, and rendezvous sequence for each non-

7th Annual National Conference on Ada Technology 1989 199



cnllop, tas~k (n tak with at least PT CIw"m"

one accept statement that produced a
rende.You" lit the origintil execution).
A preprocossor commaind file Is used to V't=
specify the number or ATC# that will CO.WAoCr"
bo used lin a. program find to specify
which task I# cotrolled by which
controller. A" Ada source program, a
poth pcitication rile. anti A
preprocessor commnd rile tire used As
Inputs to a preprocessor. A
preprocessor Is a progrsum that.
extends n Ada nource program to
accommodate flow Ada code for O"L*AH
reproduction. Tito flow added codeI M

inclue the number or ATC# aporified
lit the Prepr~tocessor~ commannd rile (ATCs
are explatined litter lit thin section).

Tito output or a preprocessor is n
extended Adtu proprom that fins the
some semantics or the original Ada
program. Tite differeiwou are thre Figu~tt 1. An outline of this approach.
following: the extendedt Ada program
thle Rame Path (specified in thle path 4. TWO-PHARR REPRODUCTION FOR ADA
speification rile), and It gives tho TASKING PROG;RAMS
same results roi- thre same Input overy
time It Is executed. When thle
extended Ada progrn In executed, the Two phanses of program reproduction-
results or Its execution will lie an entry calls control phase anti a
compared to either thle expected nondeterministic selections control
results or tile results or tile phase - are discussed lin this section.
original execution. Modifications can Theo extension procedure for achi phnse
then be made to the original Ada Is also presented.
program, if desired, and thre whoie
process can be repeated until the The first phase Is to use one Ada
desired results aire achieved, task controller per task (or a group

of tasks) to control the arrival
Definition 1: sequence of' entry calls for that task.

An ATC assigns a unique number. called
A local rendezvous sequence for a entry call sequence number, to entry

task T is a totally ordered sequence calls that are calling the sna entry.
of rendezvous accepted by task T (T is Entry calls cant thenr be accepted lin
thre destination task), where eachi sequence using an entry family
rendezvous is represented as a three- approach, provided by Ada, andi a loop
entity tuple: with an entry family Index. A loop Is

used only If no loop already exists.
< Rendezvous sequence number, This phase is explained lin more detail
Calling task Identity, Entry name > in subsection 4.1. It is assumed here

that eachi task in the program can be
A rcndezibus sequence number Is uniquely Identified. The advantage of

unique within a local rendezvous having more than one ATC Is
sequence of task T. Note chat from significant In multiprocessor systems.
this definition we can conclude that For example, having one ATC for eachi
a task with one or- more accept group of tasks that run on thle same
statements which produces no processor reduces the amount of
rendezvous in the original execution, communications between processors.
or onje with no accept statements at
all has no local rendezvous sequence. The second phase Is to control
We call such a task a demanding task. nondeterministic selections Inside

200 7th Annual National Conference on Ada Technology 1989



TASK X

Ada task*. This I# doe by extonding W! A
each task T Into V such that the
smatcs of T and V are the same.

Basically. each task keepsi track or i
Its local rofndoxvoug sequence and
enables only the randervous at the Fgr .Ats thoeety
top or It# local rande?.vou# itequence rgr .Ats ihoeety
and disables all othor alternative Tit pups ofr phase alte, 1:n this
randlevvoui. Thle Index to thle local eape s o Isr httl
renda~vouo sequence Will then be WRa p en sto ineue thaft tile
uptited, an til prcs wl i predetermined order tit tile
rocr.te aganr untlll or te nabled reproduction execution. wih ll t
orend Tioenr al asue for te enaiabled (x.y.?.). Figure 3 depicts hlow Phase

askv~ou wIll houeo be avalal dr. handles this problem. Fach entry
frmtile first phase. ir it tit not,9  alt the* W~xTE entry is otended

appropriate entry call arrive#. Mora notocls
details are given In subsection 4.2. Tito rir.t call in to n ATC that
These two phases work togethor to haindles task H. This; first call Is
Achieve thle reproduction of Ada called thle s1in-in coll. Thle purpose
tasking programs. or thin call is to goet n entry call

Tito sepaatio beweentiletwo sequence number, which corresponds to
The epaatio beween thetwo the order of the* call at tile WRITEIR

phases or the approach Is necessary entry queue. Task8 x, y, and z can
because each phaseo solves a separate call the Ada. too<~ controller In any
problem tin tile reproduction process. order, but they will always get the
Theo advantages are to simplify thle llame entry call sequence number.
Implementation of' thle two phones antidg.tecl sudb ak7t
to make each phao aier to teg. the call ieturd ny etsy cato
understood. This Is especiailly true thqne ATC be wil rtreenenr.cl
att thle stage where we compare thle squnenmrofte.
results or thle program with the
results or its reproduction. A
failure In thle reproduction or
interprocons communications moslt
probalily points to a failure In thle
entry calls control phase. .

4.1 Entry calls control F-7
We will first explain Phase One inAl

general and apply It to one entry.
Later lin this section, we will explain
hlow to expand it to Include more thn
one entry. Ant example of thle two
phases Is given In section five.

Figure 2 shows a task K that YXVC
contains an entry WRITE. It also shows
that there are three entry calls to Zw
thle WRITE entry: x, y, and z (where x
is at the top or thle entry's queue). 11rl
Note that in this figure, we are using
symbols that are similar to the one
given in reference (3]. We are also
temporarily using the calling's task
identity as the entry's call identity,
i.e., we are using the letter x as a
task name and as an entry call Z
identification (similarly y and z). K O =C==

Figure 3. Sign-in calls in phase one.

7th Annual National Conference on Ada Technology 1989 201



The second call uses the entry call entry extension applies to multiple
sequence number to call the original entries regardless of the number oF
entry using an entry Family approach. entries within a task. Tie only
Task . issue# the entry call WR!TE(3). difference is that An ATC has to
These two entry calls are #imllar to control one more entry calls sequence
the two-stage sign-in process for each additional entry. The
suggested for explicit scheduling In conclusion Is that each entry is
reference (12]. extended into an entry family with an

Initial entry Famly index oF one and
To preserve the order of calls, the a limit of the number or entry calls

WRITE entry accepts one call at a to an entry.
time using an entry family %nd a loop
with anl entry family Index (1), which It ts clear from the above
I# initialized to one and Incremented discussion that the original Adn
by one every time the entry Is source program should be extended to
Involved In a rendezvous. Note, the accommodate new Ada code for tie
calls to WRITE(I) can only be accepted purpose or reproduction. A summary of
in the following order: WRITE(1), the extension procedure used in this
WRITE(2), and RITE(3). Thin preserves phase is as FollowA:
the original (x.y,.) entry calls
sequence. A loop Is required if no 1. Each entry call is extended into
loop already exists, and an entry two calls, a sign-In call 4nd a
Family Index Is required as shown in call to the original entry using
Figure 3. The loop stops when no more an entry fa-,lry approach.
calls are Issued to the entry. In
summary, the number of Iterations an 2. Each accept Is extended to an
entry goes through Is eqtxal to the entry family. a loop (If
number oF calls (rendezvous) In which required), and an entry family
the entry is Involved. Index.

The ATC that handles task K should 3. An ATC Is created for each task
have an access to the predetermined (or a group of tasks) to handle
entry calls sequence of the WRITE's entry calls sequences, which are
entry. This enables It to assign an provided by the next step of
entry call sequence number to each this list.
call It receives. The ATC recognIzes a
call by the Identity of the calling 4. A sequenc of entry calls is
task, which should be passed to the built from a local rendezvous
ATC as an Input parameter by the sign- sequence of a task for each
in call. In the approach, it Is part entry it contains.
of the preprocessor to build an entry
calls sequence for each entry within a These extensions are problem
task from the task's local rendezvous Independent. The approach assumes
sequence. It is also part of the that these extensions are part of the
proprucessor to make these sequences preprocessor. Refer to example one
accessible to the appropriate ATC. for more about these extensions.

Let us now assume that there are 4.2 Nondeterministle Selections
two entries in task K, a READ and a Control
WRITE. In this case, two entry call
sequences are built from a task's In Phase One, we tried to insure
local rendezvous sequence. one for that entry calls to every task arrive
each entry. We will also use two in a predetermined order. This phase
entry family indices. An ATC in this insures that a task selects a
case treats each sequence predetermined sequence of selections
independently of the other. The ATC from a set of different alternatives
assigns an entry call sequence number available to It. We mentioned earlier
according to the calling's task name that the selective wait statement is
and the called's entry name. These what makes an Ada task selects a
two names are passed as parameters by different selection from the same set
the sign-in call (refer to the READ of alternatives every time it is
procedure in Appendix II). This means executed (local nondeterminism). The
that the above discussion regarding approach handles local nondeterminism

202 7th Annual National Conference on Ada Technology 1989



hy handling the selective wait a calling task, ant a called entry
statement. Ho assum that no name. Assume al so that the cntry
rendezvous nesting exists witi.in the calls coning from tasks x, y, and z
selective wait staement. The other arrive in a predetermined order by
types or select statement, namely the Phase One. The task has a loop that
conditional entry o-1l and the timed 1torate three times and involves in
entry call. are L handled by the three rendezvous then terminates (sec
approach. Althoug approach similar Figure 4).
to the one given k ,foreneo (21) can
be adopted. The ap. ti also does not Whan executing task G (Figure 4)
handle the COUNT attributa and shared and during the first Iteration, the
variables. An a ipronch for handling READ and WRITE alternatives are
these two attributes is given in AvAllabla. The READ's When-clause
reference (21]. becomes true because It was Involved

in the first rendezvous. The WRITE's
In this pha.ie, vach task follows When-clause become; false. So the

Its own locr, renr'ezvotks sequence. READ entry is selected for the first
This is done In two steps: Step One rendezvous. The other partner of the
Is to oxternd a ,ch task In an Ada rendezvous Is task x. By assumption,
source progri:& to Licludt a list of the entry call from task x to the
its own local ree.4ezvous sequence; READ entry is at the top of the READ's
Stop Two Is t. 1,tlitle a condition in entry queue. The two partners or the
each entry's Whe-clause that matches fHrst rendezvous now match and the
its own name with the entry name at rendezvous occur. The two other
the top or the task's local rendezvous are reproduced in the same
rendezvous sequence to which It stay.
belongs. The top or a local
rendezvous sequence Is determined by This phase requires some extensions
using a rendezvous Index which is to an Ada source program. The first
Initialized to one and incremented by extension is to make each task in a
one after every rendezvous that program access its own local
occurs within the snme loop (refer to rendezvous sequence. A local
RW task In Appendix II). rendezvoua sequence is represented as

anl array of entry nnmes. A rendezvous
Conditions serve as guards to index is needed to point to the next

entries (14). In the set of rendezvous in the sequence. The last
conditions, only one condition Is rendezvous occurs at the last
always true. The true condition Iteration of the selective wait
allows the rendezvous at the top of statement.
the local rendezvous sequence to
occur. The false conditions prevent
any other rendezvous to occur. The
When-clause always signals the entry
that the task should be involved in MAD
next. The other partner of the
rendezvous, which is viewed as an Y
entry call by the destination task, wr .
Is provided by Phase One of the
approach. After each rendezvous, an
index that points to the next
rendezvous In the local rendezvous
sequence Is Incremented by one.

To see how the two phases work Figure 4. A task with two entries.
together, assume that a task is used
with two entries, READ and WRITE. A The second extension is to Include
local rendezvous sequence or this In each entry's When-clause Z
task is ( <Ix,READ), (2,y,WRITE> condition that matches the entry's
,*3,z,READ)). This three-rendezvous own name with the name of the entry
list contains three sub-lists. Each at the top of the task's local
sublist represents a rendezvous. Each rendezvous sequence. The approach
sublist contains three entities: a assumes that these two extensions are
rendezvous sequence number, a name of part of the preprocessor. The next

7th Annual National Conference on Ada Technology 1989 203



section explains the reproduction assumed to be demanding tasks (refer
process or an extended Ada program, to the end of Section 3 for the

definition o a demanding task), and
as a result, no local rendezvous

5. A COMPI.ETE EXAMPLE sequences arc specified for them.

An Ads rogram is listed in When this path specification is
Appendix I [12. The program is a read by the preprocessor. it builds a
controller for a sitared resource that sequence of entry calls for Aach
allows multiple readers at the same entry in the RW task. The preprocessor
time and only one writer at a time. builds the following entry calls
In this example, we plan an execution Sequences.
scenario of the program and then
determine how this scenario is START READ SEQ :- (Cl, C2, C4)
specified. We also explain the needed END READ S9O :- (Ci, C2, C4)
extensions to the original program. STARTWRTTE I SEO :- (C0)

ENDWHITESEO :- (C3.)

EXAMPI.E i: This set of entry calls sequences
are then built into ant ATC for task RW

Using the Ada code In Appendix I. (ro.r to RW.C task in Appendix II).
assume that there are four demanding The preprocessor creates the RWC an
tasks Cl, C2, C3, and C4 that use the an Ada task controller for RW task and
RESOURCE package. Further assume that adds it to the original Ada source
C1 and C2 called RW for reading the program. Note that it should be
resource where C1 called before C2. specified that an ATC be built for the
Task C3 called for writing while C1 RW task In the preprocessor command
and C2 were still in the process of file. Tihe preprocessor also extends anl
reading. Task C4 called for reading Ada program according to the extension
after C3 lind finished writing. Because procedures of the two phases given In
task RW has ant infinite loop, assume subsections 4.1 and 4.2. Appendix II
here that tile number of readers and lists the program after it has been
writers are finite and It will extended by the preprocessor.
terminate.

There are two packages in Appendix
To specify the above scenario, we II: the RESOURCE package and a

need to determine a local rendezvous CONTROLLER package. The RESOURCE
sequence that represents the above package is extended to accommodate
path. One possible local rendezvous now Ada code. A symbol at the end of
sequence Is: a line indicates how much a line is

extended. The symbol "--0" indicates
LRSl :- ( (1,CISTART READ>, that the line Is added completely to
<2,CiENDREAD>, 3,C2,STARTREAD>, the original program. The symbol "--
<4,C2,ENDREAD), <5,C3,START WRITE>, &" indicates that some extension
<6,C3,END.WRITE>, <7,C4,START READ>, occurred in the line. Note that the
8,.C4,END-READ> ) CONTROLLER package Is completely

added so there is no need for using
Recall that each rendezvous is any symbols.
represented as: Note how each call to the RW task is
(Rendezvous sequence number, Calling extended in the READ and WRITE
task Identity, Entry name>. procedures as a result of the entry

calls control phase. The sign-in call
Rendezvous 2 and 3 can be exchanged to the controller (RWC) includes the

to got anote'er local rendezvous caller identification, the requested
sequence that e'till represents the entry name, and a dummy parameter to
same path. The above local rendezvous return an entry sequence number. The
sequence is a path specification for original call is extended to include
the program In Appendix I with the the entry call sequence number
execution scenario explained above. (ENTRYCALLSEONO). Note also how
LRSl is the content of the path each entry is extended in the RW
specification file (see Figure 1). task. Each entry is extended to a

Note that tael:s Cl, C2, C3, and C4 are family of entries and has Its own

204 7th Annual National Conference on Ada Technology 1989



fiamily of entry index. These extension than one controller eliminates tile
are part of Phase One; tile rest or the need for a master controller that can
extensions in the RW task are part of be a bottleneck to the reproduction
Phase two. However, the CONTROLLER process. Local nondoterminism is
package Is a result of the extensions handled by restricting tile number of
in Phatve One. open alternatives In a selective wait

statement using a When-clause as a
.Voto also how each entry's When- guard to each alternative. The method

clause was extended to Include all is easy to undorstnnd and to
additional condition and how tile implement.
while loop keep track of tile number
of rendezvous for reproduction using APPENDIX I
the rendezvous Index (NEXT.R). Note
also how the local rendezvous package body RESOURCE is
sequence (LOCAL-REND.SEO) is S : SHAREDDATA :- -- The shared data
represented. Those extensions are a
result of the nondoterministie task RW is
selections control phase. entry STARTREAD;

entry END READ;
As a result of those extensions, entry STARTWRITE;

the specification of tile RESOURCE entry END-WRITE;
package, and the RW task were end RW;
extended. The program given In
Appendix I is a deterministic task body RW is
version or tihe original program in NO-READERS: NATURAL :- 0;
Appendix I. and it will always WRITER-PRESENT: BOOLEAN :- FALSE;
follows the same path (specified by begin
LRSI) every time It is executed. loop

select
when not WRITER PRESENT -

6. CONCLUSIONS accept START READ;
NOREADERS :- IO-READERS + 1:

Reproduction of Ada tasking or
programs is a problem that must be accept ENDRFD;
dealt with In cyclic debugging of Ada NO READERS :- NO-READERS - 1;
programs. Tie method of avoiding tihe or
problem by building a debugger that when not WRITER PRESENT AND
has tie ability to discover and NO-READERS - 0 Z>
locate errors Is inadequate because accept START WRITE;
this method mixes the testing and WRITER-PRESENT :- TRUE;
debugging phases, is complex, and is or
expensive. Tie method of extending a accept ENDWRITE;
nondotorministic program Into a WRITER PRESENT :- FALSE;
deterministic one is adequate because end select;
it is easy to understand and to end loop;
implement; however, the problem is end RW:
difficult In Ada because of tile
asymmetric naming convention to tle procedure READ (X:out SHAREDDATA) is
way Ada handles entry queues. Tio begin
approach distinguishes between two RW.STARTREAD;
types of nondeterminism: global X :- S;
nondeterminism and local RW.ENDREAD;
nondeterminism. It handles each type end READ;
separately. The approach extends a
nondeterministic Ada task.ng program procedure WRITE(X : in SHARED-DATA) is
into a deterministic one. This is done begin
in two phases: Phase One handles RW.STARTWRITE;
global nondeterminism, and Phase Two S :- X;
handles local nondeterminism. Globa: RW.ENDWRITE;
nondoterminism is handled by using end WRITE;
one Ada task controller per task to end RESOURCE;
control the arrival sequence of calls
to a destination task. Having more

7th Annual National Conference on Ada Technology 1989 205



APPENDIX 1I or
when LOCAL-REND.SEQ(NEXT.R )-

with CONTROLL.ER; END..WRITE - > -

package RESOURCE In accept EN5 WRITE(EW); -.
use CONTROLLER; .. WRITER PRESENT :- FALSE;

type LSHARED DATA Is ... ; EW :- EW + 1;
procedmre rhAD(CALLER - D:In end select;

CALLER NAME: --& NEXTR :- NEXT-R + 1;
X :out SHARED-DATA); and loop;

end EW;

procedure WRITE(CAL!ERJD3 In
CALLER -NAME;,- Procedure READ(CALLERID :in
X : In SHARED.DATA); CALLER-..NAME; X :out SHARED-DATA) is

begin
end RESOURCE; RWC.SIGN IN(CALLER .ID

START R7AD,ENTRY..CALL..SEONO); --0
package body RESOURCE is RW.START-READ(
S ;SHARED-DATA : -- The shared data X ; ENTRYCA-L._SEO..NO);--

tank RW Is RWC.SIGNJJN(CALLER.ID. END-READ.
entry START READ(REND INDEX); -&ENTRY CALL SEQNO):--
antry END RgAD(REND IWDEX); RW.END READ(EXTRY-CAL:-SEQ:NO) --

entry START WRITE(RiUND INDEX); a- nd READ;
entry END..WRITE(REND.JNDEX); poeue WIECLEJ i

end RW;prcdr RT(AL I :i
CALLER NAME; X :in SHAREDDbATA) Is

task body RW is begin-
LOCAL REND SEQ:RF.NDEZVJOUS LIST; -0 RW-C.SIGN-IN(CALLERJD. START WRITE.
NEXT i REND INDEX :-I; --- Q ENTRYCALL5SEO30); --0
SR,ER,SW,EW:REKND INDEX :-1; -0 RW.START..yRITE(
LOCAL - END -SEQ -(l . 8) :-ENTRY CALL SEQ NO); --&
(START READ. ENDREAD, -a S :- X:
START .READ. ENDREAD. -0RW-C.SIGNJNI.CALLERJD, END-WRITE,
STARf- RITE, END WRITE, -- a ENTRY CALL SEO..NO);--
STARTREAD. END READ); -- a MWEND.yRITE(ENTRYCALL..SEQ-OO)--
NO READERS: NATURAL :- 0;. end WRITE;
WRTTER PRESENT: BOOLEAN :- FALSE; end RESOURCE:

begin package CONTROLLER Is
while NEXT-R <-

RW REND INDEX LIMIT --0 type ENTRY NAME is (START READ.
loop END READ.19TART WRITE, END"WRITE);
select
when not WRITER PRESENT and RW-REND-INDEX-LIMIT : constant :- 8:

LOCAL_-REND fSEO(NEXT-R) -
START READ -> --a type REND-INDEX Is POSITIVE;
accept STARTREAD(SR); -

NO -READERS :- NO -READERS + 1: type RENDEZVOUS. LIST is array
SR :- SR + 1; --a REND INDEX) of ENTRYNAME;
or
when LOCAL REND SEQ(NEXTR) - type CALLERNAME is (Cl, C2. C3. C4);
END I READ-acce~pt ENDREAD(ER); --a

NO -READERS :- NO -READERS - 1; type ENTRY-QOUEUE is array(REND INDEX)
ER :- ER + 1; --a of CALLERJJAME;
or
when not WRITER -PRESENT and procedure SEARCH( SEQUENCE : In out

NO READERS - 0 and ENTRY QUEUE;
LOCALREND SEQ(NEXT-R) - ID :In CALLERNAME:
START WRITE -> --a OUTNO out RENDINDEX);
accept START WRITE(SW); --& and CONTROLLER;

WRITER -PRESENT :-Z TRUE;
SW :- SW + 1;--

206 7th Annual National Conference on Ada Technology 1989



package body CONTROLLER is exit;
also

task RW_C is INDEX :- INDEX + 1;
entry SIGNIN (CALLERID : in end If;

CALLER NAME; end loop;
ENTRY REQ : in ENTRY NAME; end SEARCH:
CALL SEQNO : out RENDINDEX); end CONTROLLER;

end RWC;
REFERENCES

task body RWC I(I F. BaLardi, N.D. Francesco , G.

CALL INDEX : INTEGER :- 0; Vaglini, "Development of a
START READSEO, END READ SEQ Dubugger for a Concurrent

'ENTRY-QUEUE; Language." IEEE Trans. on
STARTWRITESEQ, ENDWRITESEO : Software Engineering, VOL. SE-i2,

ENTRY QUEUE; NO. 4, April 1986. pp. 547-553.
START READ SEO (I .. 3):-TC1,C2,C4);
ENDREAD SEQ (I .. 3) :- (CI.C2,C4); (2) H. Barringer, I. Mcarns, "A Proof
START WRITE SEQ (1) :- (C3); System for Ada Tasks," The
END WRITE.SEO (1) :- (C3); Computer Journal, Vol. 29. NO. 5,
begin 1986, pp. 404-415.

loop
when CALL INDEX(- [3) G. Booch, "Software Engineering

RWREND INDEX-LIMIT -> With Ada." The Benjamin/
accept SIGN-IN (CALLERID : in Cummings Company, California,

CALLERNAME; 1983.
ENTRY REQ : in ENTRY NAME;

CALLSEONO : out REND-INDEX) do (4] Per Brinch Hansen, "Reproducible
case ENTRY REO is Testing of Monitors." Software-
when START-READ -> Practice and Expor., Vol. 8.
SEARCH(STIRT READSEQ; 1978. pp. 721-729.'CALLER ID;CALLSEO I); [5) T. Elrad. "A Practical Software

when END READ -, Development for Dynamic Testing
SEARCII(YND READ SEQ; of Distributed Programs."

CALLER ID; Proceedings of the 1984
CALL _SEQ NO) International Conference on

when START WRITE -> Parallel Processing. August
SEARCH(START WRITE SEO; 1984.

CALLER ID;
CALL SEO NO); [6) T. Elrad, "Data Dependencies

when END WRITE -> Within Distributed Programs."
SEARCH(ENDWRITESEQ; Proceedings of the Hawaii

CALLER ID; International Conference on
CALL SEO No); System Sciences, January 2, 1985.

when others -> null;
end case; [7) T. Elrad and N. Francez,

end SIGNIN; "Decomposition of Distributed
CALL INDEX :- CALL-INDEX + 1; Programs Into Communication-

end loop; closed Layers." Science of
end RWC; Computer Programming 2, North-Holland. 1982. pp. 155-173.
procedure SEARCH( SEQUENCE in out

ENTRY QUEUE; [8) T. Elrad, F. Maymir-Ducharme,
ID in CALLER NAME; "Race Control for the Validation

OUT-NO out RENDINDEX) is and Verification of Ada
begin Multitasking Programs."

INDEX :- 1; Proceedings of the Sixth Annual
while INDEX <- SEQUENCE'LENGTH National Conference on Ada

loop Technology, May 14-17. 1988.
if SEQUENCE(INDEX) - ID then

OUT NO :- INDEX; (9) R. G. Fainter and T.E.
SEQUENCE(INDEX) :- null; Lindquist,"Debugging Tasked Ada

7th Annual National Conference on Ada Technology 1989 207



Programs," Proceedings of the Ada 45-60.
Applications for the NASA Space
Station Conference, in R.L. [20] J.M. Stone, "Debugging Concurrent
Bown(ed.), June 1986, pp. Processes: A Case Study," SIGPLAN
B.1.1.1-23. NOTICES, VOL. 23, NO. 7, July

1988, pp. 145-153.

[10) N. Franceoz, C.A.R. Ioare, D. J.

Lehmann, W. P. DE Roovor, (21) K.C. Tal, E.E. Obaid,
"Semantics of Nondoterminism, "Reproducible Testlig of Ada
Concurrency, and Communication," Tasking Programs," Proc. IEEE-CS
Journal of Computer and System Second Inter. Conf. on Ada
Sciences 19, 1979, pp. 290-308. Applications and Environments

(1986), pp. 69-79.
[11] It. Garcia-Molina, F. Germano, W.

Kohler, "Debugging a Distributed (22] K.C. Tai, S. Ahuja, "Reproducible
Computing System," IEEE Trans. on Testing of Communication
Software Engineering, Vol. SE-10, Software," Proc. of IEEE COMPSAC
No. 2, March 1984, pp. 210-219. 87, Oct. 1987, pp. 331-337.

[12) N. Gehain, "Ada Concurrent
programming," Prentico-Hlall, Now
Jersey, 1984. Mamdouh Nanjar

received the H.S.
[13] D. Holmbold, D. Lucklam, and M.S. degrees

"Debugging Ada Tasking Programs" in computer
IEEE Software, March 1985, pp. science from King
47-57. Fahd University of

1 Petroleum and
[14] C.A.R. Hoare, "Communicating Minerals, Dhahran,

Sequential Processes," CACm, Saudi Arabia, In
VOl. 21, NO. 8, August 1978, pp. 1982 and 1986,
666-677. respectively.

He is currently a full-time Ph.D.
(15] S. Katz, D. Poled, "Interleaving student at Illinois Institute of

Sot Temporal Logic,"Proc. of the Technology, Chicago, Illinois. His
Sixth Annual ACM Symposium on research interests Include,
Principles of Distributed concurrent programming, distributed
Computing, August 1987, pp. systems, and distributed tosting and
178-190. debugging.

(16) L. Lampert, "Tine, Clocks, and
the Ordering of Events in a
Distributed System," Comm. of Tzilla Elrad
ACM, VOL. 21, NO. 7, July 1978, received an M.S.
pp. 558-565. degree in computer

science from
[17] T.J. Leblanc, J.M. Mellor- Syracuse Univer-

Crummey, "Debugging Parallel sity, N.Y. and a
Programs with Instant Replay," Pi.D. In computer
IEEE Trans. on Computers, VOL. science from the
C-36, NO. 4, April 1987, pp. Toehnion in
471-482. Israel, in 1978

and 1981,
[18) B.P. Miller, "A Mechanism for respectively.

Efficient Debugging of Parallel She is an assistant professor of
Programs," SIGPLAN NOTICES, VOL. computer science at Illinois Institute
23, NO. 7, July 1988, pp. of Technology. 11er main Interests are
135-144. In concurrent and distributed

languages, concurrent programming for
[19] A. Pnuoll, "The Temporal real-time applications and the use of

Semantics - Concurrent Adia for such systems. She is the
Programs," Theoretical Computer chair of chicago SIGAda. Her BITNET
Science, Vol. 13, 1981, pp. address is: CSELRADOIITVAX.

208 7th Annual National Conference on Ada Technology 1989



Problems Encountered in Learning Object Oriented Design Using Ada

Greg Carlson

Undergraduate -- St. Cloud State University
St. Cloud, MN 56310

ira.t Prolect Descriltion

Developing an understanding of object The project was presented In the first
oriented programming in Ada presents quarter of a three quarter software
challenges for the experienced programmer. engineering class. An open specification of
The project presented is a text adventure the problem was given, allowing the
game using object oriented methodology and programmers to expand on the design. The
Ada. We can Improve the learning process original concept was to create a dungeon or
Involved in these topics by examining the maze made up of Interconnected rooms. The
barriers encountered by a student while goal of the game is to collect treasure found
designing this project. in these rooms and rescue the kidnapped

princess. The final program included the
rooms and objects, but also added creatures
and doors.

The player moves from room to room
collecting treasure. When a room is entered,
a description of the room is given along withLearning a new programming method can the names of the creatures and treasure It

be dificult. As a student learning object contains. Treasure within the rooms carry
oriented programming this challenge was point values that are added to the player's
faced. The project presented was to learn score when picked up and subtracted when
object oriented design and Ada by developing dropped. There are four subclasses of items:
a text adventure game. The goal of this general treasure (worth varying point values),
project was to become familiar with the Ada Heavy treasure (worth negative point values),
programming language and to gain an weapons (needed to kill creatures), and keys
understanding of object oriented (to lock and unlock doors).
programming. The major barrier encountered
was to break out of the rooted procedural Commands that can be used by the
style of programming and adopt object player include operations on treasure,
oriented style. Due to Inexperience in the creatures, doors, and other miscellaneous
object oriented technique, problems were commns .T he player s p and
encountered throughout the stages of examines treasure. When a player isn thesame room as a creature the creature is
development. Dealing with these problems talked to, examined, and attacked. A creature
led to a greater level of understanding. This is killed when the player is carrying a weapon
paper describes important issoas Involved In and is stronger than the creature. Doors are
the design and Implementation of a major locked, unlocked, opened, and closed. Locking
programming task using object oriented and unlocking can only be done when the
programming in the Ada environment, player is carrying a key. Other commands

allow a user to move from room to room,
check to see what objects are being carried,
view a help screen, and quit the game.

7th Annual National Conference on Ada Technology 1989 209



Prolect Develonment incomplete. The initial identification of the
operations did not take into consideration the

.dgltyfino the Obiects. strict enforcement of information hiding.
When it came time to establish the Interface,

Objects are the entities in the problem it was realized that extra operations were
that act as nouns.[I] A good understanding of noeded to manipulate the objects. It was at
objects is obtained by Imagining them as this point that an understanding of how to
being people. Each person has traits that are define complete operations was developed.
represented by fields in the object.

There were five objects in the Initial Establishing the Visibility.
project design: rooms, corridors, doors,
items, and creatures. The object named The visibility Is determined by the
creatures, when first defined, contained the relationships between the objects. One
fields and operations for the player and the object Is visible to another if it is used by
monsters. After examining the combination, the other object. Person A Is visible to
it was found that the player and creature Person B if B asks A questions.
were two separate types with little overlap When establishing the visibility, two
In operations. The creature object was then problems were encountered: over-dependent
split into the objects creatures (monsters) objects and codependent objects. The over-
and player. Realizing that the player and dependence of the objects was shown by the
monster objects were separate, led to an dependency graph. The number of connections
understanding of cohesion in objects.[2] going from a major object to other major
Another refinement occurred between the objects was large. Codependency is caused
rooms object and the corridors object. when two objects must be visible to each
Analyzing the description of the two objects other. Ada does not permit codependency.
forced the realization that the two were When using the with statement to establish
essentially the same. By combining the two visibility of an object, the packages being
objects an Increased understanding of well accessed must be compiled before the
defined abstract data types evolved. After accessing package can be compiled. If two
refinement, the object identification was objects must be visible to each other then it
complete. The final identification of the would be impossible to compile them. In the
objects included an object for each of the project, both the over-dependency and the
followina: rooms and corridors, doors, iprmc, codependency was caused by poor design.
creatures and pl3yer. Major objects would access each other in

order to porform commands. To remove this
Identifying the Operations. problem a hierarchy of objects was instituted

(see figure 1). The upper level of the
The operations in the problem are the hierarchy controlled the command flow by

entities that act as verbs.[1] Operations accessing the major objects. This solution to
allow fields within an object to be accessed this problem brought to light the Importance
or changed. Operations must be complete. In of structure in defining object interaction.
order for an object to be complete, the
operations must allow access to all of the Establishing the Interface.
visible fields in the object. Using the analogy
of objects as people, the operations can be The interface defines what other
thought of as interactions between people. objects are allowed to access in a particular
One person may request information from object. No problems arose from using the
another or may attempt to change that person module specifications to establish the
(sometimes a person will talk to themselves), interface. Very explicit rules of information

One of the major problems encountered hiding were required in the project
in designing this project was identifying the specification. By requiring the use of private
operations. At first the operations seemed types In package specifications, information
logical and complete but when ostablishing hiding was enforced.
the interface, the operations were found to be

210 7th Annual National Conference on Ada Technology 1989



Conclusion

Following are the five major areas in
Dtpendcncy Grafh which learning difficulties occurred:

Plov7hacw"1. Defining objects that follow the rules of
abstract data types.

2. Defining complete operations.

3. Structuring the object organization.

4. Implementing communication between
wo objects.

Since the lab was designed so that the object
oriented methodology would be learned by
doing, a solution to each problem marked a
landmark in the learning process. The use of
the Ada programming language facilitated the
object oriented design due to the
implementation of packages and private
types. An introduction 'lo the object oriented
programming method gave a good
understanding of the process. When the
object oriented programming method was
applied, a complete understanding of the
method was gained. It is hoped that, through
examining the process Involved in learning
object oriented programming in Ada, the
understanding of these concepts and how they
are presented can improve.

Imnlementina the O.k9Jj.

Objects are Implemented by
transferring the object oriented
representation into Ada code. A design
barrier Involving message passing was
introduced while implementing the objects.
The problem arose when trying to implement
how a player or a room could possess
treasure. Information hiding does not allow
either the room/corridor object or the player
object to actually access the Items
implementation. The problem was solved by
the implementation of access types. The
access type Identifies the item that is being
passed from object to object. The
understanding of how to implement objects
while following the rules of information
hiding was improved by overcoming this
difficulty.

7th Annual National Conference on Ada Technology 1989 211



ReferenceM

1. G. Booch, Software Engineering with Ada,
Second Edition, Benjamln/Cummings
Publishing Company, Menlo Park,
California, 1987.

2. D. Embley and S. Woodfield, 'Assessing
the Quality of Abstract Data Types
Written In Ada," Proceedings of the
10th International Conference on
Software Engineering, pp. 144-153,
IEEE, Singapore, April, 1988. Greg Carlson is an undergraduate student

3. D. Lamb, Software Engineering: Planning at St. Cloud State University, St. Cloud State,
for Change, Prentice Hall, Englewood MN. Interests Include software management,
Cliffs, New Jersey, 1988. neural networks, and computer graphics.

212 7th Annual National Conference on Ada Technology 1989



QUEST FOR USABILITY IN ADA GENERICS

Kevin A. minder *

Trenton State College
|Illwood Lakes CN 4700
Trenton, NJ 08650-4700

Abstacs. One of Ada's most powerful Later, upon continuing study and
features is the ability to develop after working with many problems using
general algorithms to work in a variety gonerics for a variety of practical
of different situations. The widespread applications, I realized that my designs
use of generic units will help Ada become of many generic units led to cumbersome
the high level design language that it is and hard to use solutions. In addition,
intended to be. However, the development and most importantly, I realized that by
of generic units can be a difficult being awkward and hard to use these
process and there are many things to be generic units defeated their own purpose.
considered. Most importantly, care must
be taken to ensure that the generic units This paper will provide a practical
are designed in such a manner as to example of a generic unit that if not
encourage their use. This paper will carefully designed will lead to code that
give practical examples of a generic unit would defeat the entire purpose of it
written in ways that will both encourage being a generic. The generic unit used
and discourage Its use. These examples will be in the ferm of a generic Sort.
will show how careless design of generic Since total abstraction is usually
units can lead to the impracticality and stressed, in teaching generics and in the
failure of generics as a powerful feature literature on generics, the first several
of Ada. examples of this generic unit will have

complete abstraction from the information
to be sorted and the data structure that
the information is contained within. The

While working in the software method of sorting and therefore the body
engineering industry as an intern I had of any of the generic units are
an opportunity to be taught Ada, have completely irrelevant to this discussion
access to a great deal of literature on since the user of a generic unit should
Ada, and have the opportunity to spend only be concerned with the specification
time working with the language. Early of that unit.
on, many lessons were taught about what
made Ada a different and useful language. One example of a specification for a
By the end of my stay as an intern, the generic unit that could be used to sort
more powerful features of Ada had been any type of data within any type of data
revealed. The reasons for use and the structure is this specification.
methods of use were also well explained.
One of the features that seemed to be the generic
most powerful and beneficial to the
overall purpose of the Ada language was type ElementType is private ;
generics. type KeyType is private

type LisEType is private;
I found that when a lbeginner is tumberiOf Elements : positive

being taught about generics, the idea of
total abstraction from data as the goal with function "<"
of generics was very strongly emphasized. ( Key l : KeyType
In the same respect, examples were Key_2 : KeyType
produced that led to very nice results return Boolean
that displayed a very high level of
abstraction from data. However, it is with function ">"
only through handpicking these examples ( Key_l: KeyType
that an "easy" solution renders itself. Key 2: Keyjype

return Boolean ;

7th Annual National Conference on Ada Technology 1989 213



with function Key with function "-"
( Element: EleentTypo ) ( Element_1 : Element Typo :

return Koy_Type ; Eloment-2 : Elenont-Typc )
return Doolean

with function NextElement

( Eleont: ElementType ) with function Next Element
return ElementType ( Element :-ElonentType

return Elemont~rpo
with procedure 

Replace

( Old Element: in out Elenontypo ; with procedure Replace
NewElement: In ElonontTypo ) ( Old Element: In out Element Typo

procedure Sort ( List: in out LintType); 
NeWElamant: in ElomantType

While this specification for a procedure Sort ( List: in out Lis.Type);

generic sort procedure may soon With this obvious adjustment the
ridiculous, it is designed to be. It is number of formal parameters has been
intentiondlly designed to display, in the reduced from nine to six with only three
worst case, just how unusable a gonoric of those being generic formal subunits.
unit can btcome. Fortunately, if this This adjustmant will reduce the overall
example is re-thought much can be done to complexity of using the generic unit
improve it. The most obvious negative somewhat, however, two of the three
point is that there are nine gonoric remaining generic formal subunits,
formal parameters, six of which are Next Element and Replace, will be very
generic formal subprograms. It is likely difficult for the user of a generic
that someone requiring a sort could write package to implement. This is due to the
a non-gonaric sort in loss time than fact that the person using the package
required to instantiato this specific must have a good feel for what the
generic sort. This is probably true oven designer of the generic package had in
if vary good documentation was provided mind for these subprograms when writing
concerning the function of each generic the generic unit.
formal parameter.

An example of what the designer
There are several quite obvious might have had in mind when designing the

improvements that can be made to above generic unit might be those
alleviate the problems that this example descriptions.
has with unnecessary and inhibiting
complexity. 1. Next Element might be a generic

formal subprogram that given a
1. The overloaded inequality particular element in the external

functions can be reduced from two data structure would return just
functions ( i.e. "<" and "1 ) to the data part of the next element
just one of the two function is in the structure. This alone would
always possible, require a linear search.

2. The generic formal function that 2. Replace would replace each unsorted
returns the key or an element is element with the sorted element
not necersary. This operation can corresponding to the unsorted
be done in conjunction with the elements position. This subprogram
now single generic subunit for would also require a linear search.
inequality.

It is obvious that the logic of these
A specification taking these two changes generic formal subprograms is more
into account might look like to following difficult and lengthy than they could
code. optimally be. This problem arises

because the design of the generic sort
generic attempts to abstract completely away from

the data structure that it will be
type ElementType is private ; sorting. Since the two difficult generic
type ListType is private ; formal subunits provide methods of
Number.Of ELements : positive ; transferring the unsorted and sorted

material to and from the generic

214 7th Annual National Conference on Ada Technology 1989



procedure, than the Winly way to simplify -- data structure for the Elem4nt
the problem is to rnd an easier nethod -- parameter and a value false for
to preforn those opitions. -- the LstItan parameter. Finally,

-- an entry should be made into the
Traditionally, the way to make any -- task at Send with the last value

algorithm easier to understand, is to use -- in the external data structure for
an algorithm that mimics an intuitive the Element parameter and with a
approach. In the case of a sort, a very -- value of true for the
intuitive approach is available. That -- LnstEleant parameter.
is, to give all data to something and to
expect to receive the data back in sorted -- The second procedure should make
order. This can be translated into -- consecutive entries into the
copying all the elenonts in the external task at Receive expecting the
data structure into the internal data -- first through next to last sorted
structure, sorting the internal data -- elements fro the Element
structure, and then copying the sorted -- parameter and (alse for the
elements out to the external data -- Last Item parapeter each time.
structure. -- With'the last entry into the

-- task at Receive the lasL sorted
One elegant way of achieving this -- item in the internal data

is to change the generic sort procedure -- structure will be returned
into a generic package containing an -- In Element and the parameter
interface task. This interface task can -- Last-Element will be true.
transfer an alement from the calling unit
to the generic package very easily. In end Transfer
this situation the generic package could
look like this: end Sort.Package

generic Notice that ListTypo and
Nunabr OffElement parameters are not

type EleoentType is private : present. That is because in this case
the generic package needs to know nothing

with function "4" about the external data structure because
Elementl : Element-Type ; no references are made to it from within
Element 2 : ElementType ) the generic package itself. All elements

return Boolean ; will be removed from the data structure
and given to the :art package through the

package SortPackage is interface task. Two procedures must be
written, by a programmer using the

task Transfer is package, to interface with the tasks.
All necessary references to the external

entry Sand data structure can be made within these
Element : in EleaentType; external procedures. Examples of the
Last-Element: in Boolean externa) procedures used to sort an array

through .. i use of an interface task
entry Receive might resemble these two procedures.
( Element out Element_Type ;

Last-Element: out Boolean procedure Send
( List : in List typo ) Is

-- Note: Two procedures must be begin
-- included in the calling progran to for Index in 1..List-Type'Last-1 loop
-- use this sort. To use the sort Sort Package. Sort. Send
-- execute the first procedure ( List ( Index ), false ):
-- described below, Then execute the end loop ;
-- second procedure described below. Sort Package. Sort. Send
-- The element in the second ( List ( List-Type'Last ), true ):
-- procedure will be received in end Sand:
-- sorted order.

procedure Receive
-- The first procedure should make ( List : out ListType ) is
-- entries into the task at Send with Last Item : Boolean
-- the first through the next to the begin
-- last elements in the external for Index in List Type'Range loop

7th Annual National Conference on Ada Technology 1989 215



Sort Package. Sort. Receive solution is to be added to any library.
( List I fndex ), Last Ite )i n particular a slightly different

end loop generic unit would have to be developed
end Receive: for arrays, linked lists, and other typos

of data structures. This is a small
These two procedures follow the price to pay fpr having a generic unit

intuitive method of preforming a sort that is simple and encourages its use.
Iary closely and they are very simple to For example, the generic unit for sorting
implemenc. It is iportant to note that arrays with elementu of any abutract type
these procedures are not included as could be an simple as this generic.
generic formal subprograms. Therefore,
the generic package specification should generic
contain documentation explicitly stating
that two procedures similar to the above type ElementType is private
must be used with the generic package and
it should provide specific directions with function "V1
relating to operation of each of these Eietent f : uEncinto p
procedures. This solution, using Element 2 : Elementtype )
tasking, seams to be simple and effective return Boolean
enough so that anyone with a basic
understanding of tasking could have the procedure Sort ( List: in out ListType);
generic package working very quickly.
lowever, if consideration is given to In this case no method of
those who do not have a basic knowledge transferring data to and from the generic
of tasking or to those projects which do unit is necessary since the external data
not allow tasking, an alternate solution structure is visible to the generic unit.
must be developed. Therefore, the array can be manipulated

directly by the generic. This is clearly
If the use of tasking is the simplest way to izpleoment a generic

restricted, then any solution that may be sort providing that the data to be sorted
developed is likely to suffer the same Is contained within an array.
faults as did the previous examples.
Consequently, to create an effective 'he generic sorting of linked lists
solution, a different approach to is not quite as simple. This is due to
generics must be taken. This new the fact that there is no standard format
approach will start at the beginning with for linked list. however, if during the
reconsidering the general principle development of a particular application a
behind goner ics. Basically, the question sorted linked list is required, looking
that must be answered is, "iow generic at the specification of the generic
should generics be?" Generally, teaching linked list sort and forming the linked
and litercture suggest that generics list as prescribed by the generic unit
should provide abstraction from data. will be a simple task. In any case
Th6 previous examples provided complete following the from of the linked list
abstraction from both the external data imposed by the generic for the sorting of
structure and the data to be sorted, but a linked list will be much easier than
at a price. developing several confusing generic

formal subunits raquired to use a
Maintaining this extra capability of completely abstracted generic. On the

the generic unit requires the addition of other hand, a complete solution might be
several generic formal parameters, or to contain the generic sort within a
some other method of interface between generic package for linked list
the generic unit and the calling unit. operations in which the design of the
Keeping this in mind the question, "is linked list would be know before hand.
complete abstraction from the external An example of a specification for a
data structure necessary or even generic sort of a linked list might look
advisable?", must be asked. similar to this:

In the above case of the sort, generic
abstraction from only the data to be
sorted seems to be enough. Certainly, type ElementType is private ;
individual generic units will have to be
developed to work with different types of with function "<"
list data structures if a complete Element : Elenent_:ype ;

216 7th Annual National Conference on Ada Technology 1989



Element : Element Typo i Zn short, the designer of a generic
return Doolean m must Insure that the time spent, by a

programmer, to understand how to use a
-- Individual nodes of the linked list generic unit must be substantially less

m-- ust take the form than the tine required by that programmer
-- record to implement a non-generic solution to
-- Eloent : Elonent-Typo : the problem. Methods such as were
-- Next : ListType described in this paper will ensure that
-- and record : this requirement is n t.
-- whero ElementType can be any type
-- excluding task types and constants. The purpose of generics is
-- ListType must be a pointer to this eventually to provide a large library of
-- record. re-usable cede. Zr this goal is to be

realized, then groat care must be taken
procedure Sort ( List: in out ListType); to ensure that each generic unit placed

in these libraries is easy enough to use
The different approach taken to so that people will y= to use them. If

design these last two generics is a very these precautions are not taken, one of
significant one. If an attempt is made the main goals of Ada may not become a
to make generiL units too generic, they roa~Ity.
may become quite difficult to use.
However, by narrowing the scope of Kevin A. Minder
generic units so that it abstracts trom 69 South Locust Avenue
only certain elements will produce Marlton, NJ 08053
results that are much more likely to
facilitate use. I was born !, 4ilrtzberg, Germany and grow

up in several states across the United
Two different approaches to generics States. I attended Cherokee High School,

have been given hare. For each approach in Marlton, New Jersey. I an currently a
to designing a particular generic unit junior Computer Science Major at Trenton
examples have been given of ways to State College, under a Garden State
implement each approach. The basic Distinguished Scholar Scholarship and
principles behind making each example Trenton State College Alumni Scholarship.
more usable are applicable to the
development of any generic unit, and they
are:

1. The number of generic formal
parameters should be limited to the
smallest number possible.

2. Each remaining generic formal
subunit should be as easy as
possible to understand and code.

3. If the generic unit designed under
the principle of total abstraction
from data produces hard to use
generic formal subprograms,
redesign the generic unit with
decreased generic abstraction.

* Funding to support presentation of this
4. Lastly, of course document every paper was provided in part bq a grant

aspect of the necessary generic from Mobil Oil Co.
formal parameters. In addition, Ns;
with the tasking example,
explicitly document any necessary
elements that do not appear in the
generic specification. Provide
examples if necessary.

7th Annual National Conference on Ada Technology 1989 217



DESIGNZ CO:SIDEPATIONS AFFECTIN1

IHPLEENrATIO"I OF BYZANTINE AORPEKET PROWCO i IN AA

Shoshana lartman

Southeastern zssachusetts University
North Dartmouth, F.isz. 02747

Abstract. Byzantine Agreement Protocols irobabLlistic.2  The algorithms can be
involve the execution of consensus further divided based on the environment of
algorithlu-i to aree on the value sent by a operation which can be synchronous6 or
tkansmLtter In a distributed processing asynchronous.1 in the completely
system in which somo of the processors may asynchronous case where there is an unknown
fail in arbitrary and possibly malicious bound on message delivery time, processor
ways. This paper presents design drift time and message order not
considerations involved in an attempt to guaranteed, It has been shown by Fischer,
use these protocols within ADA intertask Lynch and Paterson that no dacerminktic
communication as a mechanism to support the algorithm exists to tolerate even one
design of fault toleranc systems. failed processor.5

Algorithms can also be viewed based on
the types of failures they will tolerate.1. ; The most severe failure Is when faulty
processors, also known as traitors, can

The Byzantine General's Problem was send spurious messages Including forging of
Introduced by Lamport, Shostak and Pease. 6  information relayed from correct
It is a problem Involving N processors in a processors. This type of failure is known
distributed environment that exchange as "Byzantine Failure." Authenticated
messages to reach agreement on a value sent Bytantine Failure can occur when messages
by one of them (called the transmitter). that are relayed contain unforgeable
In an ideal failure-free system this would signatures of the relaying processors. In
pose no problem. However, in an this cave, a message that contains the
environment where processors may fail, it signatura of at least one correct processor
becomes of fundamental concern in can be assumed to be accurate. This limits
guaranteeilng correctness of processing the damage a faulty processor can
results. accomplish. 4  Omission failures are

failures where the faulty processor fails
Byzantine agreement protocols have to relay some of the messages. The

been introduced to solve the problem. A simplest failure is known as "fail-stop"
majority of the protocols deal with the where processors simply stop participating
execution of consensus algorithms to reach in the algorithm.
agreement on a transmitted value having a
binary domain though there are The number of faulty processors that
modifications to the algorithms that allow an algorithm can tolerate and still meet
the domain to be of any size.7 When the the two conditions is closely associated
algorithms are executed, rounds of messages with the type of failure possible. This
are exchanged over a reliable communication paper will focus on algorithms that
system such that no messages are lost or tolerate "Byzantine Failures." In order
modified. The sender of any message is for the correctness of the protocol to be
always identifiable. All the protocols insured, it has been shown that the number
satisfy the following two conditions: of traitorous processors must be less than

one third of the total number of processorp
(i) If the transmitter is correct and participating in the protocol.6
transmits value v then all correct
processors must agree on v . ADA provides a mechanism for inter-

task communication through the rendezvous.(ii) All correct processors must agree on ADA also provides facilities to handle
the same value. specific cases of failure of an attempted

rendezvous. Some of these includeVariations on the protocols exist in selective accepts, delay and exception
the literature. Some of the algorithms are handlers to handle tasking error
deterministic 3 while others are exceptions. For fault tolerant

218 7th Annual National Conference on Ada Technology 1989



distributed systems programmed in ADA the users became the basis of all the designs.
loss of an individual processor must not The protocols are executed by processes
result in system failure. that exchange messages for the purpose of

reaching agreement. For this reason the
The purpose of this paper is to code implementing the algorithm is provided

present an attempt to use Byzantine by tasks which have the ability to
protocols to enhance the features provided rendezvous and can thereby exchange
by ADA Lntertask communication in the messages. The degree of coupling results
design of fault tolerant systems. from the method of task declaration and

package instantiation. The tighter the
2 nrgyrytnsurs coupling, the greater the affect the user

has on algorithm execution and termination.

One approach to implementing Byzantine
agreement as 3 facet of intertask
coMMunication assumed the communicating nlY1 POP ]6!
parties to be operating in the same
environment. This allowed one to focus on Coupled Agiirino and mnmuniear4on

the algorithm and the communication Za.kA2A. The first design explored is a
necessary to achieve Byzantine agreement. package generic on the number of users (M).
Zn this manner a coupling of the agreement It contains 11 identical tasks where each
protocols and the communication protocols task includes code for the Byzantine
necessary for agreement resulted. The agreement algorithm. In addition the
communicating parties were noL strongly package provides the user with the
connected to the agreement protocols that capability of registering and receiving an
were executing on thezr behalf and would ID for one of the N tasks responsible fo;.
therefore have little influence on protocol the execution of the protocol on his
execution except for the initial value behalf.
transmitted. Since the protocols were
executing on behalf of the communicating The package allows the user to start
parties, it was felt that a stronger tie the protocol with an init'ial value which is
between the two was desirable. As a result passed to the Byzantine agreement task that
a design evolved that had the communicating corresponds to the ID supplied by the user.
parties more tightly coupled to the Once agreement is reached the user can
algorithms. The algorithms were also retrieve the committed value by calling a
connected to the communication protocols procedure provided by the package.
needed to carry them out.

The package will be used as follows:
The greatest flexibility was achieved The package is instantiated with a specific

when the algorithm and the communicating value for N (greater than four). Each of
parties were strongly connected and the the N4 users register and is returned an it)
method of communication wau supplied by the of a Byzantine agreement task that became
communicating parties. This allowed for active when the package was instantiated.
the algorithm to be used to achieve The task is responsible for executing the
agreement even when the communicating agreement algorithm on the user's behalf.
parties Were in different environments A user wishing to transmit a value starts
assuming that the communicating parties the protocol passing the value to the
handle the inter- environment communication package. Once started, the Byzantine tasks
protocols and the Byzantine protocols focus execute the algorithm exchanging rounds of
on reaching agreement utilizing the messages between each other until all tasks
communication protocols supplied, commit. The user then calls for tha

committed value. The general designThe rest of the paper focuses on the concept is illustrated in figure la with
progression of design issues arising from package detail illustrated in figure lb.
the loosening of the connection between the
agreement and communication protocols and
the strengthening of the connection between It is interesting to note that since
the agreement protocols and the all the Byzantine tasks are declared within
communicating parties on whose behalf they the pat.kage they can rendezvous with each
are being kixecuted. other to accomplish the sending and

receiving of messages necessary to reach
In order to provide Byzantine agreement. To prevent deadlock transport

agreement as a reusable piece of software tasks can be used as intermediaries in the
the ADA package was chosen as the best process of sending the messages. It is
means of providing the protocol and all the also possible to prevent deadlock through
services needed for utilization of the the use of buffers. All the users must be
protocol. Also since flexibility in the declared within the same environment, the
number of communicating parties - one that instantiates the package.
henceforth known as users - was important a
generic package importing the number of The first approach has certain

7th Annual National Conference on Ada Technology 1989 219



deficiencies arising from the tight package generic on N that offers the user a
coupling of the agreement and co.-unication Byzantine task type that contains the
protocols and the loo:e connection with the algorithm to be executed to reach
user of the package. The concept of a agreement. This gives the user the ability
traitorous user is difficult ttP understand to declare objects of this type. It also
due to the fact that the user will not results in a tighter coupling between the
influence the content of the messages user and the agreement protocol executing
exchanged once the initial value is on its behalf. The task objects once
transmitted because all the comunication created must register in order for the
occurs within the package between the tasks package to know how many users are actually
there. if one of the users should utilizing its services. The package will
terminate it will not affect the Byzantine have to provide the tasks some means of
agreement tasks since they are declared sending and receiving messages since they
within the package. This might not be are unaware of each other and therefore
appropriate since the Byzantine tasks are cannot rendezvous to exchange messages.
executing the protocol on behalf of the Because of this the package has to provide
use&. in order for the Packaqo to be used a method of buffering the messages after
by users operating in different the send operation and until they can be
environments additional support is retrieved. It is also necessary for the
necessary to provide the inter-environment package to provide a service enabling the
comunication needed. user to start the protocol with an initial

value. Once the protocol completes and the
e 1tasks commit the uner can retrieve the

committed value from the task.

Use of the package is described by the
BA Tasks following. The package is instantiated

User2 and with a value for H. Users in the

Communication environment instantiating the package can
declare up to N Byzantine task objects of

* the task type provided by the package
* interface. Once created, the task objects
* register and wait for the protocol to

start. One of the users starts the
* protocol with an initial value. The task

objects exchange messages using the
User n send/receive services provided. These

services allow access to the buffered
messages within the package. Once the
tasks commit the user retrieves the

FIG. 1A committed value from the task object.
Figure 2a illustrates this design concept.

register

N BA tasks that
start communicate with Communication
protocol each other to

exchange

messages

commit

~hTask
FIG. lb

rtronger Coupling Between User and FIG. 2A
Agreement ProtoCo1. In order to improve on Some aspects of the second approach

some of the conditions resulting from the that result from the tighter coupling
first design a second approach utilizes a between the user and the Byzantine tasks

220 7th Annual National Conference on Ada Technology 1989



have to be emphasi=ed.- Owing to the fact the Byzantine tasks. This results frc= the
that the user has the ability to declare fact the allra tor i ofi fard thrcugh the
objecs of the Byzantine task type, the package Interface and objects dynamically
task becomes dependent nn the user and the created are dependent on the package nt
user's behavior can influence the task such the creantor of the cbiect.
that If the user is aborted the task will
be aborted also. This is not a deficiency yT*o ie .#n'fitn the last
since the task is execitig on behalf of design considered offers a tight coupl'ng
the user. However, even though there Is a between the user and the agreement
tighter coupling between the user and the protocols. This is accemplished utilizing
agreement protocols there is still a strong a generic package that Imports a discrete
coupling between the agreement and range of local 1os to be used by the
communication protocols. The send/receive package to differentiate the various
operations are provided by the package and participants, a specific ID within the
the user still has little influence on the range to Jesignato the Byzantine task
mesA0ges transmitted In the various rounds provided by the package and a send
of message exchange. Also by providing operation to be used by the Byzantine
the task type in the package Interface the agreement task when sending messages. The
user creates tasks that execute the send operation provided by the user is
Byzantine agreement protocol with the responsible for possible reformatting of
package providing the communication. This the message supplied by the package to
leads to an emphasis on the cormunication conform to the format expected by the
services of the package rather than the communication protocold as well as possible
agreement protocol. This is seen In figure translation of *the local ins used In the
2b which illustrates the package details. package to Do0 used by the communicatLon

protocols to designate the various
communicators. The send operation Must

N therefore handle messages of a particular
message type. Two approaches to the
message type are possible. One is to

BA taskl declare the message type as part of the
package and the user must supply a send

t~pe operation capable of handling messages Of
that type. The other approach is to Import
a private message type. To allow the
By:antine task the capability of forming

register messages which is an integral part of the
agreement algorithm, the user must also
provide a routine to construct the message
into the appropriate type using information

buffer supplied by the Byzantine task. Once

send formed the message is then transmitted
using the send operation supplied by the
user.

The package in addition provides a
service that allows the Byzantine agreement

receivo task to receive messages from the user and
a start pnotocol procedure that enables the
user to start the protocol with a specific
value. It also provides a coMMit routine

start that the user can call to retrieve the

protocol committed value from the Byzantine task.
Package use is illustrated by the

FIG. 2b following. Each user instantiates the
Using pjnterg for nyvanrtne task,, package supplying a range of participating

An interesting ramification of the IDs, a specific IC that is within the range
preceding design occurs when the package to be used to identify the Byzantine task
provides pointers for the Byzantine task. contained in the package and a send
Using pointers allows the Byzantine tasks procedure. The task in the package becomes
to be dynamically created. When the active upon instantiation and waits for a
protocol starts up, the Byzantine tasks are user to start the protocol. Once started,
passed the pointers of all the dynamic the task sends messages using the send
tasks participating in the protocol. The procedure supplied by the user and receives
pointers can then be used by the tasks to messages from the user. It is the
rendezvous for the purpose of sending and responsibility of the user to relay
receiving messages. Having pointers messages from the other participants. Once
loosens the connection between the user and the task commits the user retrieves the

7th Annual National Conference on Ada Technology 1989 221



committed value from the p3ZkAge. This Is The package can be used to provide a
depicted In figure 3a with the package synchronous or an asynchronous protocol.
details highlighted in figure 3b. This depends on the algorithm the Byzantine

agreement task In the package contains. A
___________synchronous algorithm assumes the

communication network is synchronous. It
PUisee is the responsibility of the comunication

network that the user provides to
synchrenize maesage rounds within the
package through the user. A package

User BAsupplying a t~nchrnnus algorithm will have
Communication 2ac e 2 to contain a service to advance to the next

t Pround that the user can call when necessary
to synchroni:e message rounds based on
information from the communicatLon network.

Pa en~ By:antine agreement protocols provide

an important service in distributed
processing guaranteeing correctness of
processing results. In utilizing them as

FIG. 3A part of ADA interr=ak commwnunication one canFIG._3A Improve on the reliability of message
communication in multi-task processing. By

range of los utilizing a package that has a tight
coupling between the user and the agreement
protocols with the user supplying the

ID of task communication protocols the greatest
flexibility can be achieved in terms of the
operating environment and type of algozithm

send msg offered.

rAoutine A ,OWLEE The author would like
to thank Dr. Jan Bergandy for his helpful
comments and editing suggestions concerning
the manuscript.

1. Ben-Or, H. Another advantage of free
choice: Completely asynchronous agreement
protocols. In Proceedings of the 2nd
Annual ACH Symposium on Principles of
Distributed Computing (Montreal, Quebec,
Canada Aug. 17-19) ACM New York, 1983 pp.

start 27-30.
2. Bracha, G. An O(log n) expected rounds

randomiz:ed Byzantine generals protocol. J.
FIG. 3b ACM (Oct. 1987) pp. 910-920.

This design offers the greatest
flexibility in terms of package use. Due 3. Dolev, D., Fischer, M., Fowler, R.,
to the tight coupling between the user and Lynch, N. and Strong, H.R. An efficient
the agreement protocols faLl-3top faLlurCS algorithm for Byzantine agreement without
can occur whenever a user is aborted or authentication. Inf. Control 52,3 (1983),
terminates since the package instantiated pp. 257-274.
by the user is affected also. However,
because communLcrtion is supplied by the 4. Dolev, D. and Strong, H.R.
user, Byzantine vuilures are also possible Authenticated algorithm for Byzantine
since the user intercepts all messages sent agreement. SIAM J. Comput. 12 (1983) pp.
and received by the package. This gives 656-666.
the user the capability to forge any
message. This package can also be utilized 5. Fischer, M.J., Lynch, N.A. and
by users operating in different Paterson, M.S. Impossibility of
environments since it is up to the user to distributed consensus with one faulty
supply the necessary inter-environment prccess. J. ACM 32 (1985), pp. 374-382.
communication protocols to the generic
package.

222 7th Annual National Conference on Ada Technology 1989



6. Lawmport, L., Shoazak, R. and Pease, M.
The Byzantine gancral: problem. ACM Trans.
Prog"sm. Lang. $yst. 4,3 (July 1982), pp.
382-401.

7. TurpLn, R. and Coan, B. £xtending
binary By:antine a&reement to Aultivalued
Byzantine agreement. Inform. Processing
Lett. 1S (Feb. 1984). pp. 73-76.

Shoshana Hartman

received her U.Sc.
degree in Coputer
Science from Downstate
Medical Centers a
division of SUly, in
1976. She was a
programmer for a number
of years and has taught

Computer Science courses at various
schools. She currently has a teaching
assistantship at Southeastern Massachusetts
University vhere she is working towards her
M.S. degree in Computer Science
specializing in software design.

7th Annual National Conference on Ada Technology 1989 223



UrCwoDiuN A LISP PROTOTYPE CADVI q) ro A SYSTIM Is ADA
l

Frris Johnson, Kevin Robinson, and Renee Washington

Advisor: Mr. Robert A. Willis, Jr.

Departmfnt of Computer Science
|Hampton University

lampton, Virginia 21668

development course. During the conversion process,
wt encountered the following problems: (I) deter-

The AWVISOR is an expert system designed mintng how to Incorporate the prototype into a
to auto to and facilitate the duties of A software development paradigm, (2) determining when
student's academic advisor within a college to #,ulate prototype constructs or when to redesign
or university. This system, written In LISP, them for efficiency and (3) to follow good soft-
has the eapability to direct students In ware design practices.
selecting required courses that are available
In their curriculum. It also checks for IOROATIO OFT THE PROTOTYPE
courses chat have prerequisites and corequL-
sites to ensure that they have been taken Typically software design projects Are done
prior to or will be taken simultaneously with In the following manner: Systems Engineering,
the courses requested. The purpose of this which entails determining all resources required
paper is to discuss the problem encountered at the system level; Software Requiremnts Develop-
when converting a LISP prototype to a system ent, which determines all softEare functions; and
written In Ada. Design, which describes software architecture and

procedure to a level of detail suitable to be used
for coding, testing, and maintenance. This
Irocedure is comonly referred to as the "Classical
Life Cycle Paradigm."3

The prototyping process typically transpires
as follows: Definition of the objectives for the
software project; Identification of known require-
meants; Development of an abbreviated design; and

IITRODUCTIO14 Building the prototype. This proess Is continued
until the prototype Is completed." After the

A prototype is usually a quickly built system prototype has been built, It can be used as thefinished product or it can be used to aid in the
that performs part or all of the functions desired development of the product in another language.
from a specific software. Converting a prototype
to a working svstem In Ada from any software Our problem entailed the incorporation of the
presents a number of problems. The prototype may complete prototype within te classical life cycle
be too slow, coo large, and/or awkward to use, duo po m e oto fith dede icie ypeprim ril to its qui k d sig . A so, som fu et- paradigm. We had to first decide if the prototype
primarily to Its quick design. Also, some funct- could serve as a complete requirements specificA-ions ohat Are supported by a prtetypin language tion. The problems encountered in the processmay not be supported by Ada. Wen alyzing some forced us to create a requirements specification
of the characteritics of A prototype and the based on the prototype. Some of the problems were
differences between a specialized language and a caused by lack of complete understanding of proto-
general-purpose high level language one must type operation, and a poor knowledge of LISP.
confront these problems. Another problem was encountered because the proto-

a rule based expert type itself existedl The tendency was to under-The ADVISOR2 prototype is a uebae xpr smite the effort required to develop a complete
system which accepts a student's identification and accurate requirement specification because it
number and returns a list of courses which the and tat rqimu nt secificatianreay it
student is eligible to take at that time. The seemed that so much of the work was already done.
prototype requires the actual code and four rule/
database files. The prototype runs within a LISP
environment, thus performance is slow due to the
interpretive nature of LISP.

We were assigned the task of converting the
ADVISOR prototype to Ada in our software design/

224 7th Annual National Conference on Ada Technology 1989



od'ules. The ligts, and rodnv af Cho variable#
DTAH.RO Dar1 In the prootpe, Werd global. Ve had overlookedl

thoae (Actort during Cho design ph4se. This
The basic data structure In LISP is the overight reult in ister during InC ratien

lit Thrfoe A decision 00hrt testing, Cho# "d58ICtIflg A r§design of Cho
emulate LISP constructs or to rewrite them lysc=.
utilizing the features within A4a 114d to be SMAmade. Ve chose a combination of ho two. The
is tstruts woe og -lly the otimum ua UMIzIng A LISP prototype to develop A
to structure ns of the run-tibaugo wnv problems. This
Cho flexibility of other data structures Is particuarl u e when the target languige
(I.e. trot#, queues, etc.) rrovldtd *Ore to Astrongly typed As Ada. The major diffi-
efficient processing. Several proble culcies we encountered were the lack of structure
resulted because of the above combiatieon. and the case of list processing Afforded by Cho

Since tho coding was to be accompltshd LISP language. The fact that we hd A completely
using the Ada programing lxtKuAxg, the doct- working prototype caused us to attempt to emulate
an was made to create dtcaflld design too many of its featurvs without full cansiderA-documents alened t h A a cnCepts. Ad In A Lion to te eventual Ada pie-entation. Vhtnstrongly typ aged gge ach restricts cor- wrking from a prototype, designers should be

clon, whereas LISP does not restrict mixin cognizant of these pitfalls. Such error@ are
data types. LISP facilitated rapid developatne nore prevalent whtn using the Ads programming
o dte prototype becau little attenion had language because of the rigid enforcement of

to be-gLvon to the actual daCA types being structured program davalopzont r-thodologtes.
procesed. Using Ada Co write the ADVISOR
system required specialized packages to create
and manipulate binary tree structures, linked-
list structures,-and queues. The rule bWaes
had to be completely rewritten in ordet to be
utilized efficiently in Ada.

Since the prototype written In LISP ktsed I. AaIn a registered trademark of the U.S.
recursion extensively, several dlectwons had to Covernt'nc (Ada Joint Program Office).
be made In tho design process. Ve had ny 2. Copyright 1987 by Willis Computing Services.
problems trying to aucertain when recursion was
suitable for use In Ada. 3. Roger S. Pressman, S e eeri

Although the existence of the prototype was Practitione s Apprunch, Mctraw-Htill book
beneficial to us during the development of the Compny, 1987.
requirements, it was somewhat detrimental during A. Robert A. Willis, Jr. Verification and
the design phase. Initially not enough Validation of Artificial intelligence
attention was given to the development of Chce ateion O ArtfA l l
data structures and the internal processing of e TO APPeaR.
the system. Consequently, we had to redesign
the system several times. Care must be taken
not to rely too mich on the prototype during the
detailed design phase.

Once the detailed design was completed, we
began coding the system. The biggest problem
we encountered was one of Interfacing the

7th Annual National Conference on Ada Technology 1989 225



An Xmplementation of the Standard Math Functions in Ada

James Anthony Frush

The University of Mississippi

ABSTRACT This time constraint effectively ruled
The ADA programming language out starting from scratch. Secondly,

provides excellent capabilities for there were two compilers available for
writing highly structured, reliable, the University of Mississippi's
reusable and easily maintainable mainframe.
applications. However, in order for ADA The first compiler, the Telesoft
to be acceptable and usable to engineers Telegen2 version 1.0/3.05 limits the
and other scientists, certain basic programmer to six decimal digits of
mathematical functions, generally accuracy for floating-point types. The
provided as math libraries with other second, the Alsys IBM 370 ADA compiler
languages, must be made available, for VM/CMS, version 2.3, allows up to
reliable, and easily usable. The eighteen decimal digits of accuracy for
purpose of this project was to make floating-point types. since the primary
available a generic package of math users of this package are engineers, it
functions with enough accuracy and was necessary to provide the maximum
efficiency to encourage the use of ADA accuracy possible, therefore, the Alsys
by engineers and other scientists at the compiler was chosen to develop and test
University of Mississippi. It is also the package.
hoped that the package will encourage In order to satisfy the time
other students to work with ADA by constraint, a search for any
providing them with challenging material existing packages which might satisfy
on which to base future projects. the project's requirements was begun.

Fortunately, there was a package of math
routines available on a tape containing
files from the Ada Software Repository

OVERVIEW which met the project's requirements
The concept of generics in ADA is a precisely.

powerful feature of the language. This, The package was written in 1982 by
coupled with other features such as William Whitaker, a member of the
strong typing, ease of maintenance, and original High-order Language Working

support for parallel processing make ADA Group, and revised in 1986 by LT Tim

superior to FORTRA a for engineering and Eicholz. The package is anscientific applications. The project is implementation of the functions found in
Impleented as a generic package of math William Cody and William Waite'sfiplemented s a ge paceo mat "Software Manual for the Elementary
nctions so that the programmer may Functi2ns", Prentice Hail, 1980.

instantiate the package for anyfiles from
floating-point type. The package the tae Rpntang the i
contains functions for the computation the Ada Software Repository were inof the following: Square root, Cuba root, DEC-VAX format and had to be translated
Sinte, Cosine, Tangent, Cotangent, to IBM format to be usable. Using a
Natural Logarithm, Base Ton Logarithm, program originally intended to perform
Power, Exponential, Arcsino, Arccosin , the translation from the PDP-11 to IBM
Arctangent, perbolic Sine, Hyperbolic format, the files containing the math
Cosine, and Hyperbolic Tangent. package and test routines were translated

in deciding how to implement this and it was discovered that many lines
package, several factors had to be of code were missing. These lines were

considered. First, The time allotted painstakingly reconstructed from the

for completion of the project was Cody-Waite manual.limied t onesemeter.PRECION
limited to one semester. The algorithms in the Cody-Waite

manual provide polynomial approximations
that are accurate to about eighteen
decimal digits. Since the compilers
available limit the definition of

226 7th Annual National Conference on Ada Technology 1989



a floating-point type to eighteen The number of decimal digits
decimal digits, the Cody-Waite available for a given number of
approximations provide the maximuA hexadecimal digits can be found by
accuracy available at this time. solving for X in the following equality:
As compilers allowing more than eighteen
decimal digits become available to the 104 . 16,
University, The functions may be easily
modified to provide the higher accuracy. x " nlog,0 16

In order to understand the
precision considerations Zor the Using this equation it is easy to
package, a brief review of some see that for the IBM short format, 7
fundamentals of floating-point decimal digits are available, for the
representations in general, and the long format 16 decimal digits are
representations used by the IBM 370 in available, and for the extended format
particular, would be helpful. 33 digits are available. The Alsys ADA

Please keep in mind that a compiler maps ADA floating-point types
floating-point number can be defined as onto the I8* formats in the following
follows: manner: the predefined floating-point

types SHORTFLOAT, FLOAT, and
SIGN 4 XNTISNA 4 RADIX A& NIPOKtRT LONGFLOAT, are represented in the X8*

short, long, and extended formats
In this representation, SIGN is respectively, however, for decimal

either -1 or +1, MANTISSA is a accuracy these three types are limited
normalized fraction,(that Ls the first to 6, 14, and 13 decimal digits
digit following the decimal point is not respectively. It is assumed that this
zero), RADIX is the base of the was done to prevent loss of accuracy due
representation, (i.e. 10 for decimal, 2 to rounding error. As for the
for binary, 16 for hexadecimal, etc.), user-defined floating-point types in
and EXPONENT is a positive or nigative ADA, they are represented in the
integer. The 113* 370 architecture appropriate IBM format. For instance:
represents floating-point numbers as
hexadecimal digits. In other words, the type MYREAL is digits 15;
radix in the above representation is 16 type YOURREAL is digits 12;
on the IBM 370. Two other
considerations must be kept in mind when In this example, MYREAL would be
dealing with floating-point numbers on represented in the IBM extended format
the IBM 370. First, the exponent is and YOUR REAL in the long format. Even
expressed in excess 64 notation, (the though a-number with 15 decimal digits
seven bit exponent is treated as a could be represented in the IBM long
binary value and the exponent is derived format, the results of computations on
by subtracting 64 from it). Second, IBM this number could contain errors in the
provides three formats for representing least significant digits. By
floating-point numbers, these are: representing the number in the extended

format, errors occurring in the least
significant digits will not degrade the

Saccuracy of the defined type. It should
be made clear that the predefined types

rWO, rf SHORT FLOAT, and LONG FLOAT are not
required by the language definition butowls 0 .7 8.31 are provided by the Alsys environment in
keeping with recommendations in the

LONG language reference manual.
The algorithms in the Cody-Waite

r"A(.#,WZ C/4 1 DAISII manual recommend subtle variances to be
used on machines using different floating-

oil s 1-7 1.3 point representations. (i.e. binary, octal,
hexadecimal) While these variances doEXTFNDFD FORMAT cause minor differences in accuracy, by
using the algorithms for binary machines
and extracting a base two representation

____ .o____________________ of the floating-point numbers, the
$else 1. 4.1A package used in my project provides

portability and results that are
M oW-oDoR , /j/accurate within the defined type.

ITS 64 - 71 2

7th Annual National Conference on Ada Technology 1989 227



Now that we have some of the provided with the package were used.
preliminaries out of the way, let's take The test routines use 2000 random
a look at a representative example of arguments along with various arguments
the functions available in the math used to excercise the exception
package, For the purposes of this handlers. The tests for accuracy are
discussion the natural logarithm performed using various mathematical
function will be used as an example of identities.
the other functions in the package. Returning to the natural

Since the focus of this paper is logaritnm function, for example, one
not numerical methods the algorithm accuracy test perfored measures thewill be discussed in very general maximum relative error in the identity:
form and a copy of the code
will be provided for those who wish ln(x) = ln(17x/19) - ln(17/16)
a more detailed consideration.

In order to calculate so we measure the error E as
the logarithm, three steps must be
taken: t=(ln~x)-(lm(17x/x)-ln(17/ls)])/lm(X)

1. Reduce the argument to a small After running these test routines
logarithmically symmetrical interval it was found that at no point did the
around 1. maximum relative error exceed the

digits of accuracy specified in the
2. Coputu the logarithm for the floating-point type definition.
reduced argument using a polynomial The second type of accuracy testingapproximation(Cody-Waite use a minilmax involved comparing the results to
rational approximation generated accepted values. Although not yet
especially for their work), complete, the comparisons performed so

far show that this package provides3. Reconstruct the desired logarithm exactly the same results as the IBM
from it's components. VS/FORTRAN version 3.0 routines

currently in use at the University ofAttempts to calculate the logarithm Mississippi. A comparison of the
for invalid arguments are handled in results obtained from the package for
various ways. An attempt to calculate several different floating-point types
the logarithm for a negative value against tables of values produced in
causes the function to send an error 1941 for the city of New York under the
message to the standard output and sponsorship of the National Bureau of
calculate the logarithm of tha absolute Standards indicates that the values are
value of the argument. similarly, an completely accurate.
attempt to calculate the logarithm of
zero causes the function to send an
error message to the standard output and Testing the efficiency of the
return the largest negative number functions has not, as of this writing,
representable by the machine. Any other been initiated.
exception raised in the logarithm
function causes an error message to be SUGGESTIOs FOR IMPROVEMENT
sent to the standard output and a value As stated in the abstract, one of
of zero to be returned. The above the goals of this project was Lo
technique, employed wherever possible encourage students to pursue future
throughout the package, prevents a pro.)cts in ADA by providing them with
complete crash of the program while significant material to start with.
notifying the programmer that an error Using the natural logarithm once again
has occurred. as a representative example, some

TESTING suggestions for improvement of the
After reconstructing the missing package should be discussed.

lines of code from the package it was The logarithm function uses two
compiled in its generic form. However, separate approximations, one for
any attempt to compile a program that floating-point types of less than ten
instantiated the package caused the digits of accuracy and one for those
compiler to crash. The problem turned with more. This clearly does not make
out to be a documented bug in that full use of ADA generics. Modification
version of the compiler. While waiting of the functions to provide separate
for a new version of the compiler to be approximations for a wider range of
delivered, the package was compiled and floating-point types would not be
tested as a non-generic for all difficult. Modification of the
floating-point types. Two types of functions to provide more than eighteen
testing for accuracy were performed, decimal digits of accuracy, (whenever a
First, the Cody-Waite test routines compiler capable of this becomes

228 7th Annual National Conference on Ada Technology 1989



available to the University), would be RZFZRZNCES
another significant improvement. Since
all of the functions in the package are Am-roso, Serafino and Inargiola, Giorgia,
separately compiled, modification o the AA: An Tntrdimuct n to trorn1 .
package could be performed by and CcdiJng, Pitman Publishing Co.,
individuals or teams easily and Boston, MA, 1985.efficiently.CONCLUSION 

Cody, William J. and Waite, William,
This package, as it stands, otWare Mnu.l for the Ule.entanr

provides a reliable and accurate base of Zwng1&na. Prentice Hall, Inc.,
mathematical functions. It is hoped Englewood Cliffs, NJ, 1980.
that the availability of this package
will encourage engineers and other Ford, B. et.al., I nJnticjAi .
scientists at the University of Cambridge University Press, London,
Mississippi to take advantage of some of 1986.
the features of the ADA programming
language. The package has been ported Kudlick, Michael B., hnevbly Trinnunno
to the IBM PC/AT and, as other compilers proraming Cor the IEM yvnt a 360 And-
become available, will be ported to the M1_. William C. Brown Co., Dubuque, IA,
various machines at the University, 1983.
including the Cyber supercomputer.
Finally, It is my strong desire that Luke, 'udell L. The SDJlal nct~on
students will find this fertile ground and Their Aaor-XqRirtigon, VI - II.
for challenging and significant Academic Press, New York, HY, 1969.
projects.

Rehmer, Xarl, "Development and
Implementation of the Magnavox Generic
ADA Basic Mathematics Package", 1a5
Ly.aj, v.7, no.3, May-June 1987.

Jamt A. Ith I1 a $ t4"I MjSIV l
In Ca"Ier Scldeftt atthe LIvVirty of

Xr. It1mik Is d6* to tedsct a SUNtor of
Sdct deirte In Ault 99.

71h Annual National Conference on Ada Technology 1989 229



Dcompositio it Schemecs for Stattic uid Dynninic Almdysc- of Ada Prograts

Nhvs]?.e. TS

RISC 5% ),Svwl We pqit l ititsal xs,4 WA 11K Pawt Can tbe W044 ty tiwi&A 1410 two 5"~tA IN k(14o 2.
-1*&kt 4 W~s*4 Wt "ds~ 91tivl WV45 Lt e A withi d tso" on 11W vi-11,11ity aesJ ceo.n* tInk" @f lae

5.10'tt Ia Pat-St. sties16 4 $*$"a 4e-twwisa gama lant" Uhs# PCA the wstA k f5#Sfct41 @q41pfol

k1s%;"w $4q sAlI~IA the ptatk ei 41u4014k PfVti44 of t*WXidS St sksagti iai4 4vt1ayt".t Plussr lismat.s Aitns petratthk
W*. ssis s. Th . 14~ps.'s. jisa 3,l~ -qi~@ ~w provide thq V~;ajy flow tqaph (Vlf C) #"Ie A

Wi ttk i..Ve~ te~dsymiCOWsn 11.)- Clat,6.1 100d Ot be ssd to dicit tsinAhois Ste *tAlk ,tptlcai of
W4MS;tasii ~euctte toe A4A tgie% At W4aS pr tis 14 tovvtC'J Iii .cct 4.
Iarqkwid e ,.kIts-~sk vk AN "t'Ss14el xw4 I~ ts ios4.w co"1 the cntol Mlw GrePK%4 (Mf ) itat
kc .4-*6,Ca th Aa~o~y 81p44 Was A4.%. w4IT-. provide the LtAke Am the 4npos*tla siscmn (oi dynamic ptopr.
or-ti 54 t44 13441c Is 5 es4 J 41* 1 Tsh491A of a Pt~*- 60 .It Ow nex oci" *q ItloseP~"ptj~ nLt
itt*. 14 s4-0 rtvwe4 Wt 49-oithe "e . isa tiss 1114 stti 4 dynaic coatxt We 4,t pstndencc ktilotoi %#1404 thq10 Jelit lasNAetA 4f-n sh tatic P-*e IW 1s54 9 h rt1SS51MJse1lh~o c~a oe~s5n w~

l ,'-afet tsRI4w. W~' W s #talk %s4 oljxkinmc &kAslpes,
mes- - 49s rttta rt4q" $.fje(iS eMa y he 1-k t"ct Prtiq'6tond Static plokotti" ate U-Sti ko progtaen wrnfit
44 tiq otiqtaw IsWE. Tiwe ptkiat a' 1 "ck, tico %#d [best dynasnie cutSIPWA~ nie #04le foe program 1rxuag

I* a s" h on.I ms., b "4Sss as xCIStS d playiN4 4 she Jts1 and skbae$4n.g with actual Inpuat VAlateA kci the "tP.%hales
Pewsalk of lt offia 1,041*W Tk~ wtsdslbAs 0I 11'14 .k We piwnt -144#110ae W01 %11 anitfs f Ada ptogran in Pce-
c..p.i. caift*Cq~d 4 *40 4S~tses A%4~ tmi943 ~l~Ats tios7 'hit' ks Wbow4 lby Ki oa te iathsat featutcs of Is prototype
41 .hkce4, P04taWt atialy1ta fo Ada Pfs#W ts etion 9. we btlefiy 46<'s

the pocsitial 0( omit upitch Ifo su$piotlng poftwate evejastlon. vs.
I Intoducton hay. we hdehee's the tutSens ttXU of this project and4 Pro'04 Aortic

Evlstis W' 44 Inttisc Iehavio of All #$*total ansd littailctas)*i
itet Softevatc Ay~lstni "1* "ve 1 oitf to anantti CompWatibtiity 2 Visibility Control ini Programmn g
With diehst ai 4O et which they Mte mW44e~c Asstottaltcs 'support for
oftwat cvoltatlim 14 ttmantoty for largue sysitnit in otdcc to provide Languasges

cost tlfcctj'-e conapulizstio In thae akmxin Of sippliekiwn rot the
.ksa~s au n pi atP.#jt~ios Phs#A of oftWare d VClopniint. t9ChrnaqUeC tn prsg.-mtmagI Ianiguagrs. the visility tsmwev ate decuiW is
like cli~ewae icfiscwtt. moduslar kOnsIotson and ,srcturvd pro. temwt Of declaraison Of COtMOe AS3I the relatedi *(*Ik (the passion cof
tazfamnn aft btaiua succeapfaatly U"ie Te Icicatch int the vatiou the proajans wet whereeit declaration U4 potentially vtiibk) of these
aspects of Wotww ace tnccsng s h ci's clfcctwdcy utahittcd in ptoto, decIAM6oets. 11n A deClUAat. X ,olWaote ntity is Mociateu With Va
typing pirropeanswi clivsircnn that Lie te-pidly being~ intsouCc name. Most languages allow the UsAWe of the "UnK name In mntltipit
for Kaote prO~tiOtt declaationa ad thie scope or %viouA detlarations can ovverlap. Soen4

Theo novel progtanunliti paradiIgnio technisques and to"l may Iasiguq-A~ provide ovviloaiding of nrimes ass well. Theus, any doictip.
kt osigflcproductivity gusomkvja~essch Illii tion of visibility contiol should include the dedaatio and nalininI.
role In Iiahiztising'ti softwate that k5 CWOIgt$ or ofware being~ mechanisms with visibility and overloading rules.
develope le# the Itaditlsal way. is gather limaited. Thle (Cot of SONl. A program may use many of the visibility consitucts provided by
Ware Maintenansce now aMoun3ts to 1mo04 than 50% 111I) Or the oVerall the language. Toe our discussion. we tsial cohistkr the Ada pogr ain-
soft watt cost of about 100 billion dollars per Year (4j In the absncle ming language. The concept of a decarative context ws important Its
Or a 'Lonmpite and conlisltent docuanenitatioe of thq requremexnts and this approach. A programi I* translated into at graph. each node of
desagir 6ptd~iatlon Of the 04Wftae system. alien the source' code is which corresponds to a declarativc context. intcrconntcted With arcs
the only genis represetation of the systcmn and it has to analyzed representing the visibility flow. The notion of declaative context can
and understood for any mraintotrAane acivity [S) be traced back to carty lxnguagcs like FOlIMIANi, that support tlhe

We art studying the nature an*d effectivcness of programi ilecom. declaatioin of suhaprograiwi with locally declared variables which art
position techniquecs in the context of software cvclutaon (or software not visible outside the subprogran. In ALGOL GO. a declatative con.
mainteniance). hits recsxct is used towards the developmetnt of a pro. text is forntally defied. along with other aspects of the language,
$ramt analyset that eAMe automate the techniques for decomposing large Some obvious examples of declarative contexts ate fechis and struct
mulsi-modult programs and simplify their static and dynamic analy. in C. and proedirt. foxalists and rece rs! in P'ascal. Among muote recent
is. Although the analyter Provides a new perspective to the prograin languages. Ad& includes peackqc and Modulhas launsk as new typos
comipiehension and debuggig processes, we envisson its application of declarative contexts. Objet-oraented lansguages like Small'ralk have
in a Widter domain of automaitd support, for program devecloposent, class and oject primitives that correspond to declarative contexts.
testing, and verification efforts.

230 7th Annual National Conference on Ada Technolo~gy 1989



A fled-utiv:e cotex ptovitiesA afranwwok ko ekcting new to, l"Wdk has 4"an pf"Ope Visiblity tnechminisss arc desctibed s-.
tilse And 41001t (AMPeetasio ((Of rf(lsra flitt" V J4 these rt tog the tvttpti or ctmasittm Or aecew anti 7rns'ss Of accm, lids
tofttb 'The tic~ularon of An Wittiy may "tqitle,% use c f~ictl t f ti odcl is a4rnre at lanISkuw c~ftnemr ot Justifying new sne'hacionts
thit. May of mtay notl lhctv heft n;eslly 4"laictl SuodAtly. All entity Anil pr muneRf foe ititifylng the suitability Of ttccim~i within

U,4in thet tednpitutto part (A#~ alto b llseo cxl. rot this reason. 4 pforfarti. It Also pfaroIsa gr X hial rersnI ~ of visibilty
PtOgcanvnsseg Iaegosa-ls rtavit visiity ~Ov "hiftwtv; to imrft prPt*tm of at Peogain.
"0N4*.altiie frm t icc latative contecs Thtse pwhallimm

f#ki~nplititly PfLwcnt. A ii th-2 Case tf procdure 00613An. Of 44
olctingcsa~ contrct ean p mlb t he imi~ datr to imor 3 Visibility Flow Graphs

the publi catities Of an M Ada d~el The Vlhility FlIow trpcA (.)#eat of otrtre'! hodes And 040~ In-
2.1 Implicit Nesting Itcconninstii the lkodec. A toJC c rvapollds to A. declaraiv context
In A4=~l (4, nateg 6s the pritary Visiblity M~echanism ro N (MI~' while the ekes Intcrlinking OCV dm~itt visibility ROW ifina.i
timiri5 l ite p of rica-lO(al frils Across thi dclumtw mtx tIm Within a elrtv otx.A v iitxlbt piovidesi she sklc
W~tdif6 The n~toft Of nrstilig And tit Wsat$satcti tkw of ViletY toil structtire connecting various units, Or Iype adclive c f cqisi.
from the eemcot crflqteto ft 44 tonJ (And ho vk vvsa isi, tionay A unit mauy cocrepond to an toic program construcet like

livruri byscytalothif 11*< mutur*1 Iugqqi owsa. At variaik decclaration (decVaative) or a statlesnsit (ceqceistionaxY).
Motlit ) And Advea, te ~crsritee a ugiteleln '~ A mron-Atctsnc unit W~ Associated! with amotlc doclarative context that

M!Iy participate in the visibility nlow information Or the current dctclxi.
ative context, NV4 ilefine the visibility, declaration. rcqmesewt anel

3.2 Llntear IEInborutioui provisioln kr ot the entities within the flaoework: of %70(.
Its Masny tlinguxgAg like IeAsAl. Ada and V. Incat elaliration is another Tlie t'FGA display the internnctions of the declarative contexts
viesibility snechansi that Implicitly fontrl the Visitility of ntts" in At ptogtfl. Nlprodiing on thet pforztnng language andI the a,.
isithie it dkclatatie tcotext. Wis'th hlrx OLIaboralomc. it ms 0lkgc toc ineate visibility cottuct uSIe. A kelmAtive contest i*.Y torre.

W, enitity that Its hot bcers dcltred. att kcast partially. foreo the speind to Ane entire PrQtalsi. at modulf. Oe.A Part Or the meduke 116
entity it actually used. M0,14%a J"c net dcpcnd an linear elabhormtion rrepettmtl" is Wcfirll AmI"s the inlet Atid intraisnoukl visibility
afid the Visilillty ii liftii ACCOM the ntire, declaratiVe Cotext reptvientation, This tinifocisity is in sharp contrast with the dluality

of 1MArg and "'tlwl* pirogramts. aociatd with, lte Module InIt.
2.3 E plid Nesiligcoanctlion lAnguage (MIL) approache (9) towards larme ;Pmans.
2.3 Eplict NetingAtomc units ntvvf exist on their own and are Always cotitaitti

'Traditionally. neating tit i"Plic-1 when A child declarative context is within a DC~ An entity may lhave several attltuuiutca but usually its
delclare within the Parent decIlrative context In Ads. nr5%ingf cat m s tMfil13CItnt for this diSCscuson Of the t'FG sscodcl
We expslicitly sp~cified with thez is sepSStiSI and stparsfc claweit They 3.1 DCClArAtiVe CoastttS Anld UMIt$
support aeparae emledirsn# ofpackAges Ad ploettures, while Main, 'liC declarative contexts constituite thlt nodes of the visibility &raphs$.
wlta in iblity duce to is1c1lisit nciting A context is strutturtld As a sequential list' Of units corrSPOnding9 to

dcclarations and mmaenients. A declarative unit encay decclare a new
2.4 Struactuared Types entity (c~g,. at variable) And umay require other etittes (the type), A
An Wnity declare'! to bW of sliictured type gts all the fIld* (or the unit corresponding to a stat-elient may require access to other entities
Sulscoeecponcnits) of the assoiated type Thus struct type of C anti (like variables. procdutes ctc.) Thuls. there Art two attributes of each
"ecord type of PIasal and Ada, it have Iihrent source of visibility unit- The set Di includes thet entciis declared in unit i. Sillillatly. I?(
that can be imsportedl by Other enttitles, Its constructs like snoduk of corresponds to the set or entitles that arc required! by unit t.
hlOdula.2. it us poM81*ele to M0ass Ct pr1oceulk COde A at XUcbCOmnpO. 'r acauidt linear elaboration. eacl unit Is asigned an incdex
sicent ofm s tructured! entity 'Ticie languxge pj itutivrA rane be usedl for nulobtc. denoting its rositior in tile sequentl unit-list Associated
direct imupleiicntettioi of elstract i ilt Futhert. languages like with at declarative context. Tlcis ordering cas readlily be dtcrinintd
SncaxlrrLalk extenid this abstract data type imcpleiecntation ueisin for the declarative peart of a context As Any non-atoucc declaration is
%titl Cliffs conitructs. herte it is pomile to inlit subcomcponents ttc~ted as a diffitent dedarative context. For the peroedural pat., it it
foes Other Contexts usingS aIljCtt illitnfanlCt ruW that include traufie. ncessary to providle anl ordering function to accoetuscodatc comipouned
tivity sfis betoistdlnugscnsi.r ieetr ieace tatemients like conditionals and loops (s6J

of ontxtstclt<40, & vsiblit no letios (),3.2 Visibility Ftunctiona for at ContcxL
2.5 Previotis Work Using thet definitionis of unilts and thlt ordering function. lte visibility
Traditionally, visibility cunrtrwl echianisinis have been dtscribed iWcoe. function V can be d'h'ned at tile end of unit i or a declarative context.
sInally It is a cosiullon practice to prjvide IINP (context firee) de Scrip. ,=0tiUt 4UD
tiomaS for represntilig tilt Syntactical fettures Of proraMnus1ing Ian. V'- -D
guages (1) F'orm~al mnetlexs do exist, however for represcsttng the All swoumning tsnzuau empUry flat swiecweiIh juttpotian of .kelus.

flow Am ste Iiatdees. AlsleOtaj for ,iatrienuts. this "umdatttll nature seraci'non syntactical Aspects (that includes visibility conctro~l) of programe thse Control flaw. i i sloecacee for iiiy sp.icc.'se6 ii V" utiyjeLoj -6iea 1111m
1itinS language&s 110). In (131 tilt disadVantages Of theia f01ri1a1 Approach 41.W ua is n..tie 1. ft Mittula.. .lJmmsi e e rqencil &AP(et of
for describing thce visibility rules are mentioned and a visibility graph chicra lis he nWelierku.

7th Annual National Conference on Ada Technology 1989 231



Il~e. 11.1t T ososs to the vwiUty Value After unit I- 1. an 4 GczucrAting Secondatry InformAtion
1). cortmmaods to the contiis providd bY the (I, unit- The terin from VFGs117 tknocrai the vialbilitr ittpote (roto otliec coc eas and should be
known befre IVt can bn Ocit iily titine4 SubtActing Di 141stu A 1170 istore the raw inloinixtion iheut the corrcesponiliilg pro-
rau t isiiily hsidingi due to it klaration" of An entity AL unit i grain$, It can be uNet to getac secocndary iftfoftnis" . for Altwevig
that was already visible frornt" tic o.ocAI context, For lanuqges on-sixad qucties. In this section. we drmcille thiti p~nctAtion P'to-
not w~ing lincr flatioAtio". 11. a * to 1cc all aa cesa This can provide the core for impkinenting the priniltivca or i

Thus 11 catrsponids to both. the voilulity bufoce unit I +. I and prolm in Incry 14m*sc ()to cim ~ttn on Abvout'statlce Rulntica
just stictr the *il uniit. I i cottoi~'odp tb vimihlility, Wrote the 6"rt. unit of istoxgtann.

anlcikolI tli~ovcltmohrelaaieonet, 4.1 Local Visibility in it Deciarative Context

3.3 mporinghit( Exortig VsibiityAll the local ecimaations. subject to lintar elaboration, prtovido local3.3 Jntpotinj snclExvortibiVitibilir a .Jectarative context Thq geneation of local visibility
In the definiion of thev visibility (uncttion 1'. within at declarative cars. tcluires a single paas over the~ unit.Iipt of the dvclarativ contetm. This
test, the Win Vt' cocresponds to thq visibility ittspittesI front other Carl teadily bet dlcina~linol Msing equation I [ItrAIIVCIY (Of each i,
eolitcxtA. TO Acco,, inoate linear elabotion. 11;1 is 4141ned for e!ach
Unit. Ins it U0F. an Are (M. t) corrsondl; to tile now or visibility 4.2 Global Visibility in :4 Declarative Context
front il dheclarative context U~ (the *source) to the roites Y (Ilse
dstinationl). Thentex Y is said to Import~f V61i of trslillr cr. 0I1b61 vissibility in a deaai cnxtanbe lclfcnd using enuX.
perWe by the context U1. Wills. linart elaboration the inotrreation tion, I. lkilore tile visibility function canl be genetei-d for it siscific
of visibility Impoct is dependnrt. Onl tilt actua 1llpes"o of the nlow All De. it qhooatl bic known, rot all tilt ieclatative contexts that capsort
within the destination context ThuA. tilt target or tilt arc pt~. sv) I viiility to thq PC umdcr consitderation The VFV# edges (describ.-
qualified witlh index i. '(he following equation describes thse imnporice itig visibility no0w) imnpose a partial otdcr on tielt IIC 11sAnd It
visibibty for ak sklarative context X%' is pscimille to pretitInine all such D)O (min: which tilt current PC

Iils potting visibility. This; Ksheniv enisures that only the directly at.
t;'~ 1~ (2) etc Isart orthe I'M or A program has to be r gesiateil when tile

tA.X: a'N~4. to;ralln is Inclonntially toolifledl.

He1M. IN Is A f111Ction dtfinedZ at tile targeuAO it VFC, CgAA. Still
ily. our. definedl at tilt source no'de. dwsribevs tilt export of you. 4. Reitaireincnts ins a Declarative Context

tic% Front tlse declarative context Mt to X Thlf uce .11 is qualified 'Ilse sletetnillAtion of tilt tcquiremenlts of a declarative context is the,
Withs Index j. Witli [hi deflinitions of thlt (unlction. IN And Our. that unionl of requirceent sets of all tile Units, rot at well forinedi prto.
tirt language dfependent. it lis pcasile~ to translate tihe iilioyncraiel gtai's, the tequirements shld1 bsm provided by thle Visible entities.
of various laniguagespecific rules that p'vcrn visibility nlow acrew thle as dscribed by thet tleha visibisty (unctimn If tielt ograi:, it not
declarative coniext,%. complete0. then, Itti meCAning111tu o Meine Anl IMPOR* *Aet, ror thet

l'rogtin. list Aggregation or all unresolved requiftimits in a pro.
3.4 Requirement andi Provision Stts grain constit-tes lt IMI'017'st. It cant be gertmW by collect.

Ing All 114 - 0. wherc e I isle requiremetnt set or PC dt. Thus.'I'lit Act Ill contains all tile cnitilos tha.t ate required Ill uit i 'Ilie I.UPOrT m u,1',j(R - W'). lict m- is thle set subtraction operta.
union of these Act$ over aill units in, a Context leads to the retluliment tot '1,, I'li1port set for a imodule is thse REQUIREMENT Act dcfined
set corresponding to that context, It is definled as: Ity 'J.,= an uVdI n .II prah(
Similarly. Dgv IM V,".1!)5 that dscIRM11 thet set Of All local declarations
If thle requirements of a context calt be mect locally th 11 IIVI Dx rvsiVSt
and for linear elaboration- l,111 G u,,Di for k = Los .4 PovsonSt

For a well formed programl. it Is essential that all thet required 'Fie provision set rot art enitity call be dcetmaned using equationi 3
entities, within a declarative context, sholdh 4e Provided locally of Fur this, each requirem~ent of aill dleclarative contexts that Call import
Imported. This is equivalet to saying that thle relation Ilt 4; 1. be visibility frot tile current Dr. must he considered for resolution Witli
true tor all I. thlt local ot lirpoded visibility. 'rite Aggregation of plrovisiont sets or

'rile provision set, correspiondingl to all entity e. Is defined as (oL All declarative contexts constituting a loodule is a morie generalized
low$- toril, of thle PRO l'I1SIOX Set definled and used Ill the MIl context (8),

and thet traditional eros.rtereneing of Program. A provision set Coll.
Mec = ~e 6 Il) tallus thle entities that are being provided to Other contexts (or Parts

I'he, entities e and f could b'e declared tin the wame or different. or a prosrains). it includes thet Actual enitities that have unresolved
declarative conite.-s. 'rlite inforinat tots contained oin provision sets is a requirements, and thle declarative contexts contamping the,,, It should
generalizationi or tile traditional crosasrcferencing outputs. be distinguished front tilt set of entities that are visible Ill other con.

texts (or modules). That information directly cotresponds to visibility
or potential provision of etntities for resollving somne requiremnt,

232 7th Annual National Conference on Ada Technology 1969



~' Control Flow Represivntzttion of $p - (is, ) G . if tbatu~t * tiep"44stqse (w-*) the Inpsut

ProgrAiis "tile orof tlabl V.
itt (V's) a %g. Ifth oistpu151t value of variable- 61 stpcn4A o

C40tto1 Nlow graph$ have I~tess usti in vgfiouo contes'x t1 1 elto w exctiln of the 0tIaItt lsct
cotnpil-Slion X# ti maof at@%~# Pors~() The control nlow plot$.I% VWC-tvifilOuptauef0dithikn oIpt

tit MA no be e*lfii ptstn ills. %h PV1.. itc corresupoandoingt r4~o Isi l
to X programn During the coopiAtion of A program tihe OYrsta tic,* "y ofU
IA only An Itsisn"1:11 tqptcsmiton torthlie program syntax 114t: Wile cmrssetng the dtisncnrce rclxttons or totilik Ir0tA551
syntax tre lits menteel wt tlie cotrol flow ttsoostatiott that t* (at musltiple pAtts o*(tile sAive program). a stroctipt 14 is'eii1 to Mato
cxlicitly tttoiti 64te ;L programt with Ito relations. 'Thus, VI~ dcics tShi Vs triatIott

This CFG ilt sliels rctsstcly At tire WA~ltxt kidl It I* at ov. of plograst V
ittulk 16t of .Astresricis oft y55t stutik %ht comspounrd A tirr' I'rc'gra314sr poctosrs can it gnctetIC uotng tint seconsolecntsc

could Lc aitomic If It coircsponito to At ,sstk tmest Mse xmigr relalsii, 1s. For a pro grain Pt and varlilk v:*
nresrt rorto oun ' nn' il onihoas. correspons tort
conit o w oubtgrapi tlsat Includusc tire comsafbpoo. the SArm part andl C, I T'~) (4)
tirt tbc pat. rot these tcltion. ilst Input ansi outut values (Ofrsposti to tire

*it CFO is a wtt tot prograriw without anty atbltAly p to 1,4k stae Wore ad at executing Ithe programs (of its IsArt). Tlitt do'
nwuh. V'Acl ~sbssiLat such A it ogramIsm as single cntry mni exit pgoicnci rcalosi casn cmily be defined tor Pitplk SUstexoto tit
points, Fullr aiihent. prtccitc call attd nutll statitnirt I it sipl statilstent CAII be v~i~uic' u At sequence of sssitr italiitent Tlie
mod. Aa loos andi coorditionXAs cortc~osrdit to a stltrct. foloing d~t n tot tire Motii~ ion Anil ;soevttio" of "Atille

Thie CfGt Ofa prograt itarvidt le tfissnwor for programs ana. Vin a ptgm 1 wil etl ise1 1.tfotgr tn tchcmd t 111, oktioliv
)'sis Aa hs Attribtes tOf 4(fining Aa. iitInning additional prop. MOD) U (flus 1s isooirmlc by. tire progrant P)
cilititlaining to static rind slyiasic ainalyss of iliat prograsis. As I'Atl u (VlV 14 jsretrtil (not anodufie) its P)
dtuiikti Its tie next action. tire attrillOtcS includet tie cpnjct itelaion U. tot a programs, P can itt sktsnq'i its tersist of $I- mlid
IlAtwiotA I', St. Aa I'S tat are ustd tor g-mierAtiig static and dy. V$r " tollows. i'or variables V and sa. (I-. ) C I*- It any artle two
mti5*1c p1ojttilont. In Addition. 1terac Atatribustes tOf Inontitoring %h following cott'Jitionst 1 smtisicil
progrmns trajectory while it Is mxouting, Tisci In conjlunction willh
the skpemdtCeIC re4lai e rtU"e in g4nerAling issote sce p rogr1104ami I. lit mi'a~bt u cttittd4 Ut m ( at. (it.*) c. %5) Anti lt otAttuistn
pmtojeceions. is Its turtn depends an Varsabllt it. i. (S, u) k: Sp.

21 le VAuixblt vn it plrktevtd iy tit psrogram Js.

6 Prograrin Projections '111 kas i~tstm

In this son we delfne program psrojetions ot two typcs,. staic asid 11. =Vs -St. U IN,' whsere Isi- t.~i Pll) (!s)
dynaic. Dclpeidenice rations tilt uscid tot tis purpot Wt definte Hr.Vc .imsto l aibe npoful1 n itcll
three such relations andI tiib Iow tlsey call Wt &1"1111114se fo titroerato "." hist at allhe paiabcdi in itoasi U and Mittislo
prograss In boilh static and dylsimi contexts Ihsese ttiatiorm Cals also iisorcar is.aisge pcdms iamUanif
it'. used in ?roaf mitssstvsiasct ant illat. mos.Sessd~et.

We definet ptograssi isojeetions to be AI subset at all progrA st ate. 0.1.1 Nulsl istatssimst
1111"US, 1titning tile ocigltial order Ansd t part ot tt overall sesssams* A programin P tisat coun~sis t ar itsgit asuitl statmsteist dm ostt sssesit
t'es. A psrojecion P; at programs P is dtfitad for at variable ut. v C V. any variable. For tillt UC V. tls output value of Vt dcpesds onsly ils tls
ana tromt statemseni St to S2. Trile hll] Is to consitruct Pr. wills Only input value or vt. nlits. (ut.u) e % itd onsly it i us , ix results
those statusixists traitts tls sequence St to S2 sucs tlsat tlt value ot Ut in Ils-z a.
is Sit sifter executing 1P A It would be after strsileset Si whsen P1 Ote relations are obvious a it is nto aiignistit Isn a ntull
Is executed. statesstesst and all tle varliltst lit prograisl P lire preservedl. Thlus.

Siatic ansalysis ih" been used earlier to Wilmte useful info~rista. M'~OD = 0. REu = v,. St. =m 0. Asid I'S
lion about programs tot comnpilation. optimisatiusl. testing, mild un.
des'standisglipurposs ) Prtojetios cams be titised based,- Oniy onl tist 6.2 Absgmn ttmn
static analysisof se psrogramn, isitiar to ptogramd slicinig 112) or partial aiistt tactn
stalesitents [3). Sucs projections. sowcvcm. ihavt linmited applicability For an assignussesst statelssent,
while executing a programs with actu&l values tor testing and debug. a: Vt : czpr;
ging purposes. In tlsis section, we defuse tise dependence relations Ilsat its is t only variable thsat is moadified anid it depends on all the
can be ussed in list context at boils static anid dynamisic projections at variables appealing it, tle expr part ortle statemnt. rlseere,
programs. Projectios defined in dlyssarsc contexts are msort precise PRlE = V - (ut). MOD =(ut), amsd relaiion St. = ((s~u)!s r: erpsr)
comspared to thseir static cot-aietpaits. 'lstoutput valueoatvariablit vdepends on list execution oftstatemest, s
6.1 Dependence Relations so, I's = J(i.s)). Tisertlation 1's- can Weobaisd by using equation 5

We dfin thee elaion tht ae uefu incapurig te sati &nt V, = ((t. u)Iu E crpr) Ui~u~u)ju 61' - (ut)).
We dfinelisre reailois tsat re uetulin cpturng tse satichns ii s equivalenit to:

dlyntuic iropeittes ot a prograin. Vl, = ((ut, u)Ilu Ee apr) U (a - (ut, ut)).

7th Annual National Conference on Ada Technology 1989 233



6.2. S~sseae~of tatntetsLoops Suppose the program 11 contains ak single lor #txenent.

rler the VI~tionA have been adefinc-l for ut gram cntaining single 0 whUikCONI Wop P MW;
amwignmct anld null state ow"W Nfitona (O loo an otfto If the loop iterliteit for N + I times thvn:
statemients Ate providedl lat. I'loc-utr and. run"CtIon Calls can W monD" U Mono. and PREP a I'KF.
Accomoated by considering them aM geneliad1 hNassignmt state. The dvpcndqncete ionS ate as follows:

wats5. Th~5e basic tkflitiomns bel I uk,4 to c04ottuct reations fr St ((s) 0 C0'N ) U g.) -qr 0 x.
ptogratw containinig multiple Sldlttus where the program ks ainal. Vt a (MOD' 0 CONiD U4). -~ 11, N. anti
1114 444 61 Ofli qUenc Ofs temnti. Since I thrlation. satlity the %I MODr 0(Is) U (MOD" 0 COND us)- O -~ I.
asoiat~ivity rule. It is sullicitat to Show how to Atntratc rellton rot Ili N- V.
a seelucnce of two ptogr ass. Using induction, a programo of arbitrary
Silt canI be aftalytiJ And rehtOns CAA be con4tucted,

C'onsidler the sequence P *(two programs A3 andl I'. where h9l the 6.3 Static Relations
three trltions. %V. Si' and 11t are known for each of 1% and ill. roe the In ATenerAl. it Is not posible to predict the actual path o~tomputhtion
sequcnce. l'REP a P'RO, tiIRV and MOD'" as %JOI)PI MOI9'. with Static, alysis or A Program. All control Ilew paths Aft consid
It ;. assumedt that both IN a"4 h1 have single entry anti exit points. ted while gtef raint thes &pendence relations fr static projetions.

N~ow is, ,) e sr. if any or the following two conditions hold With static analysis only.,b rt, A) Gz VI the Ainal value of variable
I~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~~~~~m . h tknn l nIladistcto p dpnso)t uafter executing program P1 eay depend on the execution of state.

inut staent valai v In .an tS. v)t~lO G se (dt~i)te Wnt 0. This elationa Approach fr static analysis waA IntroUdue
Inpu vaue C vriale t; le..(s~) GS~.In 13) and the definition of our dpendecec relations Is motivated by

2. The statement a Is in h' and it depends4 on the input value or the A. is ad P reAtuon of (3) and4 their werul""s in genating I#.
variable us and the output value of variable w, after P1. .lepcntU roctlon about live variiablc analysis, redundant code elimination.
on the Input value of variable v 1krot P1. ThYA i* equivalent to c~p(o5i"l mlovemett anid generation of partial staltments (cowlep.

sayig tat s~u GEstp, ad (.V)IE 1P.tually similar to istic program projctions). T'hese relations can be
sayig tai 5,i) 6SP nd is,) cVP.genratedl by parsing the program text and itkritirying all variables.

*FhuA, statements, structure of all compound statemntts and the sequencing
w$'U .t Vtf- (9) orstmtents.

Similarly, the reation V$~ can be biincd. for the progralil P. 6 4 D n ni e ai n

u ~U V . P () The dependence relations that were alcfintd fr static analysis are also
Finally, equation 5 can be Used to determine Ii.useful during the dynamic execution of a program with actual values.

Dynamic projections can be more precise A the actual trajectory of
1. .S, u (Pn P1 ) ..... = ,' f (f) the progr am execution I. also available to the analystr.

We describe a procedure that generates the dynamic dtpende
6.2.2 Conspooind Statements relationsi fr the program P as It executes, under the control of the

analyser. This procedure Is called by the analyser after executing each
The dependence relations can also be d~tetrmined for compound state. statment of P. An Intvinal stack is maintained by the procedure
ments. hlowever, unlike assignment and bull statements. the defini. roe processing compound statements. The getneratoc maintains the
lions ate different fr static and dynamic contexts. For example, un. dependence relations rot the part of the program that has already been
less the programn Is executed fr Specific initial values fr the input executed. This information Is preserved! between any two invocations
variables, it is not possible to determine whether the Arm paut of a or this procedure.
conditional will he executed instead of the cthe part.

The stack can store the following itenw:
Contionals For a program P, having a single i1 statement, 1. statement type

s : if tip.' then P, else PA end; 2. expression czp.' fr it and loop statements
MODP = MODP-V PRE" = PRE'%1 3. dependence relations tt,, v, and s,
VIf= MOD'0aU V; 1 4. sets Mod and Pre
Sf = is) 0COND US'% and

t. I',- U (MO0D"- 0 CON D) (6). PePoesn
Here COND denotes the set of variables in ezpr, 'V Is the carte. Initialize the dependence relations

Sian product operator, and i could either be I or 2 depending on VV =;
whether eapr evauates to TRUE or FALSE. V. =

S. #=
Mod =0
Pre = V

procedure DynamicDependen"Ceenerator(s:in statement)
begin

234 7th Annual National Conference on Ada Technology 1989



Iudate r6. s4, W';
update Mott anti l'CC4 UVI (Wsboj). (fithosfl) (AINNII). ((#At), (61jf,1) (rnon),

(int.q.) (fnlCl). (Cln,(fa.to). (fnlfl). (fnhjs),

push statcwt-type.
push cerr Part of If cc toop statement; Tho ,datioru explicitly specify that is, MO anti Cl ae input vati.
pus" Mt, I. $-to' allka 404t a"e Not uiotli0 4Y the programI. The felation %'$ can be
Ptst Mho.1d ' wi tes gcnhitc program projecioso For txAaqk.
aint1aflli t.,, *,'lad r.' Mr R 145 that fcpfECK"t4 the program:
iftitialifetnew Moj A44 Pic; is I )tt~

W" ati-jof WJA~*,ierfm > I tu 2. $
comnpkte the relations from the currenit Whie (I <a us) lop .S

Qo t* pd amtrcit entry (for cspr, and typq), a I + l .
wUntacl the top-moot tntry andi make it current; 'elUp
upate current relations with tht recently qu f

copetet relations for a compound oacuient; 632 Dm i gain

CM4. SUPPOse the filioncci program is beling exCcueI C41 (Of " L The %6e
6W..: pentignte relationsil for the progtitafit more prcit when the program

excution information is availble to'the tlepcmaknc relatioas genvr'
6.5 Eca111ple Atm. rot this Input value. statements 1, 10 and I I will We extcuted
Consider the proaram that acenerats fibonacd1 lnmbers for which th antI MO)uCfb. and P'RE a t? - MOD. The rlations m~e.
depcndence relations hadt projections life providled Wieow, I.) mo

%I$ s((flbo'l), (fibojlo), (fibo1 ), (Cu,)), (r".10)). And.
paocetlun filbonkcci(Mt. (I. n: In micer' fj5a. out intcg~cr) If U (lonC-)(,0)(lf)(~)(nn1,C~,u~,Il)

Cail. CN2, . i ntegcr. For this execution. '. (1. 10. It). tctopanding to tho pro.

if(a> I)then .. Ii(nu>IOn;.$
Wal:= 10; clotnul
W:= fl, a- fm.1; .$c

I :=C C2; .. * f..~~

CaI CN2. of While .!ebusins, if the output value of tilt variablle fibe to trro.
fn2 fn. Ca; ne ow then only three stateuxints awe to We considattd for finding thle
I = I + 1; stcause of the tfrror.

end loop;
else

en f- it = ; .. AID 7 Visibility and Control Flow Graphs

fibo := fa; .. i, for AdA
end fibonacci; Using the formalism developed In earlier sections. tile language dcpcni.

dent definitions can be provided for Ad%. Ada uses linear elaboration.
6.5.1 Static Relations implicit and explicit nesting, and packages with, special visibility ex-
For the fiblonacci progra.-n: port arid import inechanims. For exaniple, a decclarative contest in

Ad& can be: specification and body of procedures, functions andi pack.
MOD ={llbo . f, W n, I ), and PR =(n. t, n) ages. and the block statement. Wita in a declarative context. tile units

correspond tu: varibli, type and - rnstant declarations; esigamem.
S, =(lIn). (2,10). (3,CI). (5.n), (0,M0,(,(,), ,if and loop statemtntA; procedure calls; and expressions (including

(7,n), (11,10), (8,0l), (I1I'M). (I11,0), (1l,1n)) variables and~ Cunctitir, calls).

Vs=ftib~l, fio,),(fbo3) (ib,4, fio,),(fboG) (ib,7, 7.1 Visibility Flow Graphs
V5 AWib,l), (libo,9), (fibo,1), (lo, i.4), ib,5), (fi.9,), . b,) Suppose a declarative context, At directly nests X after unit i-l where

(Cn,l),(Cn,2),(Cn,3),(Cn,4),(fn,5),(fn8),(fn,7)(n,8),(a.9),(n10), N is not a package. Nodes At and IV, and the arc (AtN) are added

7th Annual National Conference on Adr, Technology 1989 235



*.... 

....

Unit U

el w tw~. 01) L -d - ------ ..

I I

T414s: I; UAIt* fr Ada lkdl~tatiVe CO"IntriA
________....... __ _ _ _ _..

satnscnit C(V;I rct5 .*Dependence jRilns

Whiuln (rsrr) loop1 tAlmonwrtil whilo (capt, statcincrts) -----------
It(crspr) thoeu$I 44hinS, ollot If (er. Fl.) lS7i4l. fl-j
sicntA~ *tlucacc($,. -'i, .. I MS

s: fnp.clurt call) call (a ...........

LEE (.. chl$ cht4)l 4s CK; node with h~r

Talsk T Ilriniivc for Aa Cgooll MlW Grapihs Figunc I Aa'tAn, An Aill Prograin Analyzer

to tilt 170.71ti function OL ig,.., a U and IXMyj , A* ' ~ Ing Iligkincutcd an Sun workstations usinS Utis'/C pilattfr anid
there Is no visibility flow frons the context X to MV. Ate (XMt) IA not tools like Lex. a kas analyzer generator and Yacc. mn LAII parser
added to the graph. eertr

For explicit necsting. using stpst andl is s(P-Isitc Claus. tile 8nr~.1 V G enrt
dcinsitions rot i~vard arraje iti oxn iiw r til concto or . V GG n ao
te uiotc N and .11 withs lt ate (M.N) is poitponedt tn tile linking The 176 fr as prograin Is XV11cftal in at holtoill-up fashion. Thie

phase when indlividuail %?Mx~. cosponding to dhlrcntt fllbrary units. gariinar of Adak It described its thle Yacc notation, Cuarnttly only it
are linked together. rclitcktitativt subset of Ada has been targqted.

l( thle context NVi I package Ohwn there is an arc (N. .M) denoting AtisibutcA call be alc;% fonlr cacti node of the parse Ite, For a
the AlW Of visibility front thle Isublir part oflI the kA& egN to its patent V5G. this is sed to gencrtet the unit-list and iniforatution rot tile

M. Ij i tit lat uit ts te pbli put thn 0t"4jqj.j i IIIq. VtF10cigms At the expression level. gile R sets art tile only attributes
tile target of this tile. IN~jVu,, a 4a tile I) sets are always etrijty. Whenever as production correspond.

'rie packiages call be used across tile librfary units using tile VIrA Iing to a tclarative context reducts, till: unit~list is ready and can be
clause. if entity m1 uses tilt litt N with: a ,1,IA clause, the associ. Attached to tile header (newly createcd fr the rcently idenitified! con.
ate,! visibility nlow Is represented by ithe aire ti..it) T~he tiand ovT test). Whvilei analyzing a1 compilation Unit. tile iiitia-unit 17C arcs
relationls aife tile site as for %tec (X.M) ass describtd befoie for M arc fully dettrmined.
nesting tile package X. As far explicit iiestiitg. Arc rurrsponditig to te t'FGcEXa cousponenst takes A program, generates tile I'F.
lte ICRi clause Are set III t the P56's ruffrespondirig to aill library and when all tilt lrograins have been transrforiled, links lise Individual
msodules haive lite:, cons:l ed. The sets D4 and Rl, are dcfinedl fot %'Fs together. Thet linking phaset provide* resolutionl for all the us$.
the various types or units , able I resolved sames its is srpsrsftc and tritA clauses. An is itpasvtc clause

requires a corresponding srpsriett clause in at subsunit. Similarly, thst
7.2 Control Flow Graph trifA clause needs a packagt that it imlplellivnted Us a separate Colllpl.

Waien unit. If tilt package specification and thlt corresponding body
Control flow graphs for Ada prolramns with if andt loop statements are inlemeincrted as different compilation units (thet spetcification ax a
are defined! using the pritiatives displayed in table 2. library unit and thet body as a secondary unit), they are also linked

together wills a I'M C ar.
After thle linking phase, there ate two types of P50 arcs. The arc

8 linplemmntationi of ani Ada Program ILJST corresponds to traditional nesting in block structured I.i
Aiiayzerguages and signifies a uni-diretaional flow of visibility froma the par ent
Analzerto its child. To acconinmdate packages. the arc .. 'ACK links a

Currently we arc in the process of nisplesncnting an Ada Progrrui package to another de~larative context describing the %tsibilitya of thlt
Analyzer (AddAM) . Rese the design of AdaAn is outlined, .,d tile package naine. and eventually the nion private declarations of that
Functioniality of its main components is discussed, The systemn is be- package.

2Urds It a mulatamk of AT&T

236 7th Annual National Conference on Ada Technology 1989



4.1.1 Imonlq'u ati XxlcruAl Mo Structulre for VrP 9.2 Programn Debugging
lntretallf. the vr(s gi Itpto--fito using mimt ti ,oc rr 01uiiCA 1tam iking 1121 wa show t~ W o~ rot pogram tibuging
F1ch &-cixtivt coltet totpo#44 1* a otututc with. 604 1* Pltor A~ n s Gt an tcaticAlly Aftilfy only thosE PtPAIAf pam swln ts that
its ID. 1ru', /01440"t. Pklemct. Aftim.lur. 01141,4C "d~. moulffS'.u. may ihv bren used rOf .5ccrmlrifg lhq etrrcnt valim of the V.f.
wioU A list WAn ani rot both I ougat oton 'Vres, hbk4 WOO~lc c040ideratio PArtial Atcment 13) 4114 01a0C '#Ogfr414

The~ I'Me cr~~sto (An m tImnsifoinwt4 tot4 *tfi i ~t v A artw w fhiti-l u"(41q (fo tIMs lypt of 4uggios.
W ick notation W4 lscs! with 1,4I rt palroh-oliscd litt* "I tcp In tihe l'lAS 171 systrut. Wt*~ ftat yt hItIk alystrA hmvi
frat o wrill be tful fr the Inclf1alXI oflargo pogants lscn Vf"Ployct to podtin fie.~e ctworks that cuts I'tilry tht
Where only the motic~ti source MCAe art fie'lscl 11Elo whos~e mution 10"ItAlts i the currcnt (Andl virrOWeu)

V*alue Or the vari4bl und'rt totitideratlo The Aystemt 11WaInanA tile
8i.2 Depentdeace Relattionsl Generator Vuit trajettory of the 11mmu g aln A illt It~etI Cxcctltsl tey.

Threet~nia toethetcompise he ti ntince clatitss rMAI erltimes. Inay caforrr0 to Ililtip hor InI the trajetory. Thei
Pe" nit*e tdhI o glmpistne %h e ipcolcan W4o4 A-"EeAort drcly ,lyllZi~tocC f%M pfoJet*0I1 uI@ttilist the Isrogmill's traje~tory butp'qJ'rCq dal"A or AI~orb *ttli~~tAcanUP ; Wfattl imiy 0-1MAunta the analysts ifinflUissann AA d' tkJ&#(relations of fikn 0i4e,(toot Ihe sylita 4tevrf the p urots Fsrollipiotnt t intnror. ll~vf th4ey Aft 11tom 5'trto that$ Aatt projeetionlsO or IgrAto
tuaulon About the statMent typos. Ansti *tfucturk of espreaslon can be slics
ptpaukxg4 'Mk is pc:(omnint by the Prrv.J'meiser. anSI its output
A Used to gUn~rtC rCais Ili Wt static 11:1 dyfaiX0c CQnteXts. In
the static situstIon. 1413140mnc lrltIn ertat In Static 9.3 Progratil 'restintg
eontxt) tcqtiirf furrma only from the prepro(CVs~ings;Z-- flow. It Isposible to uitillse thetkilvildenct trilto 10 ilnpliry Program
ever. Car IfltC4. infimnaition frot the Ada int rprtcrt I*Aalso nectledt testing assoXITd with mnxatenance Suppose the output value or A
sthat thet actual Ipgr fa rctory 14 Utilizedi for g~c i' dolvl vxtibte is to be stuldli'd while the progrmn is being w4,ed 'his

dcc relations, variAble could We it heW ont. jtut recently includedI In the programi
during tnltnnrFront tilt static ilitetignot reationt %- oe O1C an

8.3 Ustr Interfitce ilctallif( ILl1 tile va lablet such Ihitt tile output value or V ,ki*,iscut on
the Input v"lue ot th104 variables Only thrse varsks need effectiveThe functionality or the user Inttracei I ivideda into two parts; dvl, Input values Anti tae cofrepjording programo projection Canl be exte

ing with thle Atatic And ly"nanic Aspects of the program semlantics, cute'! fot teleugging 1lurpow T1111. only the relevat po~tios of lite
t1.St~scr Itercface rot Static Semnantics) Implemenwits X browsing tool rgontcifAo csvl
suppotting v rfrn ivsibility anti 5coping 1'topatts. And Ini. ~ rqie 0b etd
fornatioo Vvicta"I front the static dependenc rclAtions.

The 1)1.0 tomplotlelt handles the dyntii kinantkA of p ogtaltus. 9.4 Formal! Vcriflcniom,
Traditinal dtuggig cAn he siupported by supplatitntlng tilt inter. M~ptndlcnce relations may also be useful in formtal proofs. Suppose
pretcr witha broall-point Anti display faIility This debutging pW1(JL5 it is reqtuited to prove A rarticulAr mssetion that Involves only soieIs imlprovd by using tile depnadence fC1A110115 geated by DktG.I) or tilt programn variables (may be thlose which aIre rcv.ty iIntfOdllce

dluring progrAnt maitenance). Intead or corlswdring lte efftect, or
9 Program Mainttdnalce thetintire PtofiAlu on initial awictions. the dependence relations Can

bW used! to Identify all input varialesC and Ptatensents onl which tilt
Tlilt primaty moativAtion for this work is to facilitate ltle tlevlopinont assertion to be Proved depends Thmis could esplecially be effective
of wialysis tool, fot supporting prograul inintelailce. it, t mlain. during prograi nlalntcnan mce. wherCe a procedure Is iiodifitil to Add a
tenancept, ase ttiixlkt nunber of programmerts are available. fle functionality thaxt is entirely unrelated to tile old functionality of lte
original develOplat of thlt program mlay have involved flit'e individ. procedure. A procedure may containa two groups of statmmsmts that
USAl for developing dufteat, parts or tile programl. Tlacevwe. effetive do not Interdcpend oil each other. Such moodlificAtions Aft typical In
decompogition schemes and suitable browsing tools, to facilitate comni thle maintan lce phom.
prehenrsion, ate tme important for prograrin minxiterlanlc. Support
for debugging anid verification is Also needed. 10 Concludig Remairks
9.1 Programti Comnprehension

Cross rferentlce generators ate ustful to extract inlformation front pro. Our work is ainted towards lte identification oftdecoilposition schentes
gri texts. The VFG based Intrace produces this informationt in all Applicable towards the static And dynamic analyses of programs We
on-demnand fashion and portrays thle full visibility rules of tile language provide thle visibility flow graphs A 41l Inltermlediate representation
For large prograna. this Is mlore effective comlpared to a comprehensive form for static analysis of mnulti-1mule programs. Rtelations are de-
listing of tile crots reference information. Furthermore, other types of (tied to capture thle inlterdependence among variables anld statemients
secondary Information, arising firom thle transitive nature of many rlat. of a program in both static And dynunie contexts. These relations
tionships. are not directly present in lte listing. On thet other hand. thl e use information yoradebuggingatestingran proerainspoofnti oto
interactive Interface is Ideally suited for these special types of queries, u nomto o eugntsig n tganpofApoo
without inundating lte user with unrequested information. type analyzer, called A daA n hans been designed that incorporates thlese

schemnes for analyzing Ada program.

7th Annual National Conference on Ada Technology 1989 237



Ilet imiirttsrn of Ai.Au It cofliuing Moot of the t~ons. 110) Daitb4 A, Shltit W~I4060 with (Wets* Its O~ta#4t1554l
tWou of OW~ Wl't jr.Jff,~ Includting the Iexioli Anitlt. the pxre. $mrnaties. chiit To. sgrs 1:17 473. Allyn And4 HAMo I11C. IMOG
444 the V'fC rwsrix have hccn $spkn talg Aloitham for grit,
ritig the diisrt!iEnct rdInlom PAj static 4#4. slinsinc Autinam (III N F. SchluctIculft4, Thc1,4t *( qtf wAlt IflalI1;niwe 11J
hav bcts tkvvlqc4t And otoeurrtly itig impkrtwntnl. Thle ta. Tromischoos t9n St14rrwom Kapof muls. Nk 31~.I.Mits
iltlrCCf 14 p-W14I1Y c@4tpkci so Ilhai the Ilk6' lftfAtiot cxft be 198T.
displayedi. On the theortk~t #14k. the strtiefu mw of the deslrnot 11 Iv Ylc cnceoAiigU K7 -04gof 1f"
tl~ti (fir tting anti proving prrgrart I* W06n (411hr c ')Makete rasuik R Twsc'cs#defbar

Andxwlalasl uy 04

W c dlvi4oi1 thnt thre curmet work can IK tended Along the Wir. 113) Akxrander I.. Wo-lf. Loci. A. 00qe. Anti Jack C. Wairts. A model
lowing hitim of visibility control. )IMS Tranaitons am Seftwirce Kayinescrixy.

e Auttmeting the UAJA'i fu tionslity with support for tot~ And S5E.l4(4)12-420. April 10"
proof tiinltecna

* lmpkmowntsng, %n analylqr for the full Ad-% ILmtguage with ari. Author
Italy control nlow fgosrsi), rxcerption. jrcursion andi tastring,

* Using trcnsknee tcl.%tion to tr r~tclur the existing pfogtraw.A
for simplifying f'iutr inaieo

* Extcrnding this approah for analyting paallprograms.

* Ver ifying the scope And etectlvrnem 0f suh an analyzer (coepfe.-
Strts maintenaC111 In p10,111t41n enChitsninnenu

Acknowleolgeturta
hil amgateful to lDr. S. ft Sehach fr his continuous guidAnc antiIL

ecoageriwni for ilsi ploject
Sliccial thanks are tiuc to Ituxo rasai for "sting 11e with

graphics andi teX1torraing, hajrev Copal received the IL.l dn.)ieree Its lectrlcal Fogi.
rcivetin anti the Mclo.)degree In P'hysics front the 141A mnai.

Refercuices tute ofrtchnology And Science. l1i411l. India. In 19113. lit Also iccciveti
the MS. degree inl Computer Scince fromu %he vitarrdcbilt University

(1) Rtfirtec Manual for tAc Ada Ingrwssniag Langudlc. United in 1080,
States Department or nmr~s. 19A3. Ile Is a Ph.D. candidate In the Degartuxnet of Cowoputer Science,

Vanderbilt University. Ills diasolration rescatdi Is on the d"14gn Of
(2] Alfred V. Ahu. Ravi Stthi. anti Jtlfetcy 1). Ullnman, Code opti- Automnatic static and slynarnic; program decomopoiltIon techniques rot

usiratlon. In Compilcm, J'nmrsplci TicAmilitts ands Tools, chip. supportfin& ,oftwate evolution. Ilia other research initoets include pro.
ter 10, pages 484-722. Adtlis-on.clty Publishing Company. ainlunling languages and systems., prosranning clivironntecnti, search
1084. luethods in artificial intelligence and machine learning, And genetIc

(3] Jean.I'rancois lirgeretti and Blernard A. Cate. lnfornaison-flow Algorlthma
And data-flow Analysis or whik~prograins. A4C3 7Vanusctiomns on~ During 198W18. lie was affiliated with thle lab~autolmnatiln projects
Programming Lammgsages and Systemir 7(l):37-01. January 1085. fr cancer and AIDS drug development prograis Or tihe National Cast-

er Institute. Ile served As a systems Analyst and subsequently tihe
(4)11 W. l Bocm. Imnitoving software productivity. Connpticr. 43- depurtutent mnanager for the In Vitro Screening Systemt Group of V'SR

68, September 1087. CorporatIon, Alexandria, VA.
(5) Ralfty Copal, On supporting software evolution. April 1055. Mr. Copal Is a student mnerber or the Association or Comnputinig

Machinery and the IEEE Computer Society.
(0) Rljee Copa!. Onl supporting software evolutionl-decompositionl Address

schemeis for static And dynainic analysis of programs. 1089 cmvaail rjg~vuse.vanderbilt.edu
17] 11. Korel. 1'ELAS-pogram error-locating Assistant systelm Department of Comlputtr Science

IEEE Tramssctioms om Sof are Enqimetrim, SF.14(9):I253- V'anderbilt, University
1200. September 1088. B~ox 5052, Staticn 1)

(8] IC. Narsyanuswainy and %W. Scacchi. Maintaining configurations Nsvle N313

or evolving software systems. IEEE Ttsonssfmons on Software
Engintecnng, SF,13(3):324-334, March 1087.

(9] Ruben PrietoDiaz and James NI. Neighbors. Module intercon.
neetion languages. The Joarnal of Systems and Software. 6:307-
334, 1086.

238 7th Annual National Conference on Ada Technology 1989



An Object-Oriented Approach to Simulating

a Real-Time System in Ada

Johan Margono and James E. Walker

Network Solutions, Inc
8229 Boone 3oulevard

Vienna, V'irginia 22180

Abstract Ada and Real-Time Systems

A real-time embedded system is typically Many Ada advocates have voiced their concerns
characterized by its' ability to dynamically change on the problematic features of Ada In real-time
the priorities of its' concurrently executing applications. Needless to say, these concerns
processes. Furthermore, processes with high are mostly focused on the inadequacy of Ada in
priorities must be selected to execute in favor of addressing critical timing Issues in applications
those with lower priorities to ensure that system where meeting most, If not all, deadlines are
requirements have been met. Ada does not probably the most paramount aspects.
directly support dynamic priorities In that Ada
tasks are assigned static priorities at compilation Most experts believe that the "real time
time. However, we will illustrate how to utilize scheduling work ... is concerned with separating
Ada's tasking features to provide for dynamic timing issues from logical correctness Issueg in
priorities, real-time system design. In current practice,

these Issues are Intertwined to the extent that
Il Is a proven fact that Ada's definition for priority program structure Is dominated by timing issues
scheduling has severe deficiencies when rather than Issues of modifiability, maintainability,
utilized in hard real-time environments, understandability, etc."1
Nevertheless, there is nothing prohibiting the
software engineer from Implementing his/her An Object-Oriented Appr3ach
own scheduling algorithm. As a case study we
developed an application in Ada that simulates a An Object-Oriented Design (OOD) methodology
simple operating system. Our approach not only was used to develop the simulator, rather than
supports dynamic priorities but also provides an the traditional top-down functional
innovative way to handling the deficiencies in decomposition approach. Realizing that Aoa is
priority scheduling, not an object- oriented programming language,

we felt that we could view the problem space
from a more realistic perspective as a collection

The purpose of this experiment was: 1) To of objects and associated operations. Each
provide an innovative approach to simulating a module in the software system denotes an
simple real-time system in Ada; 2) To use Ada object (abstract state machine) or class of objects
tasking for implementing a dynamic priority task (abstract data type). Each object in our operating
scheduling algorithm; 3) To demonstrate the system simulator was implemented as an Ada
feasibility of using an object-oriented approach task. Depending on the "functionality" of the
for developing real-time systems; 4) To dispel object. It could be implemented as a server task,
the belief that Ada supports only one task an actor task, or an agent task. For instance, a
scheduling algorithm (i.e., The one supplied by
the compiler vendor).

Goodenough, J. B. Real-Time Scheduling,
TRI-Ada '88 Proceedings, p. 134.3

7th Annual National Conference on Ada Technology 1989 239



CPU object Is considered as a server task i. Resourcesam alloctedbasedonthc
because it does not "act" on other task objects, priority of the requesting process.
A process, on the other hand, is an actor task Iligh.priority pocesses will always
because it must periodically make a request for be preferred over low-priority
service. proccsses. If two processes of the

same priority are competing for a
Operating System Simulation 2  resource simultaneously, then the

choice becomes arbitrary.
As mentioned before, the experiment was the
Implementation of a simple operating system
simulator. The simulator was to provide at least
the following: 1) Allow for dynamic priorilies; 2) ii. RAMs: rach RAM will have ten
Allow for multiple RAM's, CPU's, lOP's, Disks, equally sized slot. for processes.
and Files, 3) Allow simullaneous disk access: 4) All processes occupy the same
Allow multiple Read Access of files. amount of RAM space. There i, no

RAM preemption. Once a process
gains access to a RAM, it will

A process is initially assigned a priority. Depending remain there until completion.
on how busy the CPU is, a process may have to Further, processes do not do
spend a lot of time waiting for the CPU. Ada's FIFO dynamic memory allocation.
task entry scheduling is not adequate to prevent
starvation. Thus, another approach was taken. First,
the longer a process waits for a CPU (or other iii. CPUs: The number of CPUs is
resources), the higher its' priority becomes (also allowed to vary. We ran the
known as "aging"). Aftera service has been granted, simulator with one, two, three,
the process's priority will have to be reset to its' four, and five CPUs. CPU
initial priority to prevent it from indefinitely preemption takes place after a
postponing other processes for services. Second, process has been running for ten
"Families of Entries" were used to implement a task consecutive- time units.
scheduling algorithm which is not strictly FIFO.
Because a task entry has its' own service queue, a
family of entries in effect is a very close iv. 1OPs: An lOP manages accesses to
approximation of a multiple feedback queuing a disk. Before a process can access a
approach. This approach allows a process with a file on a disk, it must first gain
higher priority to be serviced prior to any other access to an lOP. More than one
processes with a lower priority even though the I/O operation can occur at the same
higher priority process arrived at a later time. time, but not to the same disk. lOP

preemption is not allowed.
Our operating system consists of the following
resources: Central Processing Units (CPUs),
Random-Access Memories (RAMs), Input-Output
Processors (IOPs), Secondary Storages (Disks), and v. Disks: Our operating system
Disk Files (Files). consists of four disks, each of

which contains four disk files.

In this simulation, we adopt the following resource vi. Files: A file is idcn'ificd by its
allocation rules: name with the following

convention: FileNumber-
DiskNumber, e.g., file 1 on disk
#3 is named: FID3. A process may
have the following types of

2 A complete source code listing of the accesses to a file: read-only or
simulation is available upon written request write-only.
addressed to either author.

240 7th Annual National Conference on Ada Technology 1989



Once a process gains access to a RAM, it pcrforms Since an object.oriented approach is used, the
two types of requests: CPU and 10. A CPU request is traditional conccp of a scheduler, or cyclic executive,
always followed by an 10 request, and vice-vera. The is absent from our simulator. A process is an
length of each activity is randomly generated. For intelligent, yet obedient, object. On one hand, it
simplicity (and to avoid polling), each process is knows when to wait for a CPU, when to access a file,
assigned to specific CPU and lOP. Afair algorithm is or when to release an lOP. On the other hand, it
used to assign equal number of processes to cach always abides by dc rules given carlir.
CPU and lOP. External events and interrupts arc
simulated by using -arious rendezvous mcchinisms.

l'rocess Class

Process Life-Cycle Traditionally, a scheduler would be responsible for
creating, dispatching, and terminating processes. In

When a process arrives into the system, it must then our design, however, processes are represented as Atli
compete for a RAM space. (in order for a process to tasks which will communicate directly with rmsources
be able to run, it must reside in core.) Since we only such as CPUs, RAMs, IOPs, and so on. CPU and
have one RAM which will only hold ten processes, 1/0 bursts are simulated by using a delay statement.
somc processes will likely havc to wait for a RAM Although a delay statement is known to be an
space. Once a process is in core, then it can be in one inaccurate timing mechanism, it is considered to be
of the following states: appropriate for our solution because or portability

reasons. Finer resolution timing can be used instead if
the environment provides an external clock and

. Running. A process is running interrupt.
once it has gained access to its
assigned CPU....

package Process is
ii. Blockedfor an lOP. A process is type State is

blocked for an lOP if it is (BlockedFor.File,
requesting to do an 110 and there Blocked..or .O,
are no available lOPs. Blocked._DoingO,

Ready,
Running);

iii. Blocked doing 110. A process is
blocked doing 1/0 after it has task type Class is
gained access to an IOP, the disk ...
where the file resides, and to the entry Start;
file itself, entry Stop;

end Class;
iv. Ready. A process is in a ready

state when it is waiting to gain end Process;
access to a CPU. A process can
be in a ready state after it has
gained access to a RAM space,
after its time-slice has expired, or package body Process is
after completing an I/O burst....

task body Class is

begin -- Class

accept Start;
-- synchronize with the kernel
-- TheMemory.

7th Annual National Conference on Ada Technology 1989 241



Seize(The Priority); Processor Class
Until No ;ore Requests:

for Index in The Requosts'Range A proceso class. which is the parent class of CPUs
loop and lOPs, is implementd a a tIsk with multiple
case TheRequests (Index). entries, one of which is a family of crries. Entries

Kind is Start and Stop are used only for synchronization
when points with the kcnel.
Pequst.CPUReques >

-- simulate round-robin with Priority;

-.. package Processor is

when type State is (Idle, Running);
Roquest.IOOpen Read Rquesat
... task type Class is

when ..
Request. 1OOpen WriteRequest entry Start;

entry Seize (Priority.Clas3);
when -- seizing a processor is based

-- on the priority of the
-- lligh-priority processes have

when -- a better chance of seizing.

Reque t.IOClosoRequost > entry Release:
entry Stop;

end case;
end loop end Class;
The Memory. Release;
accept Stop; end Processor;
-- synchronize with the kernel

end Class;
package body Processor is

end Process; task body Class is

We chose to implement Process in a round robin begin -- Class
(RR) fashion. This scheduling discipline remedies the ...
somewhat indiscriminate behavior or the First-In accept Start;
First-Out (FIFO) strategy. The basic idea of an RR -- synchronize with the kernel
scheduling discipline is that the server (in our case, Forever:
Process) is allocated to a job only fora time quantum loop
or fixed length (in this case, ten time units). When a ...

job runs out of its time slice (quantum), it cycles select
back to the "rear of the job queue" to wait for another accept Seize (9);
time slice. In our implementation of Process, this is o r
simulated by using a delay statement, a simple when (Seize(9)'Count - 0) ->
rendezvous, and a loop statement. accept Seize (8);

or
An RR discipline, unlike FIFO can only be applied when (Seize (9) 'Count - 0) and
to a preemptive resource such as a CPU, not to a (Seize (8) 'Count 0) ->
non-preemptive resource such as, in the simulation, accept Seize (7);
the RAMs....

or
when (Seize(9)'Count - 0)and

(Seize(8)'Count = 0) and
(Seize(7)'Count = 0) and

242 7th Annual National Conference on Ada Technology 1989



(Soize(6)'Count - 0) and Disk Class
(Scizo(S)'Count - 0) and
(Soizo(4) 'Count - 0) and We Stated earlier tat a Disk object cannot be
(Scizo (3) 'Count - 0) and simultaneously nccessed by more thian one proccsi.
(Soize (2) 'Count - 0) u> Thercfore. the Disk class is simply implemented us 3
accept Soci: (1); binty scmaphorc. The danger of usingtcraphorcs is

or obvious. A sei:c operation must always be
when (Soio (9) 'Count - 0) and accompanied by 2 reclase operation. Failure to do so

(Soize (8) 'Count - 0) and has bccn known to causea deadlock. (uphemitien ally
(Soito(7)'Count - 0) and callkdcadt cmnfraccd-.)
(Soe:o(6)'Count - 0) and
(Seizo(5)'Count - 0) and
(Soi:o(4'Count a 0) and package Disk is
(Sizo(3)'Count - 0) and task type Class is
(Soizo(2)'Count - 0) and Qntry Seize:;
(Soizo(l) 'Count w 0) a> entry Release:;
accept Stop; end Class;
-- stop only when there azo end Disk;
-- no more outstanding

exit Forever;
end select; package body Disk is

end loop Forever; task body Class is
In Use : Boolean :- Falso:

end Class; begin -- Class
end Processor; Forever:

loop
The select statement in the Processor body is select
constructed such thit a high-priority task tli tries to when not In..Oe ->
seize is always given a chance to do so. Other t.sks acceptT Seize:
with lower priorities must wait in their respective In-Use :- True;
entry queues. Note that for this to occur, these o r
rendezvous attempts must artive .t their entry points when In-Use ->
"simultaneously." If a low-priority task arrives prior -- to prevent cheating
to a high.priority task, then the low-priority task will accept Release;
always be given access. In Use :- False;

or
Ada's rcnde;.avcus mechanism is strictly FIFO. If terminate;
several client tasks wish to rendezvous with dte same end select;
entry belonging to a server task, then thcy are end loop Forover;
serviced depending on de order of arrival (regardless end Class;
of task priorities). Notice that this approach avoids end Disk;
starvation.

File Class

In a real-fime system, however, the goal is not to Multiple access to a File object is permitted, therefore
avoid starvation, but rather, to avoid missing we implemented File class as a c.uuning semaphore,
deadlines (given time and space constraints). Our instead of binary semaphore.
implementation of the Process class above illustrates
an example whereby entry families arc used to achieve
the effects of different priority algorithms for entry package File is
queues. type Operation is (Read, Write);

task type Class is
entry Seize (Mode : in

7th Annual National Conference on Ada Technology 1989 243



entry Release (Operation); Conclusion
end Class;

end File; Ada has brought about unprecedcnted challengeS in
various fields of sofmware cngineerinZ in general, anti
real.time systems in particular. Object-oricntel
approachcs art meant to overome some, if not most.

package body File is of these challenges. llowcver. knowing which Ada
task body Class is features arc best applied to solving stringent real.time

Vure O _Readers Natural : 0; rcquiremcnLt quite often prescnLi a unique and yet
begin -- Class familiar problem.

Forever:
loop

select In this paper, we have shown several techniques
accept Seize (Mode : in which can be used to overcome restrictions of Atli
do tasking. We are aware that current Ada tasking

case Mode is implementations are in general, short from
when Read -> expectations. Nevcrtheless, we believe that, in order

Nuurber OfIReador :- for Ada to succeed, we must proceed with whatever
turer. Of Readers Ata has to offer in solving real-time problems. Aftier

+ 1; all, "a journey of a thousand miles begins with a
when Write -> foOtstCp."

while Number Of Readers
loop

accept Release (Read): Rererences
Number Of Readers :-

,urber Of Readers Booch, G. SoftwarC Engineering with Ada,
- 1: Benjamin-Cummings, 2nd Edition, Menlo Park,

end loop. California, 1987.
end select;

end Seize; Deitel, II. M., An Introduction to Operating
if tumber OfReaders - 0 then Sy.tems, Addison-Wesley, Reading, MaN;sachusctts,

accept Release(Write); 1984.
end if;

or EVB Software Engineering, Inc., An Object.Orienie,
accept Rlease (Read); Development llandbook, to be published by
tJumborOf.Readerr :- Benjamin-Cummings, 1989.

Ntumber OfReaders + 1;
or
terminate;

end select;
end loop Forever;

end Class;
end File;

Notice that in "accept Seize ... end Seize", we
check whether a request is to Read or to Write. If it is
Read, then we simply increment the
Numbcr_OLReaders. However, when the request is
Write, we will only accept Release associated with
Read until all current readers relinquish accesses.

244 7th Annual National Conference on Ada Technology 1989



Ada Imnplemecntation of Operating Systemi Dcpndcnrt Fcaturcs

Michael I. Schwar::
Randlall I. Ilay

Minin Marktia InfommWio & Corimiunicniions Systems

AS~riftwimlalng of systcm kkNdi rtional co&e wit), cp".Ing sys.

N~~~nyl5VbJfi Nv c cur mw Nvw of conienticia ktv anub tity visniaty *w oifct bccass or %he Impkmcau.
MA emaies and too of the undeitying opeating System. One such %;on Wga
peo*'tem Is "ha the Ada tatking molk) It eweally lsoplmented ii or Owy a cx ei w d"ms s
a single opeag system peocesa This caw's nantwne conilt betwme
the A4 no-ftilie wksl )Cbukr and the Operatig Sstest procs
xchdaske. war cone 4ua cond Ieaict w c h Ads Idex or tUsk mtate an
the oetng system IdeA of Iwoces state. While: considering te Imes of Or ingdatsyss dependenat co&,.

%we ticouqarit a problem In 3 muldtssltan MA rogram doing network
Thene condlis W lea operaing system depeden designs andt sliutios. comurtiatioets. Eah time a task perfrmed a network teaJ. the entire
and a body of code tha cart ben uhard to utaund as kt Is to maintain. AMa.hd roceis -"t Wa. Since the MA 9"cdke for Our c~mpikr
Solorlons of thi nature awe deitnietive of th cetal A raaigni. w aet cIlking. %%kri th: neAt tinvexpleuirato signa wat dcliversif. the

rMs wu Internped arW u*%k wevre reschedul.1 Each trdicahe. had
An altcrritlyc cslststso tri the (Matu Ad a to maisk the speatin~ to check Its return sau and titmine -hete It wilded to tezasu
system deenden rvingsto trat the operating systemt vocess; like mny iut(. This causcd a perfmanc loss *wauc the coriU* " In2dg s)1.
other resoutce in need of procotion: to write rackagcs "hat ae both miy tern timeslicc vas lost Ahenever a task lItsing a reAt wat xkJ4e.1ut.
and Intuitive to use. IdeAIIy. Such 4 tasik Should not hISM best $6he0le until its teWA CORlM

complet. The oserative was to prvenit Lak-sw itchng during a real.
We hive tkar as an ipl a "ea wotld problem dealing with time. TIk is unKetabebcusethr d* s no way or knowing when. If ever,
sliced tAskog and netwokoeimcfteocess cormunieatons wader the more data will be avalablt; to rea*l Of courst, the opring system
U.%Ixt opratming syteom. The speelkAU60oro SockLIjO Is %inally scheduler coul not know about the task (since UNIlX Is single threaed).
Identical to tha of the gtandn Scitisrl-lO package. and avoids prob.- and the A rn-ntime schedulr ould not know about the reAl call
lems of system scduling coullics within multitsking A pvroms (since the teal call was a system Inteface anid not an MAd packae cAll).
As a bonus, the utility ,tso opeats %vy efficiently.

1. Approach
Our aprach was "classkcal" in the A senise. We used standlarti

design tchn~iat create the ovrall stuwture of the SxodajO utility.
%thich Included tow. packAgest SocletjO. the uwerklvl rmckgc;

1. Problem Sodti. the system Imnplementation of xoekcu*: Desctilvor, the abstract
Ada contains features. such, as tasking, that other languages l3% dxa qt4 packagv. andl Sysrcntterfice, wihich collected system-speeltle

to the opeatng systemn. The Ada tasking model requires close cooptra. code Incluiling Pragrd Interfaee code
tion between Ada tasks. the cooperation Is so close. Ito fat, that cunrit In thast light. we viewed the operag sy,.te* process as the.
implemntationrs of Ada tunder gcneralpurros operAting systems resource reeding rotecton. The AdA technique for dealing with a
Impemnt all A tasks within one operaing system procems ai en remorce needing protection Is to ercate a inosigor task to stbitrate nI
time systms, then. provide their own task schedulers to detinne %hkch access to that rcsoutcef Out Sod pacg contains a Disivreher Uask
Ads task may run during the time-sliee that the operaing system tdat arbirte all reat j al. an crsivj tk Into riavous. 71ds
scheduler gives to the entire Ads-based operating system proces. appr~h also LUa the effect of kting the Atda schedule know that the

The Ada schedulr must maintain the state of the Ads tasks Ueg, tsk Is not ready to run. rigure I Ohowal concerually flow tlls mc!an.
AWAITINO,_RM%4DEVOUS. RUNNABLXi). and die operaing system isin looks.
rmust maintain the state of the Ada-based roces (eg:.. Centrilizing control of system calls allows die Ada scheduler to
AWAIT1G.SIGN~AI, RLJNNA8LE). Doing useful work In a prgram register them. but It does not yet prievent the entire A&a program :rMm
usually Involves making calls to the operating system. A task making a being suspende at the operating system levl when. say, a read c*ll is
system call runs the risk or puuing the entire operatng system proess in made. The way to prvent this is opeating system specific.
a non-rnnble stat, rather than simply chaging its state in tie AdAUneth tkly13oorNI,10o dtcabecom
scheduler. ror instance, a reaji call will put the UIlX pr" I Underd tqnhe ek faor~ of e frlan 110 operationscm a bulen It
AWAITINO..SIGNML state, rather than just telling the Ads scheduhler canioped e ashronou duoictsly ( ic.,an.. o frtil Vond a will e nUit

tha th tsk s I A AMNREDM OUSstae.the peraion completei). It was :,peret that to accomp~lish our gol.
Thes probems are typica or' conflits between comixting

schedulers and competing Ideas of ptoces state. IAssrwiisfruXis~qrmsmyfr i h car a aie
When confironted with these problms. designers and programmers Ul-c &to. - %it i.t. toi tulAnt Lea k bodi o. the lam euiuri chhlr cmu.

must choose an operatng system dependent solution. Operating system fitm OutrOYlt k&i toiL ra 1 int"it blOck Scw' rfafft aflw the p~rxnmt to
dependent code is both hardi to understand and difficult to maintain. The C.aSC the UWdolt'1 tchAYMo at wmaOnbw tat rat fun uim.

t LoTC ia t trjtko n a~aoa Soliwxm Cmonu %Mi Ads. Ok, 13.3. p 431.

7th Annual National Conference on Ada Technology 1989 245



________________________ Gw apprwah to this Issue was to osWc that impkmcnWio of
an Ada prognon on a particular pWatfom under 3 prticula gcrinrl.
ppose oeratig system assumed a Prkel the existence or prinel

A~k with soe epertise in that platform and operaing systm. Fr coaveni.
crice, we Weer to dhoe people as "GurW'. One traditional problm with
depeniding on Guruis. si least In out organitation. is that they tend to be
avilable (albeit heavily Woaed) at the beginning oLf a wogcam. but wre
reastSied to othe programs later in the life cycle. Since Gurus panic.
pate in the early development activity. we have &efined a specific role for
them.

It Is a great advantage (fr noo.01ta ptiormers, wiiom we call
"Gcrnik Good People," to work with consistent. operating system
IAkjwtnieat interfacts. Gentl Good Peopl can both program and main.
Wainthe0" Initfaces This makes the job of the Gurus the deSin (%%ith
the system and softwAre designers) and Implementation of the oprating

A"system dceedent pWis to provide the vrope Interface to the Gentle
Good Poq&e Gurm wil help design and implement packages like
Sodt;jO. while Getlec Good People should find them easy and imui.
tive to program and mainain.

Wearing our desgne* halt In Our Choke af Intulift interfccS, we

Fo~re 1: Dispacher Arbitrating Operating System W1 Calls Selected die Seflh~d41JO package as die best match to what we wanted
fromn our SoectJO poekage Any p rme who has used

asynchros 110 was the cormet mechanism. Asynchronous W1 would SqmemldlJO sOuld And the SocAcJO package very familar.
not suqvMn the proceis: rather when the 110 could complete, our process The operating system dependent parts of the eode should be die
would be signatled &Wd eould complete the rendeavou through most stable parts of the code, since Gentle Good People ate not permitted
DLywaseer. Details of this mtchanism under Berkeley UIX aft left to to progrm that Intcrfae. Should operating system revision, or perfor.
the deslin secion. FIgure 2 shorws tie basi Interface between manee cors~deratins require changes to that code, a Gurua should be
Dispack, and the UNIX kereL called! in to perform th" maintenance.

Under. DECs VMS operating systm, die samne choke of asyn. We feel tha In thi way the Adat paradigm Is best presetvced vhil
chronous 110 woUd be selected. Itowecr, Implementing that choke recognizing the Inevitability of op rig system dependent code

Standardi Adat principles were used In designing four Interrelated
packagcs. For convenience, an overview will be provided 6Nrs. Second,

60-dthe System Independent portions of the design wll be presented. Finally,
the system dependent portions of ite desi will be discussed.

4.1. Overall Delsig

of#~The Soerrj package Interface was designed to duplicae the
SequranWJ specificattion with all of the functions and procedures
either implemnnW or stubbed out for future us. This allows users of
SockeIJO to design their applicattions to use either package. Software
created to this desi can use either networck interfaces (sockets) or
Sequential Ales for communications between processes. Tis In turn
allows the software to be designed and coded before the design decisions
of hardware allocation or application location. supporting the "softwatre
im"t advantages of software engineering.

The principles used In package design were that as much as possi.
Figure 2. Dispatcher Interface to the UNIX Kernel ble. package specifications %we designed to be system indeendent. This

required t design to be informlly tested to several avaiable systems.
would differ considerably. VMS uses a mechanism called Asynchronous Second. the bodies wer classified as maintainable by Gcntle Good Peo.
System Traps (AS'!). The VMS mechanism will call a specified subrou* pie or Gurus. We tried to avoid bodies that were classified as needling
tine %hen an operation using ASTs hL,. completed. Under Ads, the one type of maintaner except for a procedure or two. The; package
nmechanism provides a task entry when the operatioci has completed. bodies that were classified as maintainable by Gentle Good People tendled
Thus, the monitor task would be implemented significantly diffetrntly to be mostly system indiependent.
under VMS. The resulting SockeijO utility consists of four major packages.

The point Is that while the internals or Dispatcher would change Trhe generic package SocketJO (see SequenralJO's specification in the
from operating system to operating system, the programcr.level syntac. ANS1ILSTDs'-1815A Section 14.2.3 for details of the genetic paramne.
tic a, I semantic construct of the read. write. and other calls would be ter and the allowed functions anid procedures), the two packages Descrip.
consistent. Tha Is. while the operating system dependent portions or the tor and Socket which sre object abstractions used by SockejO and the
code would in fact change, the programrmers would not have to relearn a SysremJmterface package which contains the system dependent interfaces
new interface for each new operating system. to the UNIX operating systemn. A high-level diagramn of the package

This leads us into another area of our approach: maintainability, interfaces: is provided In Figure 3.
Operating System dependent Code is 2n anathema to Ada thought. How
could we properly encapsulate and justify its use in projcct-oricnted Ada
development environments?

246 7th Ann ual National Conference on Ada Technology 1989



. The SOC141jO Pack3e is &Ie only pacage directly ncecsiable by 411 ntScc_0PcaeDsg
the clicnts of the utility. Btoth t specification an body of Soda t10 * b okt.Orca~Dsgamclassified AS system Indepenrdent U4d mAintainable by Gentle Goed The package SoctetjO was dsined to convert the user interface

PvT of SequenrIljto to the monitor function of Socket. 11-e SockcrJO
- ~~package prvides the 11LS,.TVVE. FILCODE. and nocessay opera.

__ tions to Allow the using package to receive and transmit dat to and from
- ,,~ -- ~ other Processes. The lockage has the only knowledge or the users' c

- mcsen type fronm the generic specification. Therefore, It prov ie heni.~a ~atial Conversion from the users' objects to the buffers the system needs to
- reod and write. It establishecs te length and t)Te of cdensert r~pc for any

RMnccssary conversions. The speccification for SocketjO Is found in List.

Ing I. _ _ _ _ _ _ _ _ _

Ukhm cIrw V~.t(III lL.Yl4r

1;"' OII RA.7 I Ut Wa 111a Btr t1
rigur 3:AMoi Diara ofM! Pckagea Design

The ~ ~ ~ ~ ~ ~ ~ ~ ~ fi DMODSco 0ackag isa1btato o h betcas~'t in. SIIL'T0r)nmnL_

syteth od I yse dpndt.Tefniosreacsr n MODE:11 I. l1tjMOD'OE) 1

Th escpora raCkag is an absttion for the object class ke. ro1w EDH (ILE In RLE YI'E.
Thi" class h of objectsrpeets he acpt byeatn Isternokeal~n tieo tM i inSRW
Teallo 14 openctions to b proerslorm ed on hsck s fobets. The Sod CLS wium Ist "i IIt TYP4F
spe4 cJipo ification Is system nde pendent;th botsdy c orna .h I"W 1 , TE x inw uyp imsCOE
dsste. task itd is hiysystem depwen det We f untosd he cser andtek I~Mf~~ts c er di rntz e jinousSAMEIj.Xrt
feature l"n o f d c m to r 0o the cod for the Da i sat e by e te od r o h M ODS~o z 6iep u rcnin i O DE SX . Y

knole1ebl Softiwakre Inginrtrantinfo bit nobjnectss aoGuru. MODIJRut)I CIC~O ,in tLMDYPETh ss btrereset pakae acnculat ther system callts and =ICUEROI &Atee ILMTinr oDEtEXIR

Alwsoprtofs tRGo b~I~A e erions Both spceftion nd odketocdj-
seiatie e s system ependent. We cssie thisC packag as~ reqnuiring a

Thebod Sodtain pakg rvdsthe bridge bewe the completlystem indek.net esign uysthe deptent%cUed ap parat e sse independetod -UCIjO and gO~the ver systE dpenenindureOfdual o (ile% diesco, bffers mtors w-aere codyentdeito She ~ rcc pac-kage. The 1 MSs pac1k isthUemoitortspacage andy te peainde o the oet tod uncis 2 prcdrsvDsaer in iTtUs-M boy Te OPEN.i CLOsE IoF"~REA and WRE.This approach alowfor eaier maintainailit byt nteGentale GooUM inspoie by SocJOK ic ar cose to toe ofthe ndingpe~rating
Ie Sd Gur s anda cne tranitio fromphslte syse ohs yt systemllsan rathe-rRha deige tiom mimistn specificati)Mo tye lk

Thdue foling ar ts of S,1m c, packagewr e clasine s ist m ostley odeJ. h spn c ifcto fteSdtPcaei on nLsig2
ofPANATRAEden:teseiletoso ecrior ohei Secfiato andt;h. body T-11';.YEinwDscgsn1LESUr&

of Sdero alson the sh oc akgpecification o h akDsace ssse

independendihteeetdin ofe one yte depenente takenry on. b sytmi& dc SlJ anthvryytmdpnet

P~~~~ck~~~~~gCS~~~t Annua Nh prtoso hs betst ucin n rd Dsatrina Ctonferen1c ON AdaSE TEhnolg 1989E 247



~li ~''~"Ing Our Answer %-As to build a single parsible characit string ronavid.
,a oo.m n all t necessary Information. The string has three Parts. each Part
r~at 5'iti It separated by a colon. F"o each pin. the dccnlnatlon of %hether the

twiki ii.' (eMnt In _DS~l purt iws riprescnted by name or number was done by examining the first
ftb~ffi ~character in that war or the string. If the chiracter was a digit. the field

ifmciim CLOSn ('edit tio triat" lITJ"DrsauI'r was parsed wt a number, otherwise as a name. In addition. If no string
ribim fl!.)sult.was pros. fo,(c the Protocol. a dcfaiult Protocol was selected by the

c,.Iwv vAitmt (siti %~ in m nu'il o Iravro. UNIX system. Some valid addresses follow in Table 1.
Ia iin sstr ss_________________

t~mtth5is in t1TZGItV Address suing Meaning
rnow M~AO (k44 i h" Dorg fLuVsoI'rC~IP0t. atlas:2000: Host atlas with socket 2000 and de.

t'df lIn SysumADDRlS. fault Protocol.
1wfL\1t0I3QY 61.16.1.23:telnictatp Hlost with IP address 6..6..23 with

CT XIS Telnet protocol under TCP
pluto:3100:udp Host pluto with socket 3100 and UVP

Listing 2. *iM Socket Package Specification I Protocol-----_

412.2.1. The Dilspatcher Task Table 1: Sample Addresses for the SocktlO Facility
The monitor task Dispatcher Provides the process protection 4-.2. Socket Communications Techniques Under Blerkeley UNIX

required to Prevent dhe Ada environnent's UNIX Process from locking After setting up an initial connection for a socket, stendard opmrt-
up. "bis task uses both the Socke and Descriptor objects to ensur that Ing system read and write calls will work over the socket very similarly
there Is data available at the socket before It allows the socket read call to a2 rile. The main differce is that while ile access is fast, network
to be Issued. It remembers how many rceut for reads/writes have access can be slow. Therefore any read call may retumn fecte characters
been processed And which sockets have outstanding read rquests and than anticipated, because of a time constraint on the sending sie.
which do not.

The Dispatcher task Is buried in the body of Socket to completely 433. Compler Issues
hide its existence from the casual programnmer. The details or The Verdix Ada conmpiler does time-sliced tasking. To do this
Dispatcher are deferred until the system dependent design sectilocs. under Berkeley UNIX, it must use operating system signals to know tha a

4.3. Sem,.. Depndnt cs tinier has en-pired. Mfic UNIX system delivers a softwar interrupt called~ Deendet ~SIGALRNI to signal timier expiration. As stated In the problemt section.
System dependent design is divided Into Issues. The issues were, this signal will interrpt any pending system operations that can be lr-

the namning scemne for network addrtesses, handling of -soeketi." which rupted (such as a read call). What Is needed Is a preemption control
are tlia underlying Berkeley networking mechanism, compiler tlependen. mchanismi to prevent the Venlix Ada rnntime kemnel from Interrupting a
dies, and the resulting design of the system dependent px system call. The Ada Real Time Environment Working Group

-The following parts of packages were classified as system depen. (ARTE-WG) had already understood this necessity and has Issued a sug-
dent: the bodies of Socket., Descriptor, and Dispatcher. The specification gested implementation of a preemnpton control package for real time sys-
of Dispatcher has one system dependenrt feature. namely tire system- tems. We used this same interface under a general purpose operating

inerp aketyname. system with the modified semantic notion that Preventing preemption
interup tas ' ~means within this operating system process. The preemption control con-

43.1. Netriork Addressing under Blerkeley cept Is similar to the monitor In that both mechanisms aid In Protecting

Berkeley uses sockets to do networking. A socket Is an analogy teoeaigsse rcs eore

taken from the telephone compay's old-style operator Interface. Clients 43.4. The Socket P'ackage Blody Design
".plug In" their open request Into an awaiting server "receptacle." The TepcaeSce a eindt c stentrlbig
networking protocols built into the UNIX kemnel are Intmretwork b Ti~e he packaem Soent Sdeigeto act the nahy ytra bden
Protocolfrransmission Control Protocol (IPdTCP), developed under di deen t system ndepnde n Socke Tis adow the iglysytom taskn
Defense Advanced Research Pro cts Agency (DARPA). IP provides net- Dispatcher to be hidden from the user and protects the system dependen.
work and transpoi, layers, and !CP and the Universal Datagramn Protocol cies from the Gentle Good People. The Dispateher task divides the
(UDP) provide sess'n, layers (TCP Is a strem-based protocol. UDP Is Soktet.ead request into two parts Trhe first part registers: the caller's
datagrarn based). A network address consists of three parts over the ip intent io read, through the START_.RIIAD entry, the second part rendez-
networkcs. The first part Is the IP address of the host. Lookup routines vous with Dispatcher dirough the STOPREAD entry, remaining blocked
are provided to deteritrine an IP address based on host name. An IP until the read has completed (or raised an exception).
address has the form of four bytes. As commonly represented, the bytes hDI Ie i salUIX10iglssatsknry
ar written as decimal Integers separated by periods. The second part of Th .ipthrts eevsalUI / inl sats:ety
an address is the protocol (normally the session layer protocol). The po thanks to the compiler implementton (most compilers examined support
tocol (eg.. TCP. UDP) is represenited as a small tnteger. Again, library this .feature). The specification of the Dispatcher task is described in
routines are provided to translate a protocol name Into this integer. The Listing 3.
third parn of an address is the socket number to perform the connection % ,ih Systaii;
on. Sockets are also represented by small Integers. Since sockets % hDstlw
represent services, 1024 socket numbers are reserved for standard service task Disiudgr it
requests, and can only be allocated by privileged processes (i.e., enuy SustRisd (file in IDscnpoe.IUDIESCR~IJTOR
superuser processes under UNIX). The system library provides service iiutop u Siotsjc*4 ~t(WIF1ReSOU R'2)_
name lookup routines that convert t name into the socket number. enuy StGtO.

An address comprises three parts; each of the three parts can be an for SS1010 ue As Sysum.ADDRUSSREF (23).
integer or a string. How can we properly interface to such a scheme in en isix
Ada?

Listing 3: Task Dispatcher Specification

248 7th Annual National Conference on Ada Technology 1989



'The UNIX select call Is used to dctrmine %hich files now have I/0 S. Results
available. When Dispatcher has rceived cnough Input to fulfill a One measure of resUu Is t case of wing t Scetjo utility.
Soc .R cad request by a caller, the rcndzv~u5 Is occeplod, and the A frrnnnt of user.lcvcl cod& it Provided In Listing .
calksr can proced. Note that the eaflct's semtilcs are exactly as If I/O

3s ynchronous. luj
To perform Its function the Dispitchcr relies on an array of hSX l.

dcsrlptoirs, ithich it accesses through the Desrcriptor paekige. In te IVAU SoceJO..IJr U4
Descriptor pakcke descriptor records have the following forinat: stiJ avtr ttiP v'74IMSI

type tie criplorrcerd Is record ")T MY.MV0t~ It fA. $MING~ (I - 37k
ilI : file descriptor P'4 2a' Ntlo toI. -seAjo al.IY.thIN

nalme: filc,.stins; 1V iM.l0.11tlSrYtl
mode: rile-.mode; NMII 1 smtytH.0!1o l. 1 .M

form: fikesulnir 110 1 of SL' -i
buff: Systecn.ADDRESS :0 nultbuff: MA. 1 WYSMSNO:
ten : INTEGER :a0; - _"Is 4tld~Aj11

fill: lN=lGlR :a. rw
end record;

Nty-laO1'c (FILE. M ~ODS. NAM.tI M1ta%
The filedescriptor componcritfd Is the Index givcn to a fik ccsoeeby -- 0"
the system when opened. The component nmeri Is the operating system cQ.Ake(M Kffk
description of the rile; the narning c nvcnifn is tdescribed under system - - 06 cm.
dependent design. The miode component has the value IN-171U.E mraco 0111-1
OLJTILfl, IN,.OWM- .E. or closed (the. closed mode Is available only cck
(or Internal use). The form componet Is not In uscd at this time, but is vv l.0TW.X0
preserved (or compatibility Wilit Sequernil O. The be componient is Tcil0N~ CSA .XO uJ1yStdI

used %hen reading fromi Or writinig to a SOekeCL It holds the system
address of the user-supplied buffer. The integer ten represents the length - uscamtuI
in bytes of the uscr-supplied I' jder. The len componenlt is desennined VJSdUOUI
from Elcmer.Typ'te for %%wae Ekemenl-ype te user has Instan-
tited the package with. The fill component naintains the current Listing 4: User.Level Code with the Socl-t10 Utility
number of bytes read or written. When All reaches ten, the read or write
Is complete, and we can rendezvous with t calig Procedure. Another measure of results Is development time- The. Sock 'JO

The Dispatcher task uses the entries STARTtICAD and concept %w developed in about two erohusby one language Guru
STOP,.RIAD to synchronize the interface with the users. The first entry, and one Ada Gums. The initial prototype took four person-wee).s. two by
STARTRCAD. notifies the Dispatcher that a read has been reqluested on a Gunti'and two by Gentle Good People. After Initial protryping, the
a socket. This entry contains a parameter to indicate which socket ((J) is final Interface and design requiredl one more personwek, mnostly used by
to be red. the Gunu. The final bodies wete filed In in four more person-wccks.

The STOP-.REiAD entry is actually a family of entries indeled by almost all of that time allocated to Gentle Good Pcople. In summinary. th
the filej.escriptor. ibis convention is used to respond to one requests utility was developed In ten pertsonweekis. with thre pcrnwekS21Il*
compkdton without regard to other outstanding requests that may or may cited to Gunts and sewen iperon-%teks allocated to Gent Good People.
not by In the process of being read. This allows dispatcher to accept ie Another measure of results is efficiency of the finsl Mo- An Adai
rendezvous with a read request as soon as it is completed. procedure was built that started five tasks. each of which made a connec-

The third entry. SIGIO. is used by the system to notify m' : tion to a server. The UNIX shel f/binjshJ time, command wAa used to
Dispatcher that 110 Is available, determine user and system time to measure resource utilization by the

Certin etals tts beattnde tomik ths shem beviale. Ads program. Two C prosrams were written for comparison and timed
Certin etals mst e atened t mie tis chem beviale, the same way. The first C program used the UNIX signal utility (much

The UMX select call must be used two times other than when the I/0 like t Ada program), and the second used blockirig I/O calls to perfornm
signal is raised. Fiii,, when an 110 signal has just been handled, files the same job as the Ada program. The results are summarized in Table
must be citeeed, is rapid receipt of several 110 signals on several files 2.Ithsabeuerim ishemonofiesptrninInhesr
ma1y cause Some signaLs to be dropped. Secon~d. whenever we have just 2Itis spacle, system time is the amount of tme spent running in hes
registered intent to read, -Ae check %hether I/0 is possible since wve will operating system kernel space on the user's behalf. I owever
never respond to an I/0 signal on a file without intent registered, h riut esrdaesaleog.addevrac ag

While using the I/0 signal increawe the number of system calls enough to consider the sample results equivalent.
required, it has the desired effect or eliminating polling and allowing Aqaiaiejdeetb bmt ftetssntdta i

remanin Ad taks o rn umolste whle /0 s nt pssile.programs seemed to provide results iimeditely on delivery. The
Currently, the write. and open user.leve calls are not implemented Ada program seemed to lag; message delivery by a fraction of a

asynchronously. in the cas or write, asynehronismn Is probably not second.
required. In the case of open, however, a process may pause for up to Terslsaefrapriua eso fapriua oplr n
30 seconds while awaiting connection dof not reflete thet ciailte ofavAda.
able). While we have not implemented it yet, an asynchronous connectdontrfethecpblisofA .
is possible in UNIX, using the select call.

7th Annual National Conference on Ada Technology 1989 249



Test Averge U Av g e khxl .SchWU

Time ._"__m_ TEDmeATION
Ads SAmc 0.00 030 BS. Mathnries. Cue Westem Rcsc:jv Univeanity,
Ada RCemoe 0.05 030 CeveLand. Ohio 1976
C Signal Same 0.00 0.40
C SIgnal Remote 0.00 0.45 IN ,M.atm.tc$. Michigan State University.

C fowing Same 0.00 030 East L,,Msing, chi n 1981

L Clokitng Rcmc 0.00 0.40 ,PCRIE- r-

Table 2: Resuts of Tesu of Ada versus C code for lNetwok Access hAel Schwart Is a Staff Engine Currently involved In Ada rsczrch.

Ills cuncnt direction Is using Ada for designing and Impkmenting opertIng
system dependent utilities ,Mr. Schwaru t.W bcc 3vpponing research And

S. Current and Future Dirtctioks develolmea aedvhcs foe ovcr 7 years z ttvu noding Ares or
Since the Initial utility has been completed, we re looking (Or statusreadincss reporting systems. Problems Involving muhltwcl eon.

ways to lmrove the S.WclJlO utility to be usable by a Larger number of purCr security And formal proofs of program Correctness. softw'A tools, And
Mvanms. The extensions being examIned Are datab s c ologics,
* Testing And Impknxndng serw.fpable code. T14 correct Inter. Mr Sch-A has ha i wi nsiv e iccn with theC, A .And FRTRAN

1ae for a se" task under Deicky Is a good match for the t mneu.aAnedesomeeperienG cnGYPSY ndLISP.
Cratm procdur or s$qwittiJO (a d thus smgiJO )

" Implementing the same utility undet DEC's VMS operating s)stcm
and Ada compik. TCPIjP (Wol o og) nd DECNET Intefacs Radall Win. Iby

will be considered. EDUCATION-

* Porting she same utliy to the Alsys Ada compiler.

* Understanding the Issues Involvcd with lineoiented Intefkaces fo 11S, thcnIhICs, Nonh Geo gia Colkge,
clienu d screr under Ada A Tel t client is Ivrctved as a Dahkwp, Georgi 1975
good test example. BS. CMS. Mcropolilizn State College.

7. Summary Dcnva.eCooado 1981

We found the need to follow several guidelines In writing Ada l1XPERIEN C,,
cede for operating systen dependet featres:ae fo e " Iormming pastem rad n earesi a o Randy !lay Is a Softwr Engineer with Martin Mbakta Corporation, I&CS

Base; te programming Paradigm on existing jwkss or standards. Company, doing Ada produtivity reseatv.h, lie has extensive experlence
Mke sume that Gentle Good People find the package Intefaces with Ads. Model 204. And Cobol languages and has worked with FOR.
Intuitive, threfor esy to program And maintain. TRAN. INOBASIC. And Tible Softwar.

" Consdc operating system dependent portions of a design as cridt. *The opinions capcrssed In this paper ar those of the authors, and not nec.
cat lower.levl computer system compone s (CLLCSC). And begin essarily the opnons of Martin , iua Corporation.
work on them caly.

• Make the but use or Gums that am avi tle mostly at the front
end of a project, by Identifying the operating system dependnt
porions of the design and encapsulating their details in pack3gs.

I. tibliography

[1 Softare Components with Ada, Grady Booch,
Benjamin/Cumnlsings, 1987

(2) Software Engineering wid Ada, Second Edition, tfr. N ooch,
Benjamin/Cummings. 1987

(33 Ada Programming Language. Military Standard ANSI/.IL-STD.
1815A. 22 January 1983.

250 7th Annual National Conference on Ada Technology 1989



IMPLEMENTATION OF A REAL-TIME ELEVATOR CONTROL
SIMULATION SYSTEM USING THlE ADA LANGUAGE

David Blagley Kent Land I arold Tramburro Matthew Vega
U. S. Army Communications Electronics Command

Center for Software Entinecring
Fort Monmouth, New .krsey

6&qTRA2.0 DlEVELAPS'M17P ACKGROIND

The four members of the development team
lThis paper describes an expcrinicnt in thc dc. were intcrns In the Army Mtateriel Comimand's, Soft.

vcnnt of software for a ireal-timec systemn and ware Eingineecring program. The program consists or
graphics simiulator, writteni in Ada. Specification of the one )ear of training a; the School of ringinecritig and
problem was accomplished using the I Iatlcy/Pirbhial Logistics, Tcxadtan3,' TX, and at second year or training
011P) method. (1 The. programn was developed for use at the Center for Software Enginecring, rFort Mon.
on Sun Workstatlonst, and the graphics simulator mo*uth, NJ. This experimnrt was performed during the
takecs advantage of SunCoreTM package of 1/0 primi. second year of the Software Engineering program.

tive an incrxtvc rapicsr) Te eperientwa% Members of the group had previously niot been It,

conducted at the Center for Software Engineering, Fort vlc ntedvlpeto eltttAasfwr
Monmouth, NJ. to be used as a future test bed for soft- system, nor had they worked together as a group.
wae developmcnt mecthodologies. 3.0 SYSTEM OVERVIEW

1.0 ITRODI(MOI levators contained In the simulation have
1.0 NTRl~h~IONmany real world features. sonmc of these include suml.

'Th obectvesof hisexprimnt ereto ain mons buttons (up and down) onnfoors, destination but-
sfwre oetiesofthi experiment u re to Ilan tons in clev.2tors, direction and location lights on elcva.

ley/Plirbhai (HI1P) methodology to specify a real-timec tors, and elevator approach lights above elevators.
software systetm, develop the systcm, and build a Figure 1 illustrates the view seen during the elevator
graphics simulator to represent an operational view of sim~ulation. Not shown in this figure, but appearing dy.
the system. Funhennmore, a system had to be chosen namically during the simulation, are doors opening and
that could be implemnitd in approximately six months closing, buttons/switches shading and clearing, and
time, demonstrate real-time behavior, incorporate a movement or people (passengers) in and out of eleva.

non-utoate II/ aproah, ad gaphcall rcre- tors. During the simulation, people will enter elevators

sent a system familiar to most people. With the frnthletsdadxieevosfomh ig.
above constraints, a mlulti-elevator controller and Adtoa etrswr de osmlt
scheduling was serlemreeted at the 1986imnt AlCM-t real elevator. Such features included a run/stop emer-
sposedn warshpone sotre dlpente m196ANIb- gency switch, an alann button, an open/close door but.
soorged Follsop or warc pelome t by etraw ton, and a power on/off switch (for maintenance purpos-odolgic. Fllo-upwor wa pefored y Caw- es). Ile run/stop emergency switch would stop theford (3) ' using the PAMECLA (Process Abstraction elevator in between floors a,,d sound n alarm, if
Meitod for Embedded Large Applications) TWI math. switched to the stop position while traveling. Other.
odology aW automated tool. wise, if it is switched to the stop position, while

____________________________stopped at a floor, it would open the doors, keep them
SunWorkstation is a registered trademark of Sun Mi.- open, and sound an alarm. The open button stops the
crosysterns, Inc. elevator door from closing. It, however, has no effect
SunCore is a trademark of Sun Microsystems, Inc.) when the elevator is in motion, or if the door is already
PAMELA is a trademark of George W. Cherry opened. The close door button closes elevator doors

7th Annual National Conference on Ada Technology 1989 251



A4- 4 7 1 A a ,' , I (CSPECS), and Timing Specifications. CVD's map

V.L.L.L.LL.LtI IV _____IVAcontrol flow, just as DFD's tnap data flow. In addition,

~ ~ COP's include a symbol (a slanted line) indicating an
interface with a CSPEC CSPECS specify the finite
state machine behavior of the systnim. This behavior

____________can be represented as a state diagram, process activa.
IIM ti I I on table, or matrix. CSPIECS mnodel real-time sy.

" tcrn activity, according to the II/P specification mth.
m od. Timing Specifications ar the allowable response

time for the system to respond to a system input. Tim.
~ing Specifications were not included in this simulation,except that the system had to respond to the user

I ]within a reasonable time limit. The I/P method con.
sists of two models, a Requirements Model (RM), cur,

M T I rcnly being discussed, and an Architecture Model

. .. (A), which states the system's design structure.1 =. 3 A 1 4 7 1 = 3 4 3 A 7 1 2 3 4 s 4 1 'The development group di not construct an ANI, It
00. 0 0 00 0000000 00 00 e ." NA o" & was felt that enough understanding of the system was

000 0 000 0 000 O [R obtained by the RM, in this case. For a larger, or
.- -... ox.., .. .-. more complex system, a AM may have been necessary.

Figure 1. 5.0 SYSTBI! DF.SIGN

faster than normal, by cancelling low priority levels as- Using the Il/P method, the elevator design was
soclated with the close door function. Certain assump. broken Into three sections: Event Generator, for the ar.
tions were made on the power on/off switch, since this rival of people, Elevator Controller, to schedule elcva.
switch Is key operated on real elevators, and no real tor operations, and Graphics Simulator, to simulate the
experimcntation could be performed. The on/off switch functions of the elevator. igures 2 and 3 are illustra.
was made to override all other buttons and switches tions of the Control Context Diagram (CCD) and level
for the clcvator, 0 DFD/CFD, respectively, for the elevator simulation

system. DFD's and CED's am usually separatcd, but
The elevator controller was designed to reflect

a user's view of elcvator systems. Components that
are not seen by elevator passengers (ie., floor sensors
indicating an approaching elevator) were not incorpo- K YI
rated into the elevator controller program. The graph. KEYBOARD
ics simulator is a stand-alone program, originally writ. -
ten in the C language, then convered to Ada (with the Us"/ k
eccpion of the SunCon: dependent portions of C Da tntrni
code). The elevator controller program is interfaced to
the graphics simulator program, to form the complete CONTROL
elevator simulation system. ELEVATOR

4.0 IIATIEYIPIRBIIAT Mh OD710
Display Random

The iI/P method is an extension of DeMarco's Gr s Speaker Mou, Ge..,ator
Structured Analysis (SA). (s ) The method xtends
SA to consider control flow, state machine behavior,
and timing considerations in the requirements specifi. RANDOM
cation phase of development. Along with Data Flow MONITOR GENERATOR
Diagrams (DID's), Mini-Specs(called PSPECS in
Hi/P notation), and Data Dictionary (DD), comes Con-
trol Flow Diagrams (CD's), Control Specifications Figure 2.

252 7th Annual National Conference on Ada Technology 1989



an up button, then pressing a destination floor below
spCAICr 3 the originating floor. Finally, there is no random in.

puts to nm/stop, open/close, and alarn buttons, or to
Gr , GRA ICS thc on/off switches.
grrilcs DISPL.AY

5,1.1 SERIAl. MOUSF INl'trr

Mouse input allows considerable freedom in

choosing a scenario for elevator service requests. Thc
mouse can be positioncd and clicked to select any but.

tton, or switch, on any elevator. Once a button is se-
I Gries IInii:.c Ring lcctcd by the mouse, it cannot be undone. Ilowever,

UN .RA'r Uswitches can be toggled on and off at will. Thus, the
controller should be flexible enough to avoid being

DATA tricked by clever operators of the simulator. One po.
tcnrtial problem Is that mcrc people can wind up Iaving

2u :an elevator than had originally entered it. This may oc.
-- " ..vAr .onvtemp cur by clicking the mousc on more than one destination

SV .floor when elevator doors are closed. Thus, at every
CtickC" U destination floor, at least one person would be seen

Figure 3. DAu leaving the elevator.

w2 FaLEVATOR CONTROLLER

werejoined he requiring less space. The elevator controller ts designed to direct the
operation of elevators. 'Thm controller was first dc.

In the CCD (Figure 2), the system is indicated signed where each of the three clevators pcrfonrwd its
by a circle, and the external entities the system coin. entire task (arrival of passenger(s), movement of ec.
municates with are indicated by rectangles. Data flow vator, and depaturc of passenger(s)), one at a ltme, in
is represented by solid lines, and control flow by a round robin manner. This initial approach was used
dashed lines. In this case, the mouse was considered for testing purposes, and was not intended to reflect a
pan of the Random Generator, and sends control sig. real world situation. Initially, the graphics, and the
nals to the elevator controller. The level 0 DFD/CFD controller ane random generator wrc developd indc.
(Figur 3), displays tile three ,nan functions of thc cic- pendently, In addition, the functionality or the control.
vator system. The slanted bar in the figure is the in. Icr and random gencrater were rested separately.
terface to a CSPEC, which will be described later.

lic next major step in the development was to
,1 EVENT GENERATOR incorporate a tasking scheme. The program was de.

signed to use n+l tasks, where n is the number of dc.
The Event Generator accounts for the arrival of vators. 'Tasks wer created dynamically for each ecl.

people, and their service requests. This can happen by vator scheduler, Pnd the additional task handles
a random arrival generator, or by serial mouse input, events, and the initiation of the other tasks. Thc initial
The random arrival generator contains four sub.func. design was revised to correct a significant problem.
tions: an arrival generator, a staning floor generator, a The problem concerned a race conditlon caused by nml.
destination floor generator, and a processing function. tiple tasks competing for the same resource, tile
Throughout the execution of dhc simulation, tile pro. graphics". SunCore graphics restricts applications to
gram checks to see if a summons was generated. one open graphic segment at a time. A monitor routine
When a summons is generated, a staning floor and a was developed to prevent the application from opening
destination floor is then generated. If the destination more thin one segment at any given time. This protec.
floor is greater than the starting floor, an tip c-ll is pro- tion scheme was used to monitor the draw routines, fill
duced. If the opposite is true, a down call is produced. routines, text routines, and for the initialize routine.
If both staning and destination floors arr equal, then lihe state diagram representing the control specifica.
there is no arrival. The random generator is designed tion for initialize and update graphics functions (the
to avoid inconsistencies, such as a passenger pressing thick black slanted line in Figure 3) is illustrated in fig.

7th Annual National Conference on Ada Technology 1989 253



urc 4. While the simulation is running, the system can
asumc one of thinrtcn possible states, before looping Ahis t grps simulator evolvd, two gdneri.
back to the smulation running state, and continue to lions of poteTypes resulcd bcfore the top down degn
loop In this manner throughout the length of the simula, w2s completed. Thc first protot was a stic de.
tion. A cyclic executive modcl was used, and tasking sign, using three elcvators and seven floors, while the

(atually multiprogramming) required setting up tme second version was dynamic, allowing the user to sc.

slicing. This was done by customizing the package cct one or more levators, and wo or mor floors.
Both versions or the prototype were written In C. With
lessons learned from the previous experience, a final
prototype was developed that was more understand.
able, portable, naintainablc, and reusablc. This later
version was developed and implementcd prinutily in

n1 Ada. Portability was improvcd by limiting the number
or graphics routines. The future use or a different
graphics package requires modifications to only a few
routines. To improve maintainability, functions to
change size and shapes of graphical entities was de.
scribed mathematically. The graphics routines were
designed and developed to be rcus2blc for other sys.
tems requiring graphical situlation.

One of the problems encountered with the Sun.
Core graphics package was that it contained no primi-
tives to draw circles. One can easily write routines to
draw circles, but filling a circle (to light and unlight a
button) at a reasonable speed is a bit more complex.
The best solution to the circle phenomenon was to use
a dodecagon instead of a circle. Dodecagons can be

I_ easily drawn and filled on the user's screen, and for the
purpose of a small button, it was a close approximation

Figure 4. to a circle.

Draw, Fill, Text, and Initialize procedures arc

Config, found in the VADS UNIX I Implementation listed below, along with parameter list variables.
Rcference Manual. 6) The addition of adding tasking to These routines are rPot portable, because they depend
the controller allowed multiple doors to graphically on the graphics package being used (ie., SunCorc).
open and/or close simultaneously. Since a monochrome screen was used during program

development, color options were not implemented.
5.3 GRAPHICS SIMULATOR PROCRDURR PARAMETER LIST

The Il/P method was not originally applied in Draw ............................. line thickness, location, size
the specification of the graphics simulator. An initial Fill ................................. shade, location, size

effort was established to test the capabilities of the Text ............................... integer/string. location, size
SunCore graphics package. Mcm!%ers of the develop. Initialize ........................ none
ment team decided to spend several man hours on the
development of a prototype graphics simulator, that ran Graphics procedures used in the Graphics simulator in-
through a predetermined format, to test every function clude: Draw Triangle, Draw Rectangle, Draw Dodcca.
required by the system. "The graphics routines were gon, Fill Triangle, Fill Rectangle, Fill Dodecagon, Fill
originally written, from the bottom up, in C, as it was a People, Integer to Text, String to Text, Initialize, Clear,
language that supported a convenient interface to Sun- and Exit. Procedure Initialize sets up all parameters
Core graphics. This was necessary because Ada does needed to draw on the user's screen. Clear and Exit
not have a direct interface to SunCore graphics. functions are not used by the simulation, as the pro-

gram was designed to run continuously.

UNIX is a trademark of AT&T Bell Laboratories

254 7th Annual National Conference on Ada Technology 1989



Special considerations were Involved in making standpoint. In future experiments, the elevator design
the program as generic as possible. According to the is scheduled to undergo a major molification frot its
requirements, three elevators and seven floors were current user standpoint, to an actual clcvalQr designer
specified. 1lowcvcr, the prograin was designed to ac- standpoint (ic., to reflect real world objects). The In.
cept the number of elcvators, number of floors, and tcrfacc between the elevator controller and graphics
starting locations of elevators, through user (mouse simulator is to be changed so the controller portion of
driven) or randomly gencrated Input. The elevator the programn can be removed, and inserted into an actu-
graphical mode is designcd to display a consistent, uni. al running elevator system. Additionally, by using the
form graphical representation for any givcn number of existing graphics simulator as a test vehicle, and with
clevators and floors, continued redevelopment of the elevator controller.

various software methodologies and CASE tools arc
j0Q _CLISIONS expected to be evaluated. A version for the IBM PC

and compatibles is currently under development, to
The I l/P method proved to be a useful approach demonstrate portability of the system.

for the design group. Use of the method resulted in a
top.down, modular design, which specified rcal.time
system rquirements. The method was easy to follow, ACKNOWI.EDGMEN'
and lead from one step in the requirements spccifica.
tion process to the next, with no loss of understand.
ability. Since an automated tool to inplement this The authors wish to express their thanks to
methodology was not available, the group felt a non. Benjamin Casado, John LeBaron, Jay Sco, George
automated I UP method Is best suited to small or mcdl. Sun1rall, and Tom Wheeler. Thc above mentioned con.
um size proj-ects. This is not an indication of li/P's tributed technical advise, direction, and support
suitability to any particular size project, but rather a throughout the expcriment.
statement that large systems could produce hundreds,
or thousands of diagrams, which would nake the non.
automated 1 VP method less practical to apply. RDFRENCFS

The importance of the use of some formal dc-
sign approach is apparent. Which methodology is the I. Ilatley, D., Pirbhal, I., Sratecie For Rcal.
"best" to apply to a given software project may be im. Time System S cification, Dorset House Publishing,
posiblc to predict. What is important is that sonc for- NY, 1987.
real ircthodology 5e followed and used (modified) ac.
cording to the needs of the devclopmcnt team. 2. "SunCore Reference Manual", Sun Microsys.

tens. Inc., CA, 1986.
It is the intention of the elevator project group

to design and develop several versions of the elevator 3. Crawford, B., "Building tn Elevator Simulation
controller software, each by a different software mth. in Ada Using a Process Oriented Methodology and
odology. The controller's are to be used, in future cx- Support Tool", Joint Ada Conference Proceedings,
periments, with the existing graphics simulator. In or. 1987, p. 223.230.
der to help minimize some of the problems associated
with interfacing hardware and software, an abstract in- 4. Cherry, G., "PAMELA2: An Ada.Based, Ob.
terface should be included in future designs. jcct-Oriented, 2167A-Compliant Design Method",

Thought Tools, Inc., Reston, VA, 1988.
7.0 FURTI!ER INVFSTIGATION

5. DcMarco, T., StructUrcd Analysis and System
The elevator scheduler simulation was not de- SM1.10cation, Prentice-lal, Englewood Cliffs, NJ,

signed to reflect a real world elevator system. There 1978.
was no concept of a motor, nor were there floor sen-
sors incorporated into the design. Actual movement of 6. "VERDIX Ada Development System Operation
elevators is determined by buttons )ighting and unlight- Manual for SUN UNIX", VERDIX Corporation, 1985.
ing, and doors opening and closing. This is, after all,
what an actual elevator user would see. Thus, the ele-
vator simulation system was developed from a user

7th Annual National Conference on Ada Technology 1989 255



ABIOUT T11E AUTH1ORS

David Bagley is a Software Engineer with the I [amoid L Tantburo is a Software Engineer with
Center for Software Engineering, Advanced Software the Center for Software Engineering, Advanced Soft.
Technology, Fort Monmouth, N.J. lie received his ware Technology, Fort Monmouth, NJd. lie received
B.C. In Electrical Engineering fromn State University of his B.S. in Chemical Engineering from thc University of

New York at Stony Brook, and his M.S. in Software Pittsburgh, and his M.S. in Software Engineering from
Enginecring fromt Monmouth College, N.J. lie is cur. Monmouth College, N.J. Ile is currently working in the
rently working in the Software Engineering Technology Software Engineering Technology division, investigar.
division, investigating Software Engineering Mecthodol- Ing Software Engincering Mecthodologies and Tool As-
cgies and Tool Assessment, and Requirements Engi. sessaicnt, and Requirements E ngineering Technology.
neering Technology.

Kent Land is an Electronics Engineer with thc Matthew Vega is a Software Engineer with thc
Center for Signal Warfare. Warrington, VA. lie re. MICOM Project Office at Redstone Arsenal, Hunts.
ceived his B.S. in Mechanical Engineering from the Uni. ville, AL. lie received his Bl.S. in Electrical Engineer-
versity of Arizona and his M.S. in Software Engineer. Ing from the university of New Orleans, and his M.S.
ing from Monmouth College, N.J. Ile is currently work- in Software Engineering from Monmouth College. NJ.
ing in the Tactical Signal Intelligence Systems Dividon.

256 71h Annual National Conference on Ada Technology 1989



PROCUREMENT OF AIR TRAFFIC CONTROL SOFTWARE IN Ada

Andrew C. Chung
Federal Aviation Administration Technical Center
Atlantic City International Airport, New Jersey

Summary Towers (ATCTS) for directing takeoffs and landings,
and almost 200 Terminal Radar Approach Controls

The Federal Aviation Admtnistration (FAA) Advanced (TKACONs) for directing the movement of traffic at
Automation System (AAS) prime contractor has and in tite vicinity of airporib. The TRACON is
selected Ada As the single High Order Language for often located one floor below te ATCT.1

the AAS. During the Design Competition Phase, the
FAA requested the contractors to develop and carry The AAS will introduce new workstations for en
out their Ada risk management plans, to complete route, tower, amt terminal air traffic controllers.
their software top level designs in a compilable It will also consolidate TRACONs and ARTCCs into
Ada-based Program Design Language, to conduct new Area Control Facilities (ACFs), which will be
incremental detailed design valkthroughs, and located at the existing ARTCC locations. The AAS
to demonstrate their Ads readiness with Ada will be a distributed system; operations requiring
compiler benchmarks, Ada Programming Support centralized processing will be accomplished in
Environment (APSE) tool demonstrations, and the centralized computers, with all remaining
Software Engineering Exercises. During the functions performed within the individual sector
Acquisition Phase, the FAA implements the AAS in suites.1  A Local Communication Network (LCH)

three transition states with different Ads risk will perform all data transmission among these
control goals: State 1, complete the development of distributed processors. The overall Reliability,
essential APSE tools and automate en route Air Haincainability, and Availability (RMA) design goal
Traffic Control (ATC) operations by introducing of the operational AAS segments is to continuously
sector suites; State 2, modernize basic ATC data provide full service operation throughout their
processing equipment and automate some terminal and service life. Specifically, the full service mode
cover ATC operations; and State 3, enhance ATC of the final AAS state shall not break down for a
automation processing capabilities and automate the period of more than 2.6 minutes per year. If a
remaining terminal and tower ATC operations. The system fault ever occurs, the ATC services shall
FAA encourages use of Commercially Available still be sustained or gracefully degraded.

Software to 'inimize development and to facilitate Therefore, layers of fault tolerance mechanisms,
future technology insertion, such as hardware redundancy, on-line system

performance monitoring, automatic service mode
switching, and facility backup will be employed

introduction to maintain essential ATC functions. Rapid

isolation and replacement of faulty hardware parts
The Advanced Automation System (AAS) being and software components are also required to ensure
developed at the Federal Aviation Administration fast recovery of full ATC services.
(FAA) will modernize the United States Air Traffic
Control (ATC) system. Ada has been selected as the The AAS Design Competition Phase (OCP) contracts
single High Order Language (HOL) for the AAS. In were awarded to teams led by Hughes Aircraft
this paper we will describe why Ada was chosen and Company and International Business Machines
how Ads risks are managed. Corporation (IBM) in August 1984. The DCP contract

ended in July 1988, and the IBM team was awarded
Background the AAS Acquisition Phase CAP) contract.

The FAA en route air traffic controllers use 20 Air Selection Of Ada
Route Traffic Control Centers (ARTCCs) to control
all en route traffic in the continental United The FAA required the AAS DCP contractors to select
States. At present etch ARTCC has a pair of IBM a single AOL for developing AAS software. Both
3083 processors, one processor being in operational contractors produced a "Language Selection Analysis
mode, and the other on standby. These 3083 Report" 9 months after DCP contract award. This
processors, callerd the Host Computer, were deployed report required that the contractors first identify
from late 1986 through 1988 to replace the all the HOL candidates which would be suitable
previous en route processor, IBM 9020. During the for the AAS requirements, then detail the
rehosting, the en route National Airspace System advantages and disadvantages of each according
(NAS) software underwent minimum changes. In to specific language quality factors, and
addition to the en route facilities, the FAA also finally select one language as the 1101 for
has approximately 400 Airport Traffic Control the AAS.

7th Annual National Conference on Ada Technology 1989 257



The HOL candidates included these lan;uages: JOVIAL Performance of Ada compilers must be evaluated for
J73, FORTRO, C, rascal, and Adz. A4 se selected specific applications. Shortage of good Ada
over the otcer HOLs by both contractors. The compilers had resulted In waiver requests by
rationale for their choice included factors, such some defense system lpletentors. Four projects
as the better ccpabilicies of the. Ada language and surveyed had interim deliverables in Pascal.
the fact that Ada code is €onatidered the best One project used an Ads Program Design Language
in areas of reliability, maintainability, and (PDL) for designing the software but Implemented
extensibility. It In "C.11

Reliability. Ada-Sased PDL Should Ne Used For Software
Des i . Twenty-three of the 24 projects surveyed

The major Ada features which contribute to a had used or iere planning to uae an Ada-bsetd POL
reliable software are strong typing, exception because it promotes the use of modern software
handling, and numeric precision. Strong typing engineering principles. A project could benefit
helps "intain data integrity. Exception handling from the use of Ada PDL even it the implemintation
helps software fault detection and correction. language is not Ada. H3st projects have customized
Nueric precision ensures that a program can be Ada PDL guidelines.
expected to perform its intended function with
required precision. A Jor Ada Projects Had Ada Programming Support

Environment (APSE) Tailored For Their Specific
Maintainability And Extensibility. Aepiiations.

The AS must b a4int4ainAble not only to achieve 1. The Ads LanguAge Systea/Nvy (ALSI4) would
the high system Availability but also to reduce the provide program generation and execution support
life cycle cost. The incremental evolutionary for aission-criticl software targeted to stant..rd
development of the AAS requires software Navy embedded computers. The primary focus was
extensibility. Packagos and generics are the run-time performance.
major Ada features which contribute to its
maintainability and extensibility. 2. The Worldwide Military Command and Control

System (WWMCCS) Information System (WIS) had
Language Capability. Software Development and Maintenance Environment

(SD.E).
The AAS software will perform a wide range of
functions including run-time oystem, information 3. National Aeronautics and Space
display, computation-intensive functions, data Administration (NASA) Space Station Program (SSP)
management, command and control, fnd message had a Request for Proposal (RFP) for the Software
transmission. Ads has the potential to be able to Support Environment (SSE) in 1986.
do all of these functions.

Ada Training Was Crucial For Ada Software
Ada Risk Management In AAS DCP Development. Good Ads programmers needed at

least 6 months of training; 2 to 4 weeks of
Having reviewed the Language Selection Analysis basic training and the remaining period spent in
Reports, the FAM was concerned about the immaturity on-the-job training. Projects that had tried to
of Ada technology and requested each contractor to shortcut formal classroom training had paid for it
develop Ads risk reduction plan and to report on somewhere in the development process.
their Ads risk reduction activities monthly. In
late 198 6 , an FAA software team conducted a "Use Of Ada For AAS" Study Results.
worldwide Ada usage survey, while a co-taittee
composed of Ada and software engineering experts The "Use of Ada for AAS" Study Committee, chaired
was commissioned by the FAA to do an independent by Dr. Victor R. Basili of the University of
study on the use of Ads for the AS. Maryland, recommended use of Ads, as well as risk

reduction activities for the AS. 1  To implement
Ads Usage Survey. the comittee recommendations, the FAA requested

both DCP contractors to:
Alice Wong, wo was the FAA AAS Software Technical
Specialty Team Leader, led the Ads usage survey. 1. Complete their software top level designs for
The purpose of the survey was to gather information the Initial Sector Suite System (ISSS) and the ISSS
on Ads software development experiences and Ada System Support Computer Complex (SSCC-I) using
risk management approaches. We interviewed about an Ada-based PDL which can be compiled with a
24 Ada project personnel by telephone and also validated Ada compiler,
visited NASA Johnson Space Center at Houston, Texas
and ttie Aviation Group of Transport Canada at 2. Conduct incremental Critical Design Review
Ottawa, Canada. Our major findings were reported (CDR) software detailed design walkthroughs for the
to the AAS Program Director in January 1987, ISSS and SSCC-l, and
as follows:

3. Demonstrate their Ada readiness with Ads
Ads Compiler And Its Performance Were compiler benchmarks, Software Engineering Exercises

Essential To Project Success. A_ of November 1986, and APSE demonstrations.2

there were only 64 validated Ads compilers.

258 7th Annual National Conference on Ada Technology 1989



Ada Risk Kanagewent In AAS AP 3. Complete the 1553 Acceptance test based on
1a pre-production units of the comon console

The AAS will be Implementad in three major befare authorizing an ISSS limited production
states: 3 ,4 (1) ISSS, (2) Tower Control Computer release.
Complex (TCCC) and Terminal Advanced Automation
System (TAAS), and (3) Area Control Computer A. Complete the ISSS Operational Test and
Colex (ACCC). The AAS site transition spreads Evaluation (OT4i) based on the limited production
over a period of & years (August 1993, to 0o4el of the coswn console before authorizing the
November 1999). The transition plan and the ISSS full production release. The total number of
long test and evaluation period of about 3 years common consoles to be installed in 20 ISSS aites
for each state help reduce Ads risks. Lessons will be about 2,530.
learned in earlier states will benefit later
ones. Second State - TCCC And TAAS.

First State - ISSS. In the second state, the TRACON function of
selected Automated Radar Terminal System (ARTS)

The ISSS introduces the sector suite with display facilities will be transferred to AKTCCs to form
and input devices for en route controllers. The TASs, .while some of the corresponding ATCTs wLll
sector suite consists of one to four common receive TCCCs. The TAAS to be collocated with the
controller workstations called common consoles, ISSS will introduce sector suites to approach asn
which will be used for all en routa, terminal, and departure ATC operations. The TAA& uill receive
tower operations. The current host Computer System (light data from the HCS In the sne way as the
(HCS) uses Plan View Displays (PVDs) for radar ARTS III now dots. Central processors will be used
data display and flight strip printers. The at the TAAS to perform the basic ATC functions
common consoles which can display both radar whith include Surveillance Data Processing,
and flight plan data will replace both the PVD& Automatic Tracking, Flight Plan Processing,
and flight strip printers. The current HAS Separation Assurance, Wtather Processing, Digital
software in the tiCS will continue to perform the Iright Radar Indicator Tower Equipment (D-gRITE)
bulk of the ATC data processing, and send the Support Processing, Ancillary Processing, Interim
processed radar and flight plan data to the Altitude Processing, and Sector Suite Configuration
sector suites for display. The emphasis of and Sectorization.
this state is the sector suite Computer-Human
Interface (CHI). The TCCC will introduce TCCC Position Consoled

(TPCs) to the tower controllers. The TPC is
The SSCC-1, which will be delivered with the first comparable in nature to the common console of the
ISSS to the FM Technical Center, will perform the ISSS and TAAS. According to the commonality
functions or System Modification, System Testing requirement, both the TPC and Lhe common console
and Verification, and Field Support for the ISSS. use identical processors and memory parts. Tower
The Job Phop of the SSCC-l will contain the APSE processors will be used at the TCCC to perform the
for developing, modifying, and maintaining the AAS basic ATC functions which include Surveillance Data
Ada software. The S3CC-I also has a Facility Processing, Flight Plan Processing, Handoff of
Configuration Console (FCC), a Stand-Alone Controlled Tracks, Separation Assurance, Weather
Simulator (SAS), an ISSS System Support Facility Processing, Airport Environmental Data Processing,
(SSF), and common console simulators. For system ATC Hall, and Traffic Management.
testing, the SSCC-I can emulate any deployed ISSS
site. The TCCC has two modes of operation; i.e., normal

mode and stand-alone mode. In its normal mode, the
The Ada risk reduction tasks for the dirst state TCCC utilizes the surveillance aircraft data
are as follows: and flight plan data obtained from the parent TAAS

for display at the TPCs. In the stand-alone mode,
1. Develop a complete set of APSE tools applicable when the communications between the TCCC and its
for the AAS. The Ada compiler must be able to parent TAAS are unavailable, the TCCC will perform
compile at least 1,000 executable source code limited surveillance processing and flight plan
statements per minute. The compiler library processing.
manoger must be able to handle a large AAS-like
software system containing more than I million In this state, the SSCC-l at the FAA Technical
source lines of code. The compiler-generated Center will have been upgraded twice, becoming
machine code and the run-time system for the first the SSCC-2 by receiving a TCCC SSF, and then
common console processor must be sufficient to meet the SSCC-3 by receiving a TAAS SSF.
the sector suite workload, response time, accuracy,
and RKA requirementr,. The Ada risk reduction tasks for the second state

are as follows:
2. Stress the importance of factory testing of
Computer Software Units (CSUs), Computer Software 1. Perfect the code generation and run-time system
Components (CSCs), and partial software builds, of the Ada compiler targeted to the central
The software detailed design for ISSS and SSCC-l processor, tower processor, and TPC processor to
was completed in the DCP. meet the workload, response time, accuracy, and RA

7th Annual Natlonal Conference on Ada Technology 1989 259



requirements of the TAAS and TCCC. The front end complement of ACCC and TCCC capabilities to support
of the compiler Is the same as that targeted to the the testing of advanced ATC concepts, hardware
common console processor. Therefore, the requirod upgrades, arn now software functions.
compilation xpec4 and capacity of the coopiler will
have been achieved during the first tranaition The Ada risk reduction tasks for the third state
state. The AAS AP prime contractor has proposed to arte as follows:
use a smallter model of the central processor for
the function of Display Data Recording and Playback 1. Improve, if necessary, the Ada compiler
during the ISSS. Now the central processor will targtted to the central processor to meet the
also be used for the TAAS basic ATC functions. The workload, response time, accuracy, and RMA
experiences in usint, the central processor during requirements of the ACCC.
the first state vill help redice the risks in the
second state. 2. Stres" the importance of factory ttsting of

CSUs, CSCs, and partial softmare builds.
2. Conduct incremental CORs for ACCC and TCCC to
complete their software detailed design in Ada PDL. The ACCC viii have the capacity and functional
The ACCC Cog includes the TAAS COR as a subset. capability to support fully Integrated en route and
Because of zh similarity of soma basic ATC terminal approach and 4 hrture ATC operations
functions of TCCC and TAAS, reuse of their common including future expansions. A planned future
source code is encouraged. expan-4ion is Lhe AERA-2 which will extend the

Automation Processing of the ACCC to provide the
3. Stress the importauce of factory testing of ATC controllers with Conflict Resolutions, Metering
CSUs, CSCs and partial software builds. Actions, and Automatic Clearance Ceneration.

4. Complete the FAA Technical Center acceptance Use Of Commarcially Available Software (CAS)
test and OTIE of the TPC based on 24 units of the For Advanced Automation System (AAS)
pro-production model before authorizing the
production release of the TPC. The total number of Since the FAA prefers use of standard commercial
TPCs to be deployed at 258 field TCCCs through the products to minimize development, the AAS contains
end of the third transition state is almost 1,450. many CAS items, such as compilers, loaders, LCN

software, operating systems, screen graphic
Third State - ACCC. generator, and data bpse management system. The

use of CAS not only reduces the amount of Ada
The ACCC is evolved from the ISSS sector suites software to be developed but also facilitates new
and TAAS by adding more sector suites and ATC technology insertion. For example, use of CAS
functions. The additional sector suites provide operating system and Ada compiler allows us to
Traffic Management Positions, Oceanic Control adopt their future upgraded versions more readily.
Positions, and Flight Data Monitor Positions. The Most of the AAS CAS items are not Ads software
additioisal AIC functions are Automation Processing, because very few standare Ads CAS items are nov
Oceanic Processing, Facility Bac:up, Search available. However, when AAS software needs to be
and Rescue Data Extraction, Custom Trans-Border upgraded, we could replace some non-Ada CAS items
Detection Alert, Notict to Airmen Processing, and With equivalent Ads CAS items, if then available.
International Civil Aviation Organization (ICAO)
Message Processing. Ihe Automation Processing is Conclusion
the !irst implementation package of Automated En
Route Air Traffic Control (AFRA-I), wi ch includes The Advanced Automation System (AAS) contractor has
Flight Plan Conflict Probe, Sector Workload selected Ada as the single High Order Language
Analysis, Trial Flight Plan, Reconformance Aid, (IIOL) to develt~p the AAS software. Sound software
and Reminder Function. The Facility Backup engineering practices are emphasized to design the
capabilities allow adjacent ACFs to manage the Ada software. Ada Programming Support Environment
airspace of an ACF that has had a catastrophic (APSE) tools have been assembled to develop,
failure. Additional approach and departure ATC test, and maintain the Ada code. An AAS transition
operations will be transferred from ARTS facilities plan which requires incremental delivery of Ads
to the ACCC, and the corresponding ATCTs will be software in three states helps reduce riska. Use
equipped with TCCCs. of Commercially Available Software is encouraged to

reduce new software and to keep pace with future
With the delivery of the first ACCC to the FAA technology advances. The AAS development has
Technical Center, the SSCC-3 will be upgraded to benefited from the Ads technology accomplishments
become SSCC-4 by receiving an ACCC SSF. Also in of the past. We continue to depend on the future
this state, a Research and Development Computer Ads technology for successful AAS implementation
Complex (RDCC) will be created to contain a full and maintenance.

260 7th Annual National Conference on Ada Technology 1989



Referencesa Andrew C. Chung
FAA Technical Center, ACH-130

1. Basili, V.R., Boehm, N.11., Clapp, J.A., Atlantic City International Airport, NJ 08405

Caumaro D., Halden, M,, and Summers, J.E., "Use of
Ada for FAA's AdvAnced Automation System (MAS),"
MTK-57W77, The MITRE Corporation, McLean, Virginia,
April 1987.

2. Montgomery, D.C., "The Use of A Software
Engineering Exercise During Source Selection,"
The MITRE Corporation, FAA Technical Center,
Atlantic City International Airport, N1ev Jersey,
to be presented at the Seventh Annual National
Conference on Ada Technology, March 1989.

3. U.S. Department of Transportation, Federal Ade .Cuai optrSiniti h
Aviation Administration, "Advanced Automation Antomation DCvhn Is Coptehn i entir. in ths

System Transition Concepts and Requirements," betnmato Diyvmmberof FhAAcnia softr. H mo istn

FM-TO-AA-00, 28Augst 187.team, and is now leading the SSCC-l development
test and evaluation. Before joining the FMA in

4. U.S. Department of Transportation, 1980, he had 7 years of exMperiance in Computer
Federal Aviation Administration, "Advanced Aided Design and Manufacturing (CADA'). He has a
Automation System System Level Specification," B.S. In Physics and An M.S. in Nuclear Physics
FMA-ER-130-005H-AP, 28 August 1987. both from Taiwan, and a Ph.D. in Geophysics from

Massachucetta Institute of Technology. lie is a
memcber of ACM, SICAda, IEEE, and SigA Xi.

7th Annual National Conference on Ada Technology 1989 261



THE USE OF A SOFVARE 1XNCIEERING EXERCISE DURING SOURCE SELECTION

DAvid C. Xontgonery

The MITRE Corporation

ABSTRACT During the DCP, the FAA required that a single

high-order language (1IOL) be selected to Implement

This paper presents a concept for the use of A the overall system requirements. Hon-cost
Software Engineering Exercise (SEE) during the beneficial exceptions to this requirement were to
source selection process of a system acquisition, be granted on a case-by-case basis only when fully
The development of acquisition-specific SEE Justified by the DCP contractor and approved by tite
requirements are discussed, along with the FAA. AnticipAting that the contractor selected to
developoent of criteria to evaluate the offerors' implement the MS might choose the Ada language as
performance of a SEE. Also addressed is the their single 1101. and citing its lack of experience
recommended composition of the evaluation team and with Ada, the FM commissioned a study to address
the overall evaluation approach. the use of Ada for the MS.(3,4] As part of this

study, risk areas were identified and appropriate
Finally, this paper concludes that the use of a SEE risk reduction activities were recommended. One of
may not be appropriate for all source selections tite recommended risk reduction activities to be
but is definitely an Asset when used during large- conducted prior to the selection of the AP
scale system acquisitions. contractor was the conduct of a Software

Engineering Exercise (SEE).

Since the information developed during the conduct

1.0 INTRODUCTION of the FAA SEE was part of the source evaluation,
it is considered source selective sensitive. Also,

1.1 Raekrround the SEE as specified as part of the DCP wAS unique
to the MS And not reflective of the general

The Federal Aviation Administration (FAA) has begun development of a SEE as depicted in this paper.
an extensive plan to both modernize and enhance the Therefore, this paper will not cover tite
current Air Traffic Control (ATC) system. This implementation of the FAA-specific SEE but,
plan, titled the Nacional Airspace System (NAS) instead, will discuss SEE requirements in general
Planfl, is currently composed ot over ninety and the steps involved in the conduct of a SEE.
projects. The cornerstone of the NAS Plan is the For the development of these general requirements,
Advanced Autonmcion System (AAS). The AAS is background information was taken from the exercises
designed to 1) replace aging equipment whose that have been published.(5,6,7.8]
capacity and availability cannot meet the ATC needs
of this decade and 2) replace the first-of-its-kind 1.2 SEE Descrintion
software, which is limited in extensibility, to
meet the ATC functional and capacity needs through A SEE is a small-scale system design exercise
the end of the decade. conducted by each offerorl and evaluated by the

Government during proposal evaluation. It is
The development of the MS project is broken down intended mainly to evaluate the offeror's design
into two phases, the Design Competition Phase (DCP) methodologies as documented in both the Software
and the Acquisition Phase (AP). The AP as Development Plan (SDP) and Software Standards and
specified by the FAA is analogous to the Department Procedures Manual (SSpF)2 and demonstrated through
of Defense's Full-Scale Development Phase. Two the design of the exercise system. It also may be
contractors were selected to participate in the used to assess the offeror's software management,
DCP. The main goal of the DCP was for each software tools, software code, and software testing
contractor to develop independently a design for techniques. This evaluation process is intended to
the overall AAS that met all of the requirements allow the Government to assess the degree of risk
contained in the FAA's System Level associated with the offeror's software development
Specification.[21 Additionally, special emphasis methodology. Successful accomplishment of a SEE by
was to be placed on the development of prototype
hardware and software for the AAS man-machine L The term offeror is used to refer to all
interface (controller work station). At the respondents to the Request for Proposal.
conclusion of the DCP both contractors provided 2 When referring to both the SDP and SSPM jointly,
proposals for the actual development of the AAS they will be called the "proposed plans" throughout

project during the AP. the remainder of this paper.

262 7th Annual National Conference on Ada Technology 1989



An offeror will give some assurance, Although no TABLE I MILESTONES
guarantee, that the offeror has the ability to
complete the design phase successfully. On the Time rAi
other hand, the failure of An offeror to
successfully complcte a SEE provides some evidence Prepare RFP Develop SEE Requirements.
that the offeror would have a low probability of Conduct Dry Run.
success In completing the contracted tasks.161 In Develop Documentation.
addition, the results of a SEE, whether or not DQve*lop Specific Evaluation
successfully completed, give some visibility into Criteria.
possible problem areas in the offoror's
developmental methodologies and provide additional Release RFP Finish Developing Specific
information to be uxed during the source selection Evaluation Criteria.
process. This insight also Identifies Areas in the
offeror's software engineering design methodology Accept Proposals SEE Development by Offeror.
that must be given additional attention at the Initial Evaluation.
start of the acquisition phase. On-Site Review.

Final Evaluation.
Typically during a procurement, an offoror's
proposed plans are evaluated during proposal Award Contract
evaluations. Areas of the proposed plans that are
evaluated include the sections regarding the
requirements analysis, design methodologies, and 2.1 SEC Prosrarion
the coding techniques to be used.1S) Additionally,
the proposed staffing levels are Also reviewed. The preparation of the SEE Is concurrent with the
The evaluation of the plans is designed to give the preparation of the Request for Proposal (RFI)
Source Evaluation Board (SEB) some insight into the package. Preparation for a SEE is divided into
offeror's proposed methodologies concerning three overlapping tasks: 1) development of
software development. This paper evaluation, requirements, 2) conduct of a dry run, and 3)
however, does not provide any insight into the development of documentation.
offoror's actual implementation of the plans.
Wile they may be Judged As adequate during the During this period clear and succinct exercise
technical evaluation, the actual implementation of system requirements are d4veloped by the
the plans may be well below the required SEA contracting agency. To be meaningful the exercise
standards. As a result of improper implementation system must, as a minimum, be relevant to the
of the plans, schedule slippage and/or cost mission of the now system. It must also have the
overruns are likely to occur. To help Avoid An appropriate size and complexity to allow dise design
occurrence of this type, MITRE personnel developed to be completed within the CovernmenL.imposed time
A SEE as A non-standard method to be used during constraints. Unless the competing contractors Are
source.selection for evaluating not only an already under contract to the Covernmcnt (as in the
offeror's SDP but also the offaror's expertise in case of the MS), a SEE requirement cannot be part
the proposed software development approach.15,6,71 of the actual system requirements. Therefore. the

SEE requirements are written in such a way as to
A SEE provides insight into the offeror's software reflect the critical functional requirements of the
development approach by testcng the offeror's proposed system (i.e., if. as in the case of the
proposed methodology.[5) This is demonstrated US. the proposed system is to be an 1/O intensive
through the offeror's design and, when required, system, then the requirements would be designed to
implementation of A small exercise system. This stress I/0 operations that are comparable with the
exercise system provides the opportunity to proposed system).
evaluate the offeror's ability to use modern
software engineering principles, implement the To verify that the exercise system requirements are
proposed plans, and organize a team for A SEE that indeed reflective of the oVerall system
is knowledgeable in both the proposed development requirements, a dry run should be conducted by
methodology and the selected implementation contracting agency personnel who will be involved
langunge. Unless the implementation language is with the evaluations. During this dry run the
specified in the contract, a SEE is designed as an exercise system requirements can be modified to
exercise independent of language and development ensure that the exercise requirements that are
methodology. It is formulated so that each offeror presented to the offerors are both distinct and
can demonstrate the proposed design and succinct. A set of ground rules that must be
implementation methodology to be used during the followed by each offeror when conducting the
actual system development activity, exercise are also developed ,t this time.161 Some

examples of the ground rules that should be
2.0 SEE IMPLEMENTATION specified are:

The actual implementation of A SEE is divided into 1. Developmental time frame.
three activity areas: 1) preparation, 2) conduct, 2. The make-up of the offeror's SEE team.
and 3) evaluation. A milestone chart depicting the 3. Required hardware (if appropriate).
overall implementation is contained in Table 1. 4. Detailed requirements (e.g., performance

requirements).

7th Annual National Conference on Ada Technology 1989 263



The documentation is then developed to include the number of additional technical advisors. The
appropriAte stipulations in the Request For evaluation team members should have A background in
Proposal (RFP) package. The Instructions for overall software engineering principles And be
Proposal eCOparAtion (IFtr) and the Section M knowledgeable in both the oferor's proposed design
Evaluation Criteria are modified to include thin methodologies and Cho proposed Impl entation
documentation.(SI The IFPiP must be modified to language. The SET should be divided into
Include the preliminary SEE instructions which evaluation groups according to Individual
describe the Areas to be evaluated And the overall expartixe.161 Although responsible for specific
scope of Cho exercise. The Section M evaluation areas during t evaluation, frequent group
criteria are modified to present to each offeror interaction should be encouraged.
the overall around rules for the exercise and
discuss the Seneral evaluation criteria. Finally. The evaluation approach Is divided inro three
the exercise sysrem requirements Are documented in phases 1) rthl initial evaluation. 2) the onslte
detailed instructions that are provided to each review, And 3) the final evaluation. The time
offeror After tih receipt of the proposals.16 specified for each phase Is the Approximate tme

necessary for the conduct of each review phase for
Durtng this time petod, the detailed evAlUAtiOn the type of SEE that Is depicted in this paper.
criteria that are to be used by the SEE Evaluation The actual times for each evaluation phase will
Team (SET) (aee Section 2.3) are developed. These vary depending on the specifics (complexity) of the
evaluation criteria Are used during both the actual exercise.
initial (in.house) And on.site evaluations (see
Section 2.3). These criteria are established to Upon receipt of the offerorts SEE products. the
provide consistent guidelines for the evaluation of initial eVAlUAtion is conducted using tlio offerer's
the submitted SEE %Aterial.(S1 These guidelines proposed plans. This review, employing the
are also used to place emphasis on the most previously generated evaluation criteria, is used
critical Aspects of the exercise, to determine if the exercise was developed in

accordance with the proposed plans and it the
2.2 SEE Conduct proposed design methodologies Are adequat. to

develop the overall Froduct. The end result o
Upon submission of the proposal each offeror is this evaluation is th identification of the
provided with a set of detailed instructions Chat strengths and weaknesses of tie offeror's SEE
includes the exercise system specificAtion, the products and design methodologies. In addition,
specific ground rules for conduct of the exercise, questions to be Asked during the on.site review are
and the time allocation for the exercise. generated.(7) Although no specific time frane is

set for this evaluation, experience has shown that
During tihe conduct of A SEE each offeror develops A this initial evaluation should take no longer than
complete software architecture for the exercise one week per offeror.(7,81
system to include A requirements analysis. a
preliminary design, An a detailed design. As part The second phase of the evaluation is the on-site
of this design phase each offeror must follow the review. The purpose of the on.site review is to
proposed design analysis methodologies, as verify the information gathered during Che initial
documented in the proposed plans, that were review And obtain additional information necessary
submitted with the technical proposal. Also, all to complete rh2 exercise evaluation.(71 This on-
proposed tools to be used during the Actual system site review, conducted by the SET After its Initial
development activity should be exorcised to the evaluation of SEE products, consists of a briefing
maximum extent possible during the development of given by the offeror and should highlight:
the exercise system.

1. Software Development Folders (SDFs) for each
At the end of the development phase, the offeror unit designed.
submits all requirements analysis and design 2. Tools used to conduct the exercise.
producLs (bothi textual and graphic) that are 3. Changes to tle SOF.
generated as part of the SEE. This documentation 4. Lessons learned.
should also include all intermediate products 5. Record of staff t.me expended.
developed. All changes to the proposed plans that 6. Experience level of personnel.
wqre Identified as part of the exercise activity 7. Estimate of computer resource utilization.
must also be submitted. After acceptance of the 8. Amount of Quality Assurance interaction.
offeror's SEE products, there should be no 9. SEE team member's level of expertise in the
interaction between tie SET and the offoror's proposed language.
personnel. Also, after the acceptance of the
submittal, no updating of the material should be During this briefing the offe:or should provide
allowed. For ease of review, all products that are answers to questions concerning various aspects of
submitted should be presented in both hard copy the exercise system. This on-site evaluation
form and in machine-readable format, should last for approximately one day per offeror.

2.3 SEE Evaluation The third phase of the evaluation is the final
evaluation. This period should be used to update

The SEE Evaluation Team (SET) should consist of the initial evaluation using the information
members of the cognizant Government agency, and a gathercd during the in-house review. This period

264 7th Annua, National Conference on Ada Technology 1989



Is Also used to develop the formal evaluation LIST OF RmF .CES
report that is submitted to the SEl. The final
review should last for approximately one week. 1. U.S. Department of Transportation Federal

Aviation Administration, "1ationAl Airspace System
3.0 CONCLWDINV 0FRVATIO.S Level I Design Docuzent,' HAS.DlO-100 b. May 1986.

A SEE can be an extremely beneficial source 2. U.S. Departmnt of Transportation, Federal
selection evaluation technique. Requiring each Aviation Administration, "Advanced Automation
ofreror to develop SEE products allows the SEE to System, System Level Specification." FIr-E
evaluate what the offror can really do, Ai opposed 130-005. August 1987 (vth revisions 25 May 1986).
to what the offeror says can be done. The early
visibility into the offeror's softwara development 3. Iasili, V., S. BoeA, J. Clapp, 0. Caumer,
methodology, in conjunction with the roview of the M. Ilolden, J. Summers, "Use of AdA for FAA's
proposed plans, provides discriminating source Advanced Automation System (M$).' MTK-6707 The
selection information, This Infccmation includes MITRE Corporation, Wa4hington. DC, April 1987.
the offeror's ability to implement the proposed
plans, the offeror's expertise in the proposed 4. Salvin. A., 'Briefings on the Use of Ada for
design mthodology and tool so, And the offerer's FA's Advnced Autoation System (MAS)," MTh-87W87,
exporienrc with the proposed design language and, T1te MITRE Corporation, Washington, DC, April 1957.
then required, the proposed implementation
language.(7,8) 5. Mactorowski, S., "CCI'DS-R Software Engineering

Exercise (SEE): An Overview," WP-27213, The MITRE
A SEE provides An excellent vehicle with which to Corporation, Bedford, MA, March 1987.
identify early problems in the offeror's software
development approach. The requirement to develop 6. Allex, C., G. Iuff, P. Lasky, J. MAuret,
an actual system design provides visibility Into S. MaciorowskL, "CCPDS-K Softuara Engineering
the proposed design methodology and the capability Exerciso Experiences Volume I: Government
to identify Incomplete methodologies. By Preparation and Dry Run.," WP27385. Vol.l, The
uncovering problems early, tha Government and rhe MITRE Corporation, Bedford, MA, June 1957.
contractor are able to concentrate on these
problems at the start or the acquisition phase 7. Allex, C., C. Iluff, P. Lasky. J. Maurer,
(full-scale develooenc) rather then waiting until S. Msciorowski, "CCI'DS.R Software Engineering
the actual development phaso has been completed and Exorcise Experiences Volume II: Use During Actual
the deficiencies become more costly to correct. CCPDS.R FSD/P Source Selection," UP.27385, Vol.11,

The MITRE Corporation, Bedford. MA, September 1987.Conducting a SEE during the source selection
process can be costly to both th* Government and 3. llowll, C., "MAS Software Engineering Exorcise
the offerors. On both sides, it requires an Asss-ssmont," The MITRE Corporation, Washington, DC,
investment of people, time, and money. The conduct Febrary 1987 (Unpublished).
of a SEE may also add significant time to the
source selection. Although on the surface a SEE
appears to be very beneficinl, more studies are
needed as to the cost/benefits ratio to determine ACKNOUI.EDGEMENTS
if it should be required for every project. While
it is apparent that a SEE is of great benefit to This paper consolidates ideas developed by MITRE
large projects (e.g., AAS), the value of ti use of personnel in both Bedford and Washington and
a SEE during source selection for smallor projects represents the work of nany individuals. The
must be determined on a case by case basis, author wishes to thank J. Cordon for her thorough

review and helpful suggestions during the writing
Finally, a SEE can only be worthwhile during source of the paper. The author also thanks n. Baden who
selection if the exercise system requirements are typed the various drafts of this paper.
tailored to the Individual project. This fine-
tuning of the SEE requirements can only be done by
personnel that are intimately aware of the needs of
the particular project. The use of an off-tho-
shelf (generic) SEE will not provide the source
selection information or information necessary for
addressing problems early after the contractor has
been selected.

7th Annual National Conference on Ada Technology 1989 265



An Approach to Ads Compiler Acceptance Testing

E.G. Amoroso
T.D. Nguyen

AT&T Bell Laboratoies

Aharec This peqet demaen~ m ongoing awveWo itsting The first appoah considered involved simply using dhe
aprach being wed at AT&T 34i LAwoeswies end AT&T Ada validation test suite to gan siome experience with
Tedwuiloigis so evsa a part of tiM Vmtdi Ad& the Compiler and its environeL It Was thought that
DevelaowA Sygtm (VADS) o the AT&T 3R tintily of alhtih Veri had arad run the tets th process

i s. Mw sppmsch )wbee "ro to axack of re-rnmnlng them at AT&T might provide valuable
he in as rea1Itc a inning as pesibk front neral Woration ab~out the quality of the co~mpiler. The
M wpont o vew I i "hwit tat the evaluaion prbe w thiWs approach, however. %lbeyond the

pr*Vd" eel Oth l~X~r b~U U 411 dulicted ffot),wasthot many of the components of
1.Itadclt compiler quality could not be tested effectively. Running

a collection of compilation tests that have already been
Datin the past two years, AT&T and Verdi have been developed is but a single measure of how well a
involved in an effort to port the Verdi Ads compiler will help huaa beings get their jobs done-
Development System (VADS) to the AT&T 3B family of Other important components of quality such as Pteliabliy
computes. As the port near completion. AT&T has (producing identicA results for identical inputs). uxbiMr
begun Io implement an acceptance testing approach that (helpng new ueswiiuj hwpnng experienced ones),
was designed to provide useful inormation about the codt efficlecy, and impport, must also be taken ino
qudiy of the VADS compiler sad its environment. The account in any acceptance testing approach. In addition
appoach is characterizeA by the following points: such1% an appr ac-h would provide litle information about

"All compxnents of compiler qu~ality may be exercised "O~ well the compiler At inio the target UNIX
effectvely.envkonmeriL

TheU compiler is evahfted in a highly realstic setting. With this in mind, a second ptioential acceptance testing
approach was considered based ont the design of a

" 7Ue compiler is evaluated firom several points of collection of our own compiler ptneiradom tests.
view. Assuming there wer no obvious bugs in the compiler,

" Programmers with little or no backgrounid In Ada thee penetration tests: would most likely explore the dark
mycontribute productively, recesses or the VADS compiler in serh of obscure

may bugs. The development of these test would obviously
" Staff and resources may not have to be solely provide valuable information about the correctness of the

Allowate. compiler, as well as information on the usability,

" Existing and ongoing projects my directly benit.I reliability, and other components of quality. The
problem with the aproach. however, was tha it would

" The evaluation staff gains valuable Ada experience in have encouraged most of the effort to be placed in areas
realistic settings. of the compiler that are rarely used (if ever). The bulk

Th ap proach may als be used to "tes" systems of one's attention ought to be placed on those areas that
other than Ada compilers. will be most used (i.e., a robusf approach). In addition.

good penetration tests require the full atention of a
This paper provides a rationale for and description of the dedicated staff, and once the tests are cc-pleted, they
acceptsnc testing approach. A description of the have little value beyond their intended function. For
implementation of this approach for the VADS compiler thes reasons, the "penetration" acceptance testing
is also included, approach was rejected.

2. Evaluation Alternatives A third approach considered for the acceptanc testing
involved simply putting the compiler into immediate use

As staled above, as completion of the VADS compiler on an existing Ada project. Obviously, such an approach
port neaw, an investigation into the quality of the would provide a highly realistic evaluation, since the
compiler in the target AT&T UNIX0 System V compiler would be exercised in a real setting. However,
environment has begun. The first step in the the approach was rejected for two reasons. First of all, a
investigation was to examine potential -iceptance testing particular project might require heavy reliance on one
alternatives. feature, but might at the same time not require another

266 7th Annual National Conference on Ada Technology 1989



fome a ald. This slasadon could bias the evaluation future. It should also be noted that the very nature oC the
somewhat and allow cetain aspects of the compiler to to %1gpromh is quite conducive to such athlitional work
uneltme. A second resson the aprah was rejected efforts. One final point worth mentioning is that the
was th" it was no feaible for any ongoing AT&T aPproah IX also a pritbe, for evauating a compile
Ada-relate project to temiame the =s of the existing before it is purchased and ported.
Ada compiler without severely impacting Its piogres and 3.1 A Novel Passyord Generator
the schedule.

Fa~l. a ompier ccci= ietin appoachwas Compucer security has become an important concern in
Fiallyed upta t proie mostpof teneftsroa h e most of the area that Ada is likely to be used (e.g.,
aboe ieaone atp rvest owitheu menfy Of the critical cmbc&Sc applications, communications systems.
dawbcks mIntie laktisMv wh otle seea Ce.). With this in mind. it was cicernincd that out

beneft "ha no other ascrnativc could provide. The acetnetstnhudinldomseuiyrle
aIroc Is basnd on the notion that ongoing non-AdaWok

projects and work efforts can be used as a ftamework for It turned out that the local systems engineering tan
evaluating an Ada compiler. Tha is, work that is involved In the; design andl developmrent of System
already being planned or stated that does not carry an 1'IMLS, a socurity-cnhanced UNIX System V-based
expicit "prognamonng baiguag requirement. could be operating systm IFlink 88), had been interested in
done In Ada using the compiler to be evaluat. This prototyping a rather novel approach to password

aprah has several attroctive side-effects. For one. it generation. The approach combines the best features of
tenids to provide a well-foundol set o( realistic situations automatic password generation (i.e., t removal of all
within which to evat the compiler. Fmr instance, blatantly bad passwords from a system), with the, best
several In our local community at ell Laboratories were features of user-delined passwords (i.e.. their mnemonic
Interested In providing a secure distributed bulletin board nature). I
capability. Although the original plan had been to build Inaste dtuplsin uomic aswr
the system using C, there was no reason why it could no Inm a yste thtsliesnnumai passwordisScredan
be done in Ada. A second Important characteristic of the c, aog used amletpaod seea his of neri,n
approach Is that resources and staff may not have to be eventually one of the strings has to be chosen. Because
explicitly allocated. If the work is being planned the user has no control over its contents, the password is
anyway, the evaluation does not caus a significant rareiy mnemonic. (it is worth mentioning that
allocation Increase. Also, unlike the penetration tests, tnucaldosotipymevc)
these; "teWs will continue to be useful even after theebedosntipl nmnl
evaluation is complet. Perhaps the: most important In systems that allow users to generate their own
aspect of the approach, however, Is that it forces passwords, on the other hand, the mnemnonic issue is
pogammors anel engineers who would not normally be often taken to its extreme. Rather than having a
Involved In suich an effort. to gain Ada development collection of passwords that awe of an equivalent nature
experience. (in terms of their guessability), as in a system with an

automatic password generator, systems with user defined
3. Applying the Approach passwords usually have some excellent passwords, some

Two important considerations were takcen into account in average ones, and some terrible ones. CoM'ining this
selecting the type or work to bedone in Ada for the fact with the notion that an operating system is usually
evaluation: about as secure as its weakest password leads to a

distressing conclu-tion about such systems.
" That several concerns (e.g., security, networking, The combination system that is being coded in Ada

performace). were likely to be of the utmost would allow a string of fixed length determined by an
importance in future applications that might uase th administrator, to be passed to users. Users would then
compiler. ."change this string to a password tha is both mnemonic

" That the work shoud be of varying degrees of and pronounceable. The rules for such "changing" could
difficulty, and should cause as much of the compiler allow prepending, inpending, or postpending. For
to be exercised as possible._____

In this section, three ongoing AT&T efforts are described 1. Mhe qqpmwdh w" first described to us by thme ATAT Begl
that, collectively, seem to meet the above considerations. LabomtiOeiC Com~put Ceniter support group.

It should be mentioned, however, tha this work is
ongoing, and in fact, more efforts may be added in the

7th Annual National Conference on Ada Technology 1989 267



example. if the suring 'U'd' was passed to a Uaser by the comparing it to a language that they are intercatr in,
puwormd generawo, then the user could change the swing provides the reccs'aty incentive-
to 'UNIXanAdn' thus lieserving the ord"111g Of the it shaould also be noted tha the results of tenichmark
original sung remain useful (eg., for proposal trad studies, etc.) after
Obviously, out description of this system is not neairly the acceptance testing has been completed.
complete sad only provides a lavor of what is being 33DsrbtdBleiBod

bult bu therbue descriptio pons u evr 1rdu Wa
reevant to otx present discussion. First of all, writing A third Important ame tha is already having a major
an Ada progr to Implement such a feature is not. an infucnce on many Ada-rclated projects and efforts is
unusually difficult exercise. As a result, this is a good secure networking. As a result, it was determined that
example of an effort that Is suitable forti novice the acceptance testing effort should include some secure
programmer to tackle. By using a novice pogramme4 in network-oriented project. It turned out that several in
the accetance ~ting, one stands to gain valuable out community at AT&T bell Labortories had been
Information about the usability of the compiler from a interested in providing a local secure distributed bulletin
novice point of view. In addition, valuable feedback on board system acro= our distributed configuration of
error messages, user documentation, and environmental secure compute r nn-ag System V/IS. Although

wkol is also obtained. A second important issue Is that initia prooypes of the system had been built in C. there
the propu requires use of most of the "mainstream" apearod to be no reason why it could noot be built in
featams of the Ada, language - the so-called Pasca Ada,
subaeL Such features ame often used in Ada prgars The bulletin board would maitain a record of all
and are thus most apropriate for acceptance testing. A prvlgsaoctewihaatcurue.Rprs

6Wbwi the cprogram tesig hlal emn fUsgoe posted to the bulletin board would be readable by onlylongtft th aceptncetesinghasbee fogoten. those users with the apliropriate privileges. RcoTauThis valuable side-effoct of our approach cannrot be posted to the board would inherit the privileges of the
W141admoul.user posting the report. An administrator would maintain

3.2 C++ vs. Ada Benchmiarking the contents of the board.

The Issue of performance Is one that clealy needed to be Implementing such a system in a distributed
addressed as part of the acceptance testing. Ada configuration of secure computers would likely require
performaince is a concern that had been coming up the use of most of the features of the Ada larguage
repeatedly during the preparation of language trade including packages, tasking, gcnuics. and exceptions. It
sluidie for several Ada-related proposals, and many of would also require such features as the interface to the C
our colleagues had expressed a particular interest In programming language. As a result. such a project
compatring the performance of Ada to that of the object- would require at least some Ada programming maturity.
oriented language C++ [Stroustrup 86). As a result it was The project would result in feedback on the quality of
decided fht s part of the aceptance testing, a collection the compiler from a more experienced user. The
of benchmark programns (some of which already existed usability, reliability, documentation, environment, and
in C++) would be coded in Ada and C++ to determine code quality of the compiler would all be re-evaluated,
t relative code efficitrncies. Obviously, such an effort but from a more soisticated point-of-view, and in
would a&s reea other important compadris as well. terms of system~s, rather than just programs.
such as the meatve usability and reliability of the two
languages. 4. Concluding Remarks

An important characteristic of this benchmarking eWort is In conclusion, an acceptance testing approach has been
tha it does not require a specified level of minimal Ada described that combines the best features of several
expertise. The complexity and accuracy of the traditional acceptan,:P testing approaches into a collection
benchmarks would, of course, depend on the experience of small projects that result in work that is useful even
of the programmer, but clearly, even a novice Ada after the acceptance testing has been completed. It
programmer could design useful benchmarks that would should be pointed out that although the approach has
provide valuable information. Another desirable been described in terms of the AT&T/VADS porting
characteristic of this benchmarking effort is that it effort, the approach is not Ada-specific at all, and could
involves C++ programmers and enthusiasts in the Ada be u~sed for the testing of any system that is being
testing: effort. Under more traditional acceptance tasting considered for instalation or use.
circumnstances, thes programmers might not be interested
in testing the Ada compiler, but given the challenge of

268 7th Annual National Conference on Ada Technology 1989



S. AcknawkdfleueuW L4Aqiaqe, United States Depmnmcn( of Defense,
The aws wIsh %o tbmk Angie Brame and TWn Gulley Jmwy 1983.
of AT&T TochnologlC and for dkl vaiuabl assistauuc jrlink 88) n~ink. CW. and Wciss, J.D., System V/MUS:
in "bi cffort. Neal Oliver provided several useul Mndaiory Policy Altcmitivcs, A7TAT TecMical Journal,
commcsns oni ft POWe. 1988.
6. Rifetts IStroustrup 861 Strousu'up, B., The C++ l'rogrammlq

Liaqualt Actdison.Wellcy, 1986.
tboD 83) Refrrunce Mnual for the Ada J'rograrnvring

7th Annual National Conference on Ada Technology 1989 269



SOFTW'ARIE WMIRS MAAINSIS OF THEI AD)A REPOSITORY

ShI Of Eaigiraela
Waiiton. D.C. =fQ9

1. INTRM TON this wa a Imary rc~om for die. cerak of t rru.
7100C N htW a aC4M csl M OAK a o f intOit 10 ky The othr #Maor emrhass It on the, "fttn1imii1y

the Use C'(mIfwm meiis so deosibc the ckprc 1o which of to&cee Code can be poned ellectively frnm O~N
a pice 0 oftw ,atoa ska strlbovte Witict Intllto so 3NOWh only Wf 00- itur'of of the code So
h~ve been~ &delpedsinug *C & iethdat *it primay mn. boy "cik N~uicmas Abou riaid hxwao and
pkczIty or r prouan is the mmeo aid inc of opra" so(2ac eiuik~oood.

andopeatos. r te nmbc Ofiwo Ai wkhs.or die We ofet therOe Is littl discussion Ofh cm uo~:
decre Wti typ of ineercon bettta the modle A murt of either nicUiCs In genral or Ad2 spe..
that MAC up the vfrti . meaies 14 particular In AWs partr die emphass is ain

This work~ has am cditt h-mcial sittAlkofte in Ac doran coist wju or icy what currmdy
Ads ensirrim. MA was designed in largeran to $UP. exigs i die MA Reposity. We consider d& Adm Rpo
Porn thedcftdpm OfU lage fot-Wm proets which are sik a a tutbed for research hI wolware mnuict aml
bulk wing Athe whiluc of "aa Aabaueton. Thus an note tha the ar"~h:ky of Ace code to other resarhmr
iprorta we of mettls it i asig thc quality or Ad cmt aid Ii the d oinieuit of Wotw=r quality metic.

soft~2t5 Mrjets It hat hee ckwa for some tim that ao "his work Is Mnr of a research proec mt I ommi
ilge number suffics to measure Ace quality 0fa pi*CC Or University to vpgy metls ddme design io lanc so1vca

$oetwae. Typically, a piee of mftwc has many *Wu. sywtms during ost phases Or 1c ofWarC lifc C~xk
bWes (porabiity. ftadability. vlfablity. complexity of Ibis project (caled IUMAN for lowAr Unvvisr.y
urriely!tg algoritm. com*$eity of Impkmiron. cr4. Metles ANAlyme) curcordy consits of software tools fitr
whkh arc mcaawrd by variou sftww aremtls. Much of die analysis of pr(.Vis writ"o In C arnd Ada, with the
the research on software mmtics Is dificult to mepliemc tooli beng written In the *pXroriat Lnguage. Theli wtv);
because of Ac prorietary naiturt of the cc&- king mmca. desesibed her Involves ftA ds Ma sion of HUNMN
used, which Is written Ini the languag Ads itself. Tic Ads code

The rtfrences 11). 15). ad 19) tecsue 50" $0. for HUMAN is writ" en hkitran UU uning an AT&T
cat purPoe rCsults In thics WC Ahil e cPNPrs 131, (4), PCtl3lO 5. hkh m BM PC AT cliii ISUxhiIIC Cihe
(61.171 and III describe some metris tant mt speific to rqvsiwy Wtell Cmntirs sc~'vc mecs files in the drre.
Ahe Ligu t tor uy N1 IRICS. llowcter. Ace NkCsbc cyclomai cmi.

In hisnot, e eploe oni OfAc tub~ts o a plexiiy packstc "c~Ires access to din %mmre code of anIn~ thsn xlod fcd re~ by a f la e ollection o(2 Ads comuiilc WM Ac 11aistead Software Scicxe hktus.Inc loctof c& wittn bya Ic coleciono r.pa kge conWbin ovcr 1.1 wp~gbytc; dii& Is far too lug,
grarrmm with tie sei Intention of making Ae Mk~ frAn AT clas t-cltime Thietflore we wrote. our 4,%%n
saiable for common Use. The code considdred here It kukI. The soure c.ue is quite smallX ndiAc M"14,11
the Ada Repository. which at Ac time this pape w:Ait. at* a vs wcdefr04W mcs
ten (July 18. 1918) contzined mmr tma 54 mcgab~rts of cmie eeae atcd o h 08 eeso.
telt with aproximately 1.1 million lifes of code and Ac e TIM ADA RSITORY
met r--guumenttion. Mjuch of Ac cin;Jiasl ie Acpoli.

tory Is on the portability and rmutability of Ace code. %ince My.e Ada Repository Is s. co3llection of pxAkjcs
which Is made a agl'. to useis f.r she cost of the oi~an,
Laima meda.'m. Vie Ad& Rcpot~tw/ Is storrc. ont the
Dc~'croi UDza Netwoik and Is also avedable frmi othcr

270 7th Annual National Conference on Ada Tochrtogy 199



me-m IU Ada ln(wm.tl* O0kc saoua be cvaM4tc %llow Ales Of knOd pcac1 *Ma I M11. 1Uo A4a %%tvc
(0fcvumoo wai a t Ai~~ds okoy. 1taeod. dowkoilie TPC6 IC 630's hitcIh 0ITCAT
g"n latcatioa o( die Ads Ikpis.ey w in to w*id A&a clam mglhta. All of the wu~kd towks xtayii or
U$RM Wn vccarchea it A ho h00041 to wft a large i ft ot 0YWIS done QA die I'VS Ut* IC4Iit AUa

vu yvt Ad% pxkau inahcr wk. One wjr SW o( cfcoclmis aMda Iy icsityofik11, t ** wx
It wokv~%tt wPC to JW.vide a PXi 0( toftIwec coft. wyt ltu e isw ot.* wfmni
tzfcrn Uthkh can ko wd In a vuwkgy Of qykloiat. cormasak IecWk in crtin fiki. 1Ue (ew Akt that

N00C~ lku OKe (Acilkinc "wula Ist 0-C Lvata Ads. wala* ad 6c we 1wal Oi le $s at fxated to %4i
Much of &hW Wnormatko k Lw caul 3Wd does act contain iura.
Ath iowc coe. Fr ciampic. 0he diwores AN41. 71t pdmaiy aqiota mcic'# COrP4ij~z W
.R.M. CRtOSS REIEMENCli. EDEJCATM,. D~US pvxcwd In thit r we kh I wid SOfwN&= Scipc

NEW$. and WIS.ADA-rOOL mte qV01umealy Fifor atil dAc hcCobe Cyclant~&i Comrky.
444000 l1104. 1670000 10". 353m,00 and Z150 IWsuruds nscak k obsicd by coi~afyiot; al mtcuak
bYW~ Ist~c rcsiudvtly. OWi conin. Po Ada "ire Code. rnum~~bUtboIq~compWoatd 0pm ii C.

UMct we a OWa oV 340 Pekacs In the tpuimory, *4, emc an opcm&d Xch mt %4 74 tc. roe So~ttr
wrtizo by A(t #,a 91 dweretaw Pf4 morns5 or ro. Ukmcc Effort Is obtsaWt by mnwbil4y1g the ec~aon
fr1nikg teAM*. T11W the K~iry .. wewa S ciA w ~ 8)kg t-j

of comioncat linn *- the tepotioy k 224%. Since only by a consaot calseal the Stroud n"bor Ahkh is oo
23 % kM 1 "tre fiw k w U% idony ema beoI IlL kx. Y Jml~e,ZiAt and oi WC 1134
about N-4% 0f ki tcpo% cOneAi 04' liftes of At% rnumber of oporsaaom opcnns. daslnt opcr-ors. a4d8ie
sowee co&e. The Kevotky nVpCaenhu a cowtian of tiact cyceidt. retspctd ly. T~s metric wis dcn to
kh atue of eabuing Code. Many peik have corn. cormla widl the Number of mceuI d6"Maton? Nit.
MOWA~ "ha the 5.0k In the tpiatt k of avf qual. loeme by 6ie prm umer. Sinc ft we Iitie In "h
I'r. We X4e Mh A aN adiata In deatminin dIc actual conldo" betec wUu*w" of the Wntwwe and the
s=at of affa In the Add conm..rlty. lkl kant raotnbl values of vwim~ mettls K4k to the code. we hav
to %ty V*crnc t qualiy of code wima by oamwiri Ignored the Seilmd ~tuber Ad %ated the "an lop"h
~pMraers: In fact only 50% of Ads a mm w e [a lutaaws mette r simoliity, %V have 3wa

abowC avcrAge w A&a pmpanmmcei taunde the value of Aie lAlead mettle w ve nwo
"hecre ate fre*"a adiiont to and dkkmn (mmr laPw*

the Adis Repoalhoty. ThAt to hav a common beats for McCws mettl inores u4w a iteze*nts w
evaluation. *e consier "h A&a Repotory as lt citisia k0W a coider die ow 0f 0he prop-. All swcmenu
oft June I. 19$. I* a potimm aat eCuiAid Veni *(a giaph Edes

p'e Ads Repositoy consst a( 1433 Adak noue we *awn bet~itim verik if thwe hu dirmc tvnIAc'tw~
code fIks. documasewlon. and ts fles. It Woo~ containis bcwc tw wtemeit by a loop, conitona lwand, or
thc cANS I-dihb (ANSI Lanage Weecae Mutual), die amiemetvi~ lm In xqucitl order. McI bes mcv'.c Ii
ONI4E.DOC (on.Iife documetao), and <ADA> V -. E + 2p
(information on how to uac the Ad* Repo.tory) dkrc.
tories In this paMr. we only &%~us: thoa direcories "ha wher £ Is the number of edcs. V Is die number of Me.
contan teurc code. The filet awe grouped in the follow. tices wWd P s thc number of kpwnc gwns (a number of
tax direcctkV3 that we Indicated In table I. subprogrant called. Including the nida Mra

Of hM 10 A&a anue code Ales in die repositoy. Nkc~b'. 150, 30so 5 th" (wiZOtn Or Procedues
ruml v' prewit here on 270. The 70 omitted fie wer with a cyclomatic complexity gicawe t1an 10 sliould L-4
not wirsitierc hetu thy coue mw Own60D avolde as tting unhatuahurcd; the ooniwqtxction to this
lines of cock exit. %U cipericec with the HUMAN ru of thumt wul~d occur only *he.# titcm e ewe state.

inuis fll)isCpgra is tha an Ada source code F 1110ts With mTAny alielS.
iram or 6n0 amis, or cede genrs a lest 2000 For cad.I AA SOWMc code file. *a e casurd 0Wc
Ucpane &*&cts Jd his exhausus "h memory of the PC values of the vaiables
uWe Iw this pijecs kv=4aof e. tkno of the okeas ?Uuw wber of popam is
and the ivz-d foe aisociatot! dm a ti zz =~rs

Jff w 16tal llolsumli

3. METHODOLOGY FOR METRICS COLLECTION Mr a jt McCabe

The Ads Rejosiory Is d1vt~bcd la seca fna M11 w Mad~wu Italsted of any uit
!be (anna: chosen for this prq;'kc wat UNIX tar fannat. i.i a lMam Hlalstead of any Sni
71x relmsitcay was loadd ctito an ATAWI 31121400 com.
pitcr which~ at the time did nt have an AdA compiler but MM t Maxbrutn McCabe metric of any unit
d~h. az diable LiM din orert re#all ct the mki - widimman McCabe swtric of any unit
Ples. th sr~tean vriable jdINit had to be lacreamAr toLa sbeoftw

7th Annual National Conference on Ada Technology 1989 271



ztu" at to~ ot'j Am oAc~c iearr iwxrt wAn fic~iac cwsk wtmr:iwt Oihc
Thetouts ( k ww~k vejivn o L4 2 txvwIn t*to ptliv comsktW ut thoc thte so

tiIs*4WY. MWaNWmc ww nt"O. W3d ianu3

xM lifo WR Www ". yw Wg a Axed Wnc in die Wt cytcl ct;*U peonde ws cw
Ict-w f&WOA IC c*dc1h ruOe I I Of the Mima' Ceoiky Of A Mw~tm which to

N i t % S t a w ~ k -4 f * c w T ) Q X l i m a I n % k M e I xy t * W .a c M u k W O U W a s . , 1 4 i r f
McaUcw nhe Akfm4AIf Of M to~t C000i xt Mk Ihn 0le A4 Aq4q neme n

*Mq&tt *4 ) latw&tew -V; tOy w ". % co fxk4W tyw Wirm iwirfacts to othet
(We M*(WOk kwv s afmly M o a WMwsr Owhe Own t lan0.a4e or t cowpud in th

;4h tM0 1Tneswl 200 ocalv AkI twksx~cty

N wf i~y The 41imts~ay Co'O MM~S in the uep"5wy Cwt
w1 kimamuj~ so k W oIK as t*wc Cropica in

4, ANA M14S bosa4i rcsu4W **iwg. lk te W41 A04~ XK= kA

VICkg4w~a AtOxjted wM ~ how lkv. Mi In thi dvcy nduich lacluck Ui gsic 4-A~gt%
AWtAnw4w tot .w i.e t Xo4 s at sm so, k1uwai4144 when umwi n Nducg woh'wt,

u ta the y we tIkaicd. tlhaa.ie, th 1labatd and r cix* k lk PSL x Ctah MA W cn As Set (,f w
Wc.*t metaI w=a ja Impe for 1 a wftiM agi pockwc *Nkh "y be used Wo typoili tak oiNwics'.t

scr of Alke d tha he mtorsh ist w v Si t M PKNAS an IojNce to 04 sock,. p*Mngl 44
~~~~-e~~~~~ rtwcldoa ome of (A the.Th edtos ~e Sck ckxism th4 %xak. of checkLft %k

4e~i aifcmi t it ew UW 3. IN attata ack for bcimg cwy
dhe Ilalsk*4 or '1k~khc meted, Owmbe Of" x w tmewu. The Me soiiarsy.V mouwe ccu gw t XXOP routume
flib*a Of nSO, or the frIMA45 OfC*Mwnat. A C*M fiv viih the fww al ~cre sss~igmmn wwcT -e

"oo 9341"Uin afebelt ks 10 lnoiu thMo OWsf Whmw mum~ ke smeilac Wil]my listW66: th" Us tspvaly
COSNti4sS the COrnMI0 wfflicor.. We did w.c do Owa Uqw~IE* for~ siog45 wCoris cK Iwce ty~ta. It ewnsI
in thts data at bicmma we CAPect as tAPud the "at Col. latc *win4s ruWesOR whith CM4 call mny of the Mmmmto
letie to btmcr Ad& Kuce cnc A"ce The low cts son algorithm suca at quicit-on bubble soct. lison
wA~ wt likely so bc incrase when tho WdddonAl Lve (auhtoe Wuixes). xatle t t. kLhei fn InunionM

MA sourc lAs wt wwaysd. Mul tMd merge et. &MV1e of dwe wo algorithms have
11 4 bmwcm dwwW4"I dWth reuny wO, pAujcjw vcant All ofdi maes

qu=Utiy with lu &-ftitr, that is if we retaced it %wiule 5I~lwwth ame awcuiac for Internal W.% rnlyr. ThM
such aifr by the qonty IyJ0VL. thw.ewrtlad w c V dc~-fw~ ue 4tigfk oon go
hole change wAn "ha chae rm*y did wt Inctoms *c wsoathrk .Wcmingt iha

COMId~ioit These Fdlu war~tmwi^d to taL" 4.M fttK~. IUn pthi oeur might &Ws be appomviamc for

The lulsa W~ N.kCab Merics wt Called ctw is

roc'd by *)me auhm bmcium c my only co~t h A Sim*~ expctcimc was "estnd to &eterine

Atacode W"s psn WU W do $ O " t w acm 0f4h puobem In ro~it wJtm fA

kv of ikebction bttw~o t Vtograin tki In rachages. Te wxcecod fle Afconvp4h& was chowe
16.th uuahciM descibe CM~ PVheM (aMU - FAOK to bk Spie for pm*Ukbl~y. An utoomr 10 corn

09 k lve ofinpale the Ale showed that the mon~imon unit
utiht ume of I %meiactts ltca sh ~lp TOD-..LMWISS alto ncied to be complihl. ThM prck.

cmvn Mbe io WI taaeat xsrIn Nhe muckgs a~ on~s for s O.MIISwt(& In .he file Wej~e. Thit
msaringth the awrtbcrf ules proa mnts for IfumaStior could not he descminc d.~cdy usleg dhe

u" n hi PW im " y of~ th kInpaft:. tckages but Wi to be dees'wmlocd by ether sing she

sty Is compoWe of Akls with ofte Wpe per file in wtiog syut.-n or in wwtmnl dabtbs In "N~tlon.

sadton, must of t code wa o£5vuylm da ther w resudosc ont the ordr in %hkh pckages van

su-f cterathet thma for componeautI th be comp'iled ThM &c-mcron t ulining slepen.
detelofw of Inesw:rOAo h cxpn to tme wad cornpiWWoe cedes is wcrlknown; it is de to.
this wre In the Ccwpowsae dkwetory. Coiwtieuey, ,,o wi fix many articles .Iecbiag libnar ma flteruince Wn
tneestuns of Incroneteioess bt'en Mgs units Cr c ontrol ari for the rxltc.,cc os the sutec-

we gvenIn ape. wy c oslI.don-ordkr of the Ads Repository. Thc pack.
given in ~age TOD_..UTI11IS did no(resolve all of the

Porsabilby W niusd.WIty ISSSIC we vaMip~ for~ dtiZeS complailoit of TOD_.LmUThIS rcquicd
reseach since the Adak Rq,,);ory originally Intended to comion of aOWWe pockage called
showase poauble wW SeIAM&I code. Wt begin owt tis. SEARCILUTILMIES which was fmMn in the file
cussion of dhem Issues lid a Survey of some cxiting mwcAja As beue klniia of t compilation
uku It (4), severs! festurs of' icLics tused for~ m~cow.l uit required some Intrwauion waunal go the file. is is
ig the maitalrbility. portability. wad uitrswabity clea w ha thspoess can be quite lengthy in many situs.
of pxces were discussed Miene monkes include meaw. to
uremns of the followisgr prttale. gtmerfe. butwjt*:

272 716h Annui'l National Conference on Ada'I6nhnology 1989

kI

rI

7th Annual National Conference on Adla Technology 1989 273

DIRECTORY n'LES ADA flLE-S
ADA-SOL 31 5
At Is I
ANSI.U&M S1 0
PY.NalIMARKS 41 13
CAIS S
CAIS.TOOLS 3
commLON.mOiDrut 12 1
CO.%VlON1TNTS 94 42
CROSS-i It- ENC1E __ I
DUMS I
DDX 41 11

Mi~UGGER Is I
7DITOW4S 24 6

EX2V.NALTOOLS 13 A
FORMIGM 7 3
CE~NTRAL. 4S 1
OKS 9 2
ID.F1LE.S 175 0

N1AG rJ.%Ir TOOLS 36 4
MASTERINDEX Is 0
MATII 52 13
IMN1 23 2

TrssACE.I iAmNDU 13 2
ht MR1CS 49 A
O6NL1N1-.DOC -7-- 1
PAGElR 10 4
I1OIN1ERS 35 0
7DL 21 3
PIWO 197 172
PREiTTY.PR1NTERS 23 3
SIMULATION4 11 2
SPEL.R 9 1 ___

STARITER.KIT 6 1
STUBBER 9 2
STYLE .42 7
TOOLS 53 10
TRANSLATORS .45 is
VIRTERM 10 2
WIS.ADA.TOOLS 166 0

TABLE):. DIRECTORIES

274 7th Annual National Conference on Ada Technology 1989

DIRFCTORY FILES USED IV lIT MT MII ill MM mM t L.
ADAn_-- 9.1 49991 220 .(~ ____ 1,1

At 1 _32 ISM 96 V4 17 ' 1 1 1
IIENOWIARKS 7 6 0.741X&1 2215 333- 33 11.7 1 22511
CAtS.TOOtS 1 ____ 66 33951 2.1A 72.49 It 47 I I 44
CONIONES 40 16.4 10316 40 1066 2 I - 761
D n3k S 1 ____ 66 SS9W 215 41259 2.9 61 7-'4
D __ 5 57.4 41316 -16 3260 9 27 I 2375
EDITORS 3 80 42534 26 3917 6 40 1 2"4

fA NA O1LMI*=T OO .S I _ 12519 41 3s4R v/ I____ I 579
MATH It 27 23074 99.6 3511 29 17 I 13
I __MEW _______ IL 130 2W0 2056 6 20 1 3973
ON'LINI,.DOC I .14 24341 170 1199 14 19 2 10
PAGr,, 4 -25 13546 14. 112'6 90 I 938
PiwO 12A 1.2 1429 I4.S 615 362 3.5 1.7 11.3
PRETYtUS T-IR 2 40 43106 137 164 3 33 1 U276
STARTER.KIT I 34 1 S152 74 992 4 6 I 1072
STUD1~rt 2 4____.4.5 490P4 231 7241 3 49 1 2421
STYLE 2 2.5 19591 122 3125 2.5 41 I 4O 4
TOOLS 6 50 23157 161 2157 193 IS 2 1472
TRANSLATORS 3 63.3 1 13624 531 6559 12 4I I 390
VIRTERM I 2 1 5199 52 914 14 11 1 747

TABLE 2: MI7RICS PU P PROGIM U,'. itr a liat:ead TOrAL ,IfT m McCa& TOTAL. MII m JIaltriJ
MAX. ml a Ianmad M. .d I,4 UcCabc MAX. mW McCabe Wa. L a Nwv6br l Uine. comm a comm ts

PU liT ET'm blit rol MM mM 1. 0,inm
PU 1.00 .575 .76 .369 ..192 .A75 -.170 .644 ..232
MiT 1.00 [.567 .. 153 .75 -.141 .755 .. 129
NIT __ 1.0 .1j.62 -.157 .655 -.141 .75 -. 1 ;7
MHl !.00 0.060 .703 -.060 .607 -.092
roll 1,001 .. 102 -137 -.168 1 013

?M 1.00 -.098 .677 .021
mM 1.00 .. 163 .206
1 1.00 -.068

co~n 1.00

TABLE 3: CORREL4TIONS

7th Annual National Conference on Ada Technolcgy 1989 275

DENSTY Pti irr MT Mll mit MM mI JL coimm
12itM r~ ia .230 fA M .30 9 .009 . .0'M 117 .07i
McCbe W ine .456 .006 .22.4 M00 ..107 .061 .01 Ji- ..016 *.120
W.LbMMPTM it .010 iV -59 213 .56A AMt -3 .270 J.213 - 61
McCut Marm unit -.091 j .21 .256 1.4381 331 An2 .33505 .67s

TA II E 4:.-MORE CORRELATIONS

McCabe per linse (NMTL) 1.00 l..046 j.056 .919
Iaisiad per unit (IMLJ 1.00 i .591 m.O

MIccabe me Unit (,\[M~~ -- 1.00 -. 9
Unes6aperunii(PU 1 1 ___ .00

TAJJLE. DENSM~ CORREL4TIONS

276 7th Annual National Conference on Ada Technology 1989

S. PXUIhFR X~FARCII 9. WoodficKd S.. Shen. V.Y.. and I.E. Dumsnior. A
The ntoics smaiyzr HUMANiw Imcc "s dt Smfit qe wn Seealctrics fr J'rogrwaming 174 im. 3. Sys.

momt o(tie Ales In due A.da Rqvoioey Dou collection tktms id Softwir, %Iol. 97-103. 1981.
will be "baned for doe remaiin Ivp~ Aks as soon YA an
Adat cosopiler with WWge capeity Is obtind; the
Inmdcld machine is a SUN? 3 with I NO 0(min mcnesy
"An a "is of 327 N18. TM~ rsuls shosuld be avaiabl by
the time Owa Wxi MWpe mapm. assuming tha the AtMk
tource codc. of HUMN hat bo writtIn a cop l rNo(;~NAI
toIabiC mxwwe. The complete analysis wilt Include thie Ronal J. LeA-h 11 a Provsso in the Depuncmni of
IlWicd ad IleCabe anlysis o(all 0(the Adat soee Systems WAn Cospuit Science x t liowat U~niversity. Ile
code les In the rcfuusaoy. This will wmi a bench. has LS,5 NIA. and Ph.) tkgtWe In Mathematics irn tOe
mark for analysis o(program myle. as well as bing a Uolvcnisy (o Mayland at College 1'al and mn M.S.
%Wl n kug air COWe suftww qualily* mett6 degme In Computer Science (mm Joins Hopkins. Ils

T14 (KuIur metrics anlsis ak wUIl include, wnas. tetcath ictests Incud compowe Sraphics. anlysts el
utrnms o(other (acm~ such as lis or posible cwcu* Wp hw ser itteftxes mnd sofi%%=r vcnltictst
tion paaht. deadkvk Mn huton for programt with task. (aci~~Cly (otware mcukls and Ada WrAunwing)
log. kp~~omcat CC Un(tm mettls for estimating fmawbl.
Ity Wn porubilkty o(packagti. Wecxpc e eto hK noqwwa
this work ito 3k roject which will provide an analsis a(
the code at the lkt ci parsing ino sermai mtohm since
our tAmcrlece with other mettls anaysi prgrms kAl.
cases tha storing such inormion a One tim and iAhing
nereal posecs through the Uim of takets will mah the
demterm o C thene adasona metrics for prsbilsy.
teumablity. pw analysis. potential dcadlok. cc., much
easier. Results obtaine will be easily repilauble since
the As RepMior Is aily available and does not consist
only of propriemy idtonnatio.

RI FA.14Ml~
1. IW"sta. M.Mll. kicts rf Stf*sa SAct. Elsevier
North-iillAbd New Yotk, 1977.
2. Keamey. iX. Scdlmyer RLL. Thompson. W.R.,
Asdler, M.A., an Cray. MA.. Prow ith Softowe
Corffoo~ky Mematemwst. I'mc 1985 ACM Computer Sdi.

cmConfcftroe-. pp340.347, Cincinnati. March 12.14.
199$.
3. Keller. SAL. and L.A. Pedk1ns. An. Add Mmasrement
*ad Analysi. Tool .Pmc. Third Annual National Confcr.
ence on Ada technology. plU.196. Ilou-. NMch 20.
21. 1915.
.4. Leach, RJ.. Ada &rftssre Modes and Their Umoita.
tiont. Proc. Joint Ads Conferenice. ;PXSS 293. Washington.
D.C.. March 16.-19. 19M.
$. McCabe. TU, A CoeWleay Measure, IEEE Truns.
Softw. Engr.. SE.2. p306-320. Doc. 1976.
6. Perkins. JA.. Leas. D.M.. anid Keller. S.iL. Experiene
ColkectRSn and Anoltt Assromaa Sftwart Quality
.tfetr'kstfor Adj. Proc. Fourth Annual Ntional Conference
on Ada Technology. p67-74. Atlanta. Nitcnh 19.20. 198&.
7. Rleynolds. R.G. and D. Roberts. PARTIAL: A Tool to
Szupport thme Metrics Driver Designi of Ada Programs. Proc.
198S ACM Computer Science Conference. p213-219. Can.
cinnati. March 12.14. 1985.
8. Taylo. R.N. and T.A. Standish, Steps to an Ads'onced
Adj E~sironme, ItMEE Trxns Soflur. Engr.. SE.I 1.
p302-310. March. 1985.

7th Annual National Conference on Ada Technology 1989 277

Ads Implementation of Sequential Correspondent Operations for Software Fault Tolerance

Pan.Nan Lee Aderbad TaiboE

Department of Computer Science
Univcrsity of Houston

Houston. Texas 77004.

Abstract for Implementing fault tolerant software. An Ada
Implementation of Sequential Correspondent Operations is

Based on the concept of Correspondent Computing, we shown In section 4. Finally, in section 3 we conclude the
propose 'Sequential Correspondent Operations' as a strategy discussion and give directions for future esearch.
for the sequential Implementation of software fault tolerance,
providing redundancy through the use of correspondent 2 CORRESPONDENT COMPUTING
operations. Error detection and forward error tcovery crc
performed by the use of a Comparative test. The Inherent Correspondent Computing 15,61 is based on the
high-levet programming facilities provided by Ada, make It philosophy of correspondence which can be staled as : "11
the language of choice for Implementing Sequential executing an operation can produce a significant effect, then
Correspondent Operations. This sequential scheme is the most another equally sinnificant effect can be generated by another
natural approach for systems with limited hardware semantically correspondent cperaton'. Correspondence is the
resources. The use of Ada enhances the power of Sequential property that binds two operations together. The relationship
Correspondent Operations, making It an effective ar feasible (between the two operations) being reciprocal, equivalent or
strategy for d~voloping fault tolerant software. analogous. I1 a distinct and precise relationship exists between

two operations, and the results for effects) of these two
operations also exhibit this same precise and distinct

J. INTRODUCTION relationship, then these two operations have a correspondence
relationship. Operations having a correspondence roationship

As computers have grown more complex, not only In are ltermed as Correspondent operations.
their Internal structure, but also in their applications, the Let us Illustrate the concept ol Correspondent
need to ensure reliability has Incre~sd. in fact computers are Operations with an example. Consider an object *A* resting on
increasingly being used In critical application areas where the ground, it Is now exerting a force on the ground equal to Its
loss of computing power for even ; few seconds can be weight, let this be WI. To maintain equilibrium, the ground Is
disastrous. To ensure the proper functlning of the computer exerting an equal and opposite reaction RI. Now let us place
system even In the face of faults has become a challenge, another object "B" on the ground exerting a force equal to its

There are two c)mplementary approaches to weight W2, and the reaction from the ground being R2. Since
constructing highly reliable systems. The first is fault both objects are In equilibrium, the weights are equal to the
prevention, which tries to ensure that the Implemented system reactions, i.e. WI - RI and W2 - R2. In addition, observe that
will not contain faults. This can be achieved by using there exists a precise and distinct relationship b9tween
structured design methodologies, quality control 0c It% avoid weights of the two objects (WI and W2) and this same
Introducing faults In the system. Testing and other val'd3lion relationship also defines the reactions (RI and R2), i.e.
techniques are also used to find and remove errors. But as the (WIIW2) - (RIIR2) - constant. Thus the two objects are
complexity of the system Increases, residual faults exist correspondent with one another. Using the same analogy. two
despite extensive application of fault prevention techniques. To operations are correspondent operations If the operations and
overcome these residual design Inadequacies or faults, fault the results (of the two operations) demonstrate the same
tolerant techniques are applied to ensure the reliability of the relationship.
system. A program is structured Into units (modules, functions

Fault tolerance may be delined as the ability to detect etc.), and each of which can be regarded as an operation. An
and recover from residual design inadequaci'ts (errJrs) operation consists of sequences of smaller operations, the
without any appreciable loss In either computation or time. smallest being the single Instruction. The operation whose
There are a number of fault tolerant :!rateleos avallab!o for effect 's the target of correspondent computing is called he
Implementing reliable systems, prominent among which are primary operation. The primary operation can be thought of as
the Recover, Block Scheme 171 and th N-Version an operation whose correct execution is more critical than
Programming 121. Recently, the authors have proposcd u lault other constituent program operations, and hence Is the basis
tolerant strategy based on the power of Correspondent for the creation of redundant operations. In a non.redundant
Computing [6). environment a program consists of only primary operations.

This paper discusses the sequential aspects of Operations which generate effects that correspond to the
Correspondent Computing. In section 2, we present a brief primary operation are called correspondent operations. The
background of the concepts of Correspondent Computing, effects of a correspondent operation may be equivalent,
including its error detection mechanism the Comparative lost. complementary, contradictory, or competing to the elfects of
Section 3 presents a sequential strategy 'Sequential the primary operation. Correspondent operations can be
Correspondent Operations based on Correspondent Computing categorized as Reciprocal, Duplicate, or Residual. Reciprocal

278 7th Annual National Conference on Ada Technology 1989

operations are semantically the Inverse of the primary assist In error detection and error recovery. We present
operation. Ouplicate operations are those whose behavior Is 4Sequential Correspondent Operations' as a strategy for
semantically equivalent to the primary operation. Residual Implementing fault tolerant software. This sequential scheme
operations arr those that exhibit correspondence is the most natural approach for systems with limited
relationships, hut are eillher exactly duplicate, nor hardware resources.
reciprocal operations. A program consists of a sequence of operations, and

All faul; tolerance must be based on the provision of these operations consisting of sequences of smaller operations.
useful redundancy, both for error detection and error In a fault tolerant environment, It Is necessary to provide for
recovery. In software the redundancy required Is not a simple error checking, but obviously error checking for each basic
replication of programs but redundancy of design 17). operation Is too expensive, In terms of both time and space
Correspondent computing provides the requislie redundancy complexity to perform. From the viewpoint of software fault
through the use of correspondent operations for each primary tolerance, In* correct behavior of some operations Is more
operation. In addition to p'oviding useful redundancy, these critical than others. Therefore, It Is sulficient to provide
correspondent operations are also powerful enough to assist In rediindancy for these critical operations, rather than for
error detection and error every basic operation. Keeping this objective In mind, we
recovery, assume that a program consists of two types of operations,

Error detection Is accomplished by the use of a critical operations requiring redundant components, and non.
Comparative Test. The specifications of the Comparative lest critical operations. These critical operations having error
are based on the pfecise, predefined and distinct relationshp detaclion and recovery capabilities will be formed using
of the primary and its correspondent operations. As hat been Sequential Correspondent Operations.
already stated, for operations to be considered 'correspondent A fault tolerant program, similar to any other
operations" they must exhibit the same relationship for the program, is composed of a number of sub-pogram units, such
effects, as for the operations. That is, if two correspondent as modules, procedures, functions etc. Using Sequential
operationz produce two effects (results) then these results correspondent operations, a program Is composed of
must have the same relationship as the operations. The only conventional (non.redundant) units, and sequential
possible circumstance in which the relationship of the two correspondent operations. These units ae again composed of a
results differ, Is an error occurring during execution of one of number of conventional and redundant sub.units. Simply put,
the operations, thereby changing the result of one of the a program contains a number of nesled non-redundant
operations from the desired result. The Comparative test Is (conventional), and redundant (sequential correspondeot
based on this principle, and performs error detection by operations) units.
observing if the relationship of the results differ from the
predelind relationship of the two correspondent operations. 3.1 Structure of Snuantial Corresnondent
For example, to check the results of a sorting operation, a Operation
Comparative test can be used. The comparative test works by
comparing the results of the pcimary sort operation, and the Sequential Correspondent operations (SCO) consist of
residual sort operation, a simple match procedure described three components, 1) entry condition : It !s the Initiation of
below can detect if errors have occurred. the sequential correspondent operation, 2) the processing

component : consisting of the primary, Its correspondent
for I In I..ARRAYSIZE loop operations and the comparative test, and 3) the exit condition :

If P(l) fm A (RE(I)) then the termination condition where the results are returned to
MATCH:. FALSE: the calling module. The structure of a SCO is shown In figure 1.

end If : A sequential correspondent operation Is initiated when
end loop: the preceding module completes, and passes control to the

entry condtio,a of the sequential correspondent operation. The
This simple procedure Is powerful enough to detect any executon sequence is:

data inconsistency errors as well as computation errors that I) Execulion of the primary operation.
might have occurred In either the primary or the residual 2) Execution of the first correspondent operation.
operation. 3) The results of the primary and correspondent operation

The error detection component is Incomplete without are sent to the comparative test, to decide If the results
some form of error recovery to achieve fault tolerance, match.
Correspondent computing provides a forward error recovery 4) If the results match, the sequential correspondent
strategy, avoiding the high time.space overheald in operation iorminaos.
maintaining mechanisms for rolling back the system state to o
an error free state. Again, the redundant correspondent 5) If the result!, fail to match, the next correspondent
operations provide Ina requisite component fo error operation Is executed. This new result, along with the
recovery When the comparative test detects an error, the results of the primary and the previous correspondent
erroneous result Is masked and another correspondnt operations Is sent to the comparative test, to determine
operation is Inmatsd, and on termination Its results sted If a match has occurred. Stop 5 is repeated until a
with the results o the previously executed operations. This match occurs, or all correspondent operation are
insures, that the correct result Is always obtained. terminated.

In the next section, we shll discuss In deta i the sequential The use of entry and exit conditions enables easy
aspects oCorrespondent Computing. expansion of the system. For example, at a later stage, a

conventional component can be replaced with a non-redundant

3. SrQUENTIAL CORRESPONDENT OPERATIONS component without any Interfacing problems.

The use of Correspondent Computing for fault tolerant
systems Is based on the redundancy provided by the
correspondent operations. These correspondent operations are
not only simple to formulate, but, are also powerful enough to

7th Annual National Conference on Ada Technology 1989 279

When none of the primary, or the correspondent
operations in a sequential correspondent operation match, that
Is. the complete unit fails, another sequential correspondent

Entry 9 IntatiZon uniI (operation) might be Invoked. In a nested sequential
correspondent operation, consisting of a primary and one or

Processing more correspondent operations. each of which (primary and
correspondent operation) Is a sequential correspondent
operation. The failure of a lower level sequential

primary -- correspondent operation. (which might be the pimsiry
operation of the higher level unit) the higher level sequential

Cofreu~ondoI correspondent operation would invoke another lower level
sequential correspondent operation (one of th correspondent

11 oMparaIvN 0115 operations of the higher level Sequential correspondent
Test .operation), repeating the process until the correct result is

obtained. The number of redundant units, and the number of
Corioo correspondent operations per unit, for each primary operation

depend on the criticality of the primary operation. Obviously,
fall CmP a pss a highly critical operation would require a significantly

higher degree of redundancy, than a non.cical operton.
The conparaive test not only detects errors, but &.so

Cott#$onnt assists In error recovery. This error recovery consists of
ensuring the correct result is passed to ihe calling modulo.
When the comparative lest receives the result from the
primary and the correspondent operations. it makes a decision
on whether the result Is correct. At this point, a correct resull
Is determined If any two results match. Whenever. the correct
result is not obtained from the primary operation, It needs to
be converted to the primary result bfoeo being returned to

-E il condoon the calling routine. This problem can be solved by using
'reverse correspondent operations*. Reverse correspondent
operations are operations that convert the result ofj correspondent operation to an 'equivalent primary result'.

I oll "ue For example, if the pr!mary operation is to sum an array ofCorvnt or ' Ndunan, Integers, an Its result is equal to 100. Its reciprocal
correspondent operation is to subtract the array elements
(instead of adding), giving a result equal to .100. then

Fig. 1 Structure of a Sequential Correspondent Operaton equivalent primary result for the reciprocal operation can be
obtained by negating the reciprocal result.

The use of reverse correspondent operations, and
equivalent correspondent operations make the design,

3.2 Error Detection and Error Recovery Implementation and execution of the comparative test easier.
A sequential correspondent operation consists of a In addition, the result from the correspondent operations does

primary, one or mote correspondent operations, and a not need to be converted by the comparative lest. However,
comparative tost. The execution of the sequential there is a slight drawback with this scheme, the reverse
correspondent operations begins with the primcrv ,)peration correspondent operations requite additional execution time,
being Initiated. After the primary operation completes which might slow down the entire sequenllal correspondent
execution, one of the correspondont operations is executed operation.
next. On completion of the first correspondent operation (01) The use of sequential correspondent operations
the comparative test Is Initiated. The comparative lost enhances the ease of Implementation of a fault tolerant
determines If the results of the primary and the first program. In ihe next section we will give an Ada
correspondent operations match. If a match I. obtaincd, that is. implementation of sequential correspondent operations for
no error has boon detected, the result of the primary (or the fault tolerant applications.
correspondent) operation is returned to the calling modulo.

When a match fails, that is an error state is detected in 4. ADA IMPLEMENTATION OF SEQUENTIAL
the result, another correspondent operation (C2) Is Initiated. CORRESPONDENT OPERATIONS
On completion of this correspondent operation, the
comparative lest is again Invoked. The comparative test now Sequential Correspondent Operations is an elfoctive
,:ompares the result of the second correspondent operation strategy for Implementing fault tolerant software, providing
(C2), with the results of the primary and the first redundncy through the use of correspondent operations. Ada,
correspondent operation (C1). It a match occurs, the the new general purpose programming language, Is based on
comparative test selects the cotrect result (from the two the definitions proposed by the U.S. Department of Defense for
results that match) arnd returns control to the calling routine, use In embedded systems. It is the culmination of a decade of
If no match occurs, another correspondent operation (C3) is specification and revision of successive versions of the
inillated, and on completion its result Is used by the language, and reflects the current trends towards data
romparalive lest to determine It the correct result can be abstraction, multi-tasking, generics. exception handling,
obtained. This process is repeated untl either the correct roadability, reliability, etc. Ada is a powerful, yet expressive
result Is obtained, or all the correspondent operations are and feature rich language, which addresses a wide range of
completed.

280 7th Annual National Conference on Ada Technology 1989

application areas. It is a fool that encourages good software procedure SEO,._CORR.OPERATION_.1DUPUCATE is
engineering principles. havir-2 lates to detect more orrors begin
early "~nd automailly. helping programmers to write good
programs, without Inhibiing creativtcess and ingenuity. The
use of Ads enharceos the power of Sequential correspondent end SEO_,CORR,.OPERATlON. LDUPUICATE;.
operations, making Its development snd Implementation
easlet, faor and more efficient. *- oite correspondent operations (as needed)

A fault tolerant program consists of number of nested
levels, each level containing both redundant and non-rediindani
modules. In Sequential Correspondent operations, a program begin -SEOUENTIACORESPONETOPRATO4..
comprts of a number of nested conventional and redundant ZEO.CORROPERATINIRl1MY (DATA).
(sequential correspondent operations) modules. An Ada SEQ-CORROPERATIONJ;,RECIPROCAL (DATA):
lrnplamentalion of such a program could be written as: COARATVEJEST:

Uf not (MATCH) then
procdur MAI IsSEO.COR&_OPERATIOIQ.DUPUCATE (DATA):

procedure CONVENTIONAL_.MOOULEJi is
end II:

pookn S(XJNTIA.CORESONOWOPRATON_ Is end SEOUEJIACOMSPNDENT,,9PERATtCj:
proodur SEUENIAL.CORESPNOET..OERAIO~ IsThe sequential correspondent operation shown above

consists of a primary. n (" 1) correspondent operations an
procedure SEOUENTIAt..CORRESPONOENTPRATIONJ~ is a comptartve test. Execution starts when control is passed to

the sequential correspondent operation SEQUENTIAL...
CORRESPOND ENTOPERATION.,I. Rst, the primary operation

procedure CONVENTtO1JALOOULEJ. Is (in this case SEOCORR.OPERATION.-PRIMY) Is executed.
Next one of the correspondent operations is initiated. On
comptetion of the first correspondent operation (SEa,,.
CORROPER.NTION-I,,IECIPROCAL). the Comparative test is

procedure CON VENTIONALYODULE_.N Is sltted. The comparative test. obtains the results from the two
completed operations, and checks If the two results match. 1f
the match occus, then t resuls are correct. when a correct

prooereSEOENIALCO~FlESPONOENt,_OPERATIONN is result Is obtained, the results are passed to the calling
routine. and the sequential correspondent operation
terminates. However, if a match has not occurred. then

begin .. pirocedure MAIN another correspondent operation Is Initiated, the process being
repeated until the correct results are obtaineda or l
correspordent operation aie completed.

,tnd IAAIN: Usirtg this basic structure, let us elaborate the power
of sequential correspondentl operation with an example. The

The above example shows the sketeton of a fault example consists of a fault tolerant sorting of an array of
tolerant program using sequential correspondent operaiuns. Integers. This simple program consists of roadingj the aray of
Of course, each of the conventional modules and the Sequential Integers, sorting this aray in arn ascending order, and
correspondent opirations (modules) can be further nested, printing the result of the sorted array. In this problem, the
each comprising ol both conventional modules and sequential sort routine Is critical and therefore rer~uirs redundancy.
correspondent operations. Considering only the sequential Hence, the sort will be fault tolerant, and Implemented using
correspondent operation at the lowest level, that Is. there are Sequential Correspondent Operations. To simpify the coding
no more nested redundant modules inside this sequential and to Improve readablity the implementation details will be
correspondent operation. The structure of such a sequential ignored.
corre,.pondent operation could be implemented as rcdtSOL ANI
procedure SEOUE rTIAL.CORRESPONDENT..9PERATIONJ Is

.local variables procedure READARRAY (ORIG,.ARRAY : out ARRAYTYPE) Is

procedure SEO_.CORR_,OPERATIONPRMARY Is begin
begin

oREADARRAY;
Und SEQ..CORR...OPERATION±_IPR?.iARY: procedure SEQCORR..SORT (ORIG-ARRAY : in ARRAYJYPE:

procedure SEOCORFLOPERATIONRECIPROCAL Is RESULT: out ARRAYjYPE) Is
begin begin

end SEQCOwR.OPERATIONjRECIPROCAL; en SEO CORR SORT

7th Annual National Conference on Ada Technology 1989 281

procedure PRINT-.ARRAY (RESULT:' i ARRAYJYPE 3 is I"~ J in 1 ..ARRAY_.SIZE loop
beginIf RES..N (J) 1I. TEMP(J) then

ndI:MATCH:,. FALSE:
end RIN..ARAY:end loop. - for J

Ki MA7CH then
begin -- SORT-KAINREUT-ESN

REACI ARRAY (OR-ARRAY); end If;
SEQ.COiRSORT COR._ARRAY. RESULT..ARFAY); and loop
PRINT..ARRAY (RESULT..ARRAY): endCOMARATlVE..,EST;

and SORrYMAIN: begin.. SEO-CORR.SORT
PRIMARY-SORT (ORIGARRAY, Pj);4

Since the reading and printing ame coniventional RESULTIST (LISTSIZE) :- P-.ARR);
modules, we wilt not be showing their nmptementa~in. The RECIPROCAL_.SORT (ORIG-ARRAY, R-ARR):
selquential correspondent operation SEO.,CORRSORT Is COMPARATIVE...EST (RARR. RESULT-.UST,
desried net LIST-SIZE. kwMATH)

It not (MATCH) thenprooedure SEO..COfRSOfIT (ORIG.ARRAY : in ARRAY-.TYPE: LISTSIZE :. UST..StZE *1
RESULT: out ARRAY..JYPE) Is RESULT_.LtST (UST_.SIZE) :.RARR:

local variable declarations DUPLICATE_.SORT (ORIG-A.MRAY. D..ARR):
primary and correspondent sorting pwacdures COMpARATpVETEST (D..AM.. RESULTULST,
proceduce PRIMARY_.SORT (O..ARRAY t - ARRAY.TrYPE: LIST_.SIZE. MATCH);
begin P.RRY ou AAYE si no: (MATCH) then

primry lttin *-other correspondent operations
and I;and PAIMARYSORT: endEif: SOT

procedure RECIPROCAL-.SORT (O.AP.RAY in ARRAY_.TYPE;- Any sorting; algorithm can be used a's the primary Soil
beinR.ARRAY: out ARRAY-TYPE) Is atgotithm. Using this primary sort algorithm, Itsbegincorrespondent operations &re Implemented using the

recprcat srtingcorrespondent relationiships, such as deplicate. re MIa andcpoer rtion uiaetgrmyrsl residual. In this exrample, we are cenverig the results of t114
usongetrslst qiaetpiayrsl correspondent operations to an eqivalent prnrry result, sorsn everse correspondent operations that the comparative lest becmes easier. The resulls frorn the

primary and the correspondent operations are stored In a rst
and &PA IQSRT;(RESULT_.LIST). The compsaae test then com1pres th16
procdur OUUCAESOT (ARRY :in ARAY..TPE: results In the RESULTJLIST Wait Ihe new result obtained. Inptcodut DUPICAESOT (-ARRY: n AR~fYPE this way each result can be compared with every other r*sult.OARRAY : out ARRAYTYPE) Is When a match is obtailned. the result Is taken as the coWec
beginresult and returned to the calling routine, which In this

duplcat soringprogram is ptccedure SQRT-MAIN.

and UPLIATEORT:This paper presents a fault tolerant strategy based on
proceueRESIDUALSRT COARRAY: In ARRAYTYPE; Corraspondent Computing. The strategy Sequential

RE..ARRAY: ou ARRAYJYPE) Is Correspondent Operations consists of a primary. 'n (;- - 1)
beginredundant correspondent operations, and a comparative last.

These correspondent operations not only provide the desired
residual sort redundancy for fault tolerant applications, but M~r also
convert results to equivalent primary result powerful enough to assist In error detection and error
usin reverse correspondent operations recovery.

in this scheme, a set of primary and correspondenit
and RESIDUIAL..SORT; operations (SCO) are executed sequentially. In each SCO, first

the primary and one corresponident operation are executed and
o- ther correspondent -,po.tIons If desired their results passed to the compurative lost. The comparative

test inrforms error detection by comparing the results of the
two operations, Ithe results match, that is, no error has

procedure COMPARATIVEJEST (RESJN: In ARRAY..,YPE;- occurred, the result Is passed as the correct result. However,
RES-LIST : In UISTTYPE; If an error has occurred, then another correspondent
SIZE : in INTEGER ; operation is Initiated, and its result passed to the comparative
MATCH : In out BOOLEAN) Is lest. The coimparative test now compares this result with the

begin two previous results, to determine If an error has occurred.
MATCH - FALSE; This process continues until either the correct result Is
for lIIn l..SIZE loop

MATCH :-.TRUE;
TEMP . RESJ~IST (1):

282 7th Annual National Conference on Ada Technology 1989

obtained, or alt correspondqnl opratit at# completed.
This sequential scheme Is the mnost natural approach

for systemIs with limited hardware resources. The use of Ada.
with Its Inherent high-level pfogtammi'tg facilities, malte It
an elogant. effective and feasiblte srategy for development and
Irnplementallon of fault tolerant software.

REFERENCES

(11 Anderson, T. and Lee P.. *Fauit tolerance terrnology
proposals'. 121h Annual laternational Conference on
Fault Tolerant Computing, June 1982.

121 Chen. L. and Avients.A.. *A fault-iolerance approach to
reliability of software operations*. 8th Annual
Initrnational Conference on Fault Tolerant Computing,
June 1978.

13) Gehani. N.. *Ada, An Advanced introduction*. Pirentice.

Hall.i New Jersey. 1984.

(4) Lee, Pon-Nan., 'Implemtenting effiint software fault
tolerance using concurrent Ads.' rroceedings of ACM
South Central Regional Conference. Lafayette, Louisiana.
Nov. 1987.

(5) Lee. Ptn-Nan., 'oe spondont Computing, Procoedings
of ACM 1988 Computer Science Conference. Atlanta,
Georgia, Feb. 1988.

16) Lee, Pon-Nan. Tantoll. Adotbad and Glainkenship. Jeff.,
*Correspondent Computing based Software Fault
Tolerance. Psoceeidings of the 26th Atiton Conference
on Communications, Control and Computers. Urbana,
Illinois, Sopt 1988.

(7) Rindell. B.. *Systemn structure for software fault
tolerance. IEEE Transactions on Software Engg. Vol SE 1.
No. 2, June 1975.

1B)11U.S. Department of Defense. 'Programmning Language Ada:
Reference Manual,' Vol 106. Lecture Notes In Computer
Science. Springer*Vertag. New York. Inst.

191 Wallace, Robert., 'Proctilloners Guide to Ada,*
MacGrawHiII. New Yoirk. 1986.

761 Annual National Conference on Ada Technology 1989 283

The Ada Binding for POSIX

Stowe B~oyd David Emery Terry Fong Mitch Gart

Abstract
the Te~ricu CommrNte on Operating Syslems of the IEEE Comqutr Societ 4ponsocs the P1003 Comn-
rites efforts on te Partable Operaling System Interface for Com puter Enr*orvnents (POSIXI. The
P 10035 Woring GnWu was formed in 1907 to develop a POSLX(Ada knte*ac. This rt prvides lhe ra-
tionjle W lr indng details spechc problems encouteored and their solution, and oufes the status of te
etit.

M&O POSIX Intenx etoabiforiw (*barriersIo a

Ther is a growirg convotpence tord t Unix oprtn POSIX Ada is presenled, kcowed by a sho rt ionale of
sytmas a slandad for *ite sharing and single-user th Wo~ approach. A short swnay aid status report

wqx"orknmets. titW* *" o Unx-6 med can be found at tI* enti.

systems - especially Systm V and Berk~eley defvtivs SlantrntAda kinft
- has made 0w poMIse C4 a standad Ur'x 0*itusive. The Basi Soedcika&
The IEEE has formed a cowmittee to develop a Ptbl The basic POSIX document consists of ac~cina
Operating System Inteface Standad (POSIX). IN Wok W ndcaainwt uprighade filcsand oexC
of this group, IEEE P1003, has grown~ from the early at- uc~ndclrtos ihsuprighaerflsadtsto explain te semantics of each cal. Therefore, thelorts of Iusrigtoup. and the influential Standar OW 0*nefc ssecfe ~ eanis hc
technical committee proposed. In 1965 no the samo grsp AOI n da senifsi Oeerole with C seafc,% is
merged. and immediately formed a working group - note ma~dsmnis O n p o eent

tpr0 -opoe sadiearo min lagaePtfa8b OSIX routines have 'ir parameters. One of the chal-
tie PrO~osed ~*lenges of doing an Ada WinSn is tr"n to determine, for a

*The goal of the P1003.1 Working Group was to promote given POSIX In t parameter, an associated Ada type.
portability of application programs across Unix environ- This is particularly true for flag values, wlich tnap most
ments by developing a dear, consistent and unambiguous cirectly to Ada enumeration types.
standard for the interface specification ol a potbe r miere is some support for modularity In the C interface via
atig system based on 5 e Unix system douett. t 'header fifes. These lend to encapsulate common
At the time of Itis writing the POSIX Interface specirica- type declarations and constants used by a set of related C
lion is in ballot. it was not urrA mid-1287 that the P1003.5 functions. However, a 1-to-I mapping of header fies to

conittee was formed 2, charged with specifying an Ada Ada packages will not work, because many of the
binding for the then-proposed drail 12 version of tie POSIX POSIXJC functions require more than I headpr file, but an
interface specification. Several other working groups have Ada operation can be derned in onlylI package.
been formed to deal with other pressng requirerments, such TeCBa
as reat-time, and security.

There are many pfaces in the POSIX defiNition where the
POSIXIC binding refers back to the definition of the C lan-

284 7th Annual National Conference on Ada Technology 1989

b*Agage. Perhaps the most notable example concerns mlmn set of services or data elements. For Instancei,
mown" managerrent. There is nio POSIX routine to 3Ilo. the data type tft deines a director entry contains *at
catemrory. hued .memnoryIs allu dusing the C least the MqlWq Wleds: Again, this lends loconflict
ma"c) routine, which is defined by the appropriate C with the Afa strng t"in model, where each element of a
sWtan d (ANSI C, In Nhs case), and by the particular record type must oe known at compile time. Futhermore,
Implementation of C used for a specific POSIX Omv s teIssue ofnme conflitsthat canoccur when an
inoerran k enaton~defined kild on some system has the same

nother example of wiere ft POSCA dellniion deers to n-me (visible in the same scope) ai some programmer *de-
theC angag i~in.rem limits. pOSIX deed nt fined name. t gam may compile Wu error on

C Implementation to dafine such things as INLMAX, n POSIX Implementabo, but will not compile on another
INT.MIN and CLKJTCK. These correspond to Sys- ipeeLn
tem.Maxjlnt, System.Minnt and System.ick. Since Part of this minimal Interface consists of a set of prede-
theme is no POSIX-detind rinimum vakis for these nomi- Wie names arid constants that defline a specific P05 IX
bets (such definitions arm in the C Langage Siandarmi). envitonrnetit. For Instance, bere Is a POSIX constant
the POSIX Ada binding can make no particular as- naies PATHJAAX, which is the maximum number of
sumrptions about system Wits. This Is particulry impor- characters (W~es) in a pathname. The definition in Ada
tant for CLKTCK, which Is really a function of the of a type for pathinames (which should have up to
hardwaire and opeta*ng system's clock resolution, rather AHMAX characlers) is niot obvious. String handling in
tha the capabilities of a giften Compiler. general is a non."ia problem, because of die much more

Ahk 'u"ctoynamc C definition of srins, and also because POSIX
permits 8 bit characters, wh'V1 are not part of the Ada

There aft several Inhererg conflicts between C stye' and predefined CHARCTER type. $0, what type should the
Ada 'styte. C detines no language error signalling facility, pOSIX operation that provides thL4a me of the current
so each C function 'ias its own way of Indicating an error. working dlreclory (t C get cwd() function)? How do you
In many cases, the function returns a know~n value lor an note that this value can be only PATkLMAX byes long,
error (such as an address of 0), and another value for and how do you handle the case where some value in the
success. This is very hard to directly map to Ada. In- resulhas abyeaue >127, whchsnot alegal vlm for
stead, Ada exceptions should be used, but then many corn, an element in the Ada predefined STRING type?
mon Unixcoding practces that calla rou~ne and branch t ak su bcse
an error handle bated on the result, wouid have no direct Tssvru rcse
Ada analog. Finally, POSIX system calls assume a single thread of

One particular C codng lechniq:ue used often in th P05 X control. Since an Ada program can contain many tasks
C specircation is a htlton that bioth retuns a value as a (posibly running concurrently on a multiprocessor imple-
funiction result and also changes one of the functions pa- mentation), the specific effects of concurrency and pre-
rametefs. The direct Ada analog Is a function with IN emption must be studied for each P05 IX interface. Some
OUT or OUT parameters, which Is niot allowed ir, Ada. In services present no problems, but others, particularly
mwiy cases, the single C operation really perfrms several those that maintain local state such as 110 services, re-
logically distinct functions, and the mapping from this fuic quire some sort of redefinition to define their behavior in the
tionality to Ada Is not always obvious. face of muuople thrads of execution.

Minimal Interlac Defrition POSIX Signals are the worst case for an Ada binding
supporting tasking. In POSIX, a signal is an asynchronous

Anol-ber problem with te POSIX derinition is that POSIX is event, and the user can associate a function to handle the
a minimal interface definition. In order to allow arrival of a signal. Some signals represent Ada excep-
implementation freedom andJ to maintain compatabity with lional conditions, such as numeric errors or attempts to
several existing systems, many POSIX calls define a dereference a null pointer. Other signals represent true

7th Annual National Conferenc e on Ada Technology 1989 285

asynchronous events, such as the completion of MO. in a Some functions may be omitted where Inap-
mult.VMad9d Ad& program, should a signal be devmed to propite lor Ada (e.g. malloc().
a specfic task, or to a tasks? How can a lask or task
entry or subprogram be associated with a given POSIX Error states wil lead to tetmination by exception
sigJ? An Ada binding for POSIX must support al of he propagation, rather than the setting of a return

POSIX services, including POSIX signals. Developing the
correct modal for signals will be the hardest part of the Easy and Hard Maopd=
Adablnding. Some aspects of the binding are relatively easy, since
tom forthe Ads Binding wthere appears little conflict between POSIX C functionality

and a straight-forward abstract Ada equivalent. In these
cases the main effort Is choosing identifiers, parameter

The principal goal of the working group Is to create a types, and error handing mechanisms. Examples include
POSIX Ada binding which is useful, portable, and which POSIX MO, directory, and system database primitives.
exhibits good style. POSIX primitives must be made
available to Ada programs such that POSIX Ada applica- Other aspects of the binding are not as amenable to this
tions can be specific to POSIX, but otherwise portable simple transformational approach; in particular, difficulties
across machine architectures and A compilers. arise from the relationship between POSIX processes,

Ada tasks and programs. POSIX signals are semanticaly
difficult for a number of reasons, treated In the previous

Three possible levels of abstraction for POSIX Ada have section.
been Identi led: direct, abstract, and independent. A direct It should be Wed that it Is precisely those POSIX opera-
binding is one where the base, C operations are mapped as tions which are the easiest to map Into Ada which are
closely as possible into Ada. An abstract binding defines likely to be the most useful. A majority of applications will
POSIX abstract data types by abstraction from the baA most likely rely only upon the 'easier* rile and directory
definition, and then partitions these abstract types and operations, while only a small minority wil need to directly
their operations into logically related collections 3. An inde- manipulate signals.
pendent binding goes farther in the abstraction process;
there is no strict one-to-one relationship between POSiX C The Basks Names Toes. and Error andin
and Ada operations. A surprisingly general agreement has been reached in tihe

In committee, tie abstract level has been accepted both in areas of names, types, and error handling. Expressive

principle and in practice. It is clear that POSIX Ada will Ada Identifiers will be used in place of cryptic (if not mis-
comprise a set of Ada components which represent the leading) C Identifiers 4. Renaming to provide C equivalent

functionality of POSIX, organized to provide good Ada names has been proposed by some, but this is controver-

style while remaining intelligible to a knowledgeable POSIX sial.
C user. The basic POSIX STRING and FILE-DESCRIPTOR types

Ay POSIX C function will be subject to the following con- - which are used throughout thG binding - have received
version rules when being mapped to POSIX Ada: a great deal of the group's attention. Since fe Ada char-

acter set is limited to 7.bit ASCII, while POSIX requires
s Functions will be bundled in Ada packages as both 8.bit and mutiibyte characters, most operations will
subprograms, task entries, or generic it, rely upon a POSIX STRING type. This type will be inter-

, Use of Ada identifiers will lead to significantly convertible with respect to Ada Standard STRING 5.
more expressive names. FILE-DESCRIPTOR will be either an explict integer type,

or a private type; arguments for integer type are based* Polymorphi functions will often be decomposed upo the nieed to index arrays by FILE_)ESCRIPTOR.

into a family of overloaded subprograms.

286 7th Annual Natlonal Conference on Ada Technology 1989

One sigircant departure from base POSIX Is the settng
of *ags parameters - bit strings - by application of Any issues relative to ASCII.NUL will be handed by the
Ada constructors in place of bit value assigrment, interface.

Exceptons are the basic mechanism for POSIX Ada error 6 NASA is considering POSIX for Me Spc Station project
hanIwing." Operatons which encounter an exception cord host and target architecture.
lion wil raise an expressive and specific exception, rather
than returning a *strange value.* The degree to which
other mechanisms ilt be supported is stil urvesolved: there
Is some agreement on a 'predicate' style for certain sots
of POSIX access.

Cor:clsor. and Satus

The authors beleive that the development of a single,
widely used operating system interface in Ada will have
immense benefits for all users of the language. Ada source
code reuse has not proven o be as significant as hoped;
one major barrier may be the lack of a common substrate
for reusable Ada. POSIX Ada can be such a foundation.

The POSIX Ada working group has held three meetings,
each of two or three days. A fourth meeting Is planned for
June in Houston, sponsored by MITRE Corporation, with
meetings planned with NASA representatives and con-
tractors 6. A sixth meeling is scheduled for October 1988,
and a preliminary draft of a POSIX Ada interface is
planned for early 1989.

1 POSIX Explored, iusrlgroup, Santa Clara California.

2 Note that the authors are olficers of the P1003.5 working

group:

T. Fong (US Army) - Chair

S. Boyd (Meridian) - Co.Chair

D. Emery (MITRE) - Secretary

M. Gad (Alsys) - Rationale Editor

3 This approach Is quite similar to that described by H.
Fisher, In his "PCTE Ada Interface' presentation, APSE
Builder's Working Group, SIGAda International Conference,
November 1987.

4 Although names should not become unwieldy.

7th Annual National Conference on Ada Technulogy 1989 287

Ada SUIEfR SEMIXAR-TEACHING THE TEACHERS

Dr. H. Susan Richman Dr. Charles C. Petersen Hr. Donald C. Fuhr
Fenn State Harrisburg Mississippi State Univ. Tuskegee University

ABSTRACT
expertise and experience of the participants will

College and university faculty have different be applied to curriculum design and the development
needs and expectations from a programing language of materials for use in courses at their home
course than most other audiences, especially when institutions. All of the features of the Ads
Ada is the language. Specifically, they require a Programming Language will be explored, and
grounding in software engireering, adequate tim extensive hands-on experience vii be provided."
for assimilation of the concepts involved, and
hands-on experience working on a large project. The seminar goals were:
These requirements are not aet by the typical
college course, short course, or self-study. To acquaint the participant with the Ada style

of program development and software engineer-
The Ada Curriculum Development Seminar des- Ing methodology.

crlbed herein more than met its objective of pro-
viding participants the background to triable effec- To enable the participant to write small-to-
tive integration of Ada Into the curricula of their medium sized Ads modules und programs.
home Institutions.

To instill a working knowledge of Ada's more
This paper discusses the design of the pro- advanced features including exception hand-

gram, the challenges presented by the participants' ling, generic units, and tasking.
individual backgrounds, and the special techniques
used in the presentation of the information. To acquaint the participant with Ada coding
Details of the laboratory exercises and team solu- style conventions.
tions are discussed and evaluated. Participant
reactions are assessed and implications for future To teach the use of Ada's codularity features
program design derived. General information for in constructing software systems from reusable
other institutions contemplating similar programs software components.
is included.

To emphasixe the importanc2 of software en-
gineering practices through the experience of
modifying code written by other participants

INTRODUCTION and through programming in teams on larger
projects.

Program Background

The Ads Curriculum Development Seminar held at
Tuskegee University from June 5 through July 1, PLANNING MODEL
1988 had its roots in four years of previous simi-
lar programs. These programs were sponsored by the The fundamental premise behind our planning
U.S. Army Center for Tactical Computer Systems for this Seminar was that college students and,
(CENTACS) and aere held at Ft. Monmouth, New therefore, college faculty need a different
Jersey during the summers of 1981, 1982, and 1983, approach to the Ada programming language from that
and at Tuskegee in 1984. The objectives of all which is appropriate for working programmers. This
these programs were to propagate the Ada program- premise is based on the following observations:
ming language into college and university computer
science curricula by providing an intensive learn- The vast majority of Ada training courses for
Ing experience for faculty members. All three of industry are only a few days in length, and do not
the professional staff of this Seminar were parti- always include handi-on exercises. Essentially all
cipants in one of the previous ptograms. the information must be presented by the instruc-

tor, with very little outside reading or assLmila-
Seminar Objective tion time for the students. We believe that this

1Pads to shallow learning of syntax and semantics,
The seminar objective as stated in the application with little understanding of the theoretical basis
brochure was "to provide comprehensive experience for proper system design using the language. We
in the Ada Programming Language to college and believe this approach is not appropriate for teach-
university computer science faculty so that they ing the language as a design tool.
may, in turn, effectively teach Ada to their
students. In the course of the seminar, the

288 7th Annual National Conference on Ada Technology 1989

College courses, on the other hand, emphasize regular readings. As early in the course as pos-
individual study and research in conjunction with sible, students must have enough language features
lecture presentations. The result is that college to solve meaningful laboratory exercises, but they
students art ti,ught to apply the language as a tool must also understand the principles of software
for problem solving and to draw inferences from design with Ads in order to use Ads's features
this activity an to what new applications may be properly. These dual needs result in a competition
developed. We blieve that college faculty should for prime classroom time early, not only in th:s
be taught in the same way. We also believe that it course, but in any course. Since students must
is not reasonable for the average faculty member to have the language in order to write code, the
attempt to learn Ada by self-study, as is possible language usually comes first. While the basics of
with other languages. Ada is too complex and software engineering and object-oriented design
requires too much cultural assimilation for this to were included in later class ptriods, outside
be effective. readings in looch introduced these principles

earlier than classroom time could perett.
We believe it is important in teaching Ada to

collet faculty to take udvantage of the varied Use of the Ads Lansuage Reference Manual
backgrounds of the participants. This can be done
by relaying questions to meabets who may be able to The Ads LLR (ANSI-MIL-STD-|SISA), the only
answer them, by having members give presentations, completely reliable source of Ada information, is
by having them help one another with programming an essential student reference. Each participant
exercises, and other similar techniques. was given a copy of the LR4 at the first class

meeting. It is of vital importance that the stu-
We believe that one of the most important dent become familiar with the LIM as soon a pos-

ideas to get across in teaching Ads is the concept sible. However, to anyone not accustomed to using
of software maintenance and how Ada simplifies it. reference manuals, the Ada LR(can be both Intlmi-
We intend to highlight this feature by requiring dating and confusing. Overheads made directly from
the participants to modify existing code under the printed LM page were used frequently in the
several different conditions, class presentationo to illustrate the use of par-

ticular features by means of the many excellent
examples contained In the L.M. This use, in the
context of the class, can go a long way toward

CLASSROOM INSTRUCTIONAL ACTIVITIES reducing LRH-anxiety. Later on, when the students
have a firmer foundatilon in the language, the LRH

Classroom Materials is regularly used to answer questions raised in
class. (The class notes also make frequent refer-

The primary classroom materials consisted of a ence to specific topics in the LUN.) Two primary
series of overhead transparencies containing key reasons that "the IUN is confusing are (1) preci-
points of information and many examples. These sian in any language tends to increase the complex-
class notes have been developed over several years ity and (2) many forward and backward references
and tested in numerous courses. Students were will inevitably touch on some features of which the
given paper copies to facilitate note-taking and student has little or no knowledge. The first
permit use as a reference. These were reduced in difficulty is dealt with by Increasing familiarity
size, four overheads per page of clasp notes, to with the style and dissecting sentences, with the
minimize duplication costs. class, to analyze precisely what is being stated.

The effect of the second gradually diminishes as
Texts the student learns more of the language so that

fewer references are obscure.
Two texts were used as primary references for

the seminar: Classroom Library

An Introduction to Ads, 2nd Edition In addition to the texts and materials sup-
S. J. Young, J. Wiley, 1984 plied to every student, a fairly extensive collec-

tion of reference materials was made available.
Software Engineering with Ada, 2nd Edition These included numerous language texts, Ads refer-

G. Booch, B. Cummings, 1985 ence books, periodical literature relating to
current activities in Ada, and reference materials

Young, primarily a language text, provided an for VAX/VMS, VAX/Ada, and the EDT editor. Also in
excellent supplement to the topics covered in the library, as examples of available course mater-
class. However thorough the classroom explana- ials, were (a) course materials used in the Ada
tions, few students are capable of assimilating all training program at Keesler Air Force Base, (b)
the details in one exposure. This material is the courses L202 (Basic Ada Programming), L305
absorbed more completely through a combination of (Advanced Ada Topics), and L4OI (Real Time Systems
classroom discussion, outside readings, and labor- in Ada) developed as part of the US Army Model Ada
atory exercises. Young was considered very under- Training Curriculum by SofTech, (c) materials for
standable by most of the participants; for those the tutorials Beginning Ada and Advanced Ada offer-
with weaker backgrounds, more elementary texts were ed by ASEET (Ada and Software Engineering Education
recommended for the first reading. Booch, with its Team) and (d) overheads available for use with
emphasis on software engineering principles and Booch's Software Engineering (Ist Ed.).
software design, was a valuable addition to the

7th Annual National Conference on Ada Technology 1989 289

Several of the reference books were thought to Class/Laboratory Daly , Format
bet Important enough so that several copies Vere
acquired for the lfbrary: The schedule for class and lab periods was

established early, and vort," so effectively, for
I4tionale for the Delign of the Ada Program- both students and instructori, chat it was sodified
mIng Language: In addition to being a good only (or special circusta-', 4uch ' guest lec-
source of examples, this is an invaluable tures. This schedule was:
source of answers to such questions as, "Why
were Ada loops designed to be so simple when 8:30 - t:20 o.a. Claa.
tasks are so coplicatedi" 9:30 - 11:00 Lxbcro:sry

11:10 - 12:00 Clsat
A4i as a Second Languages, Norman Cohen,
McGraw-Hiil, 1986: This book, somewhere 12:00 - 1:00 p.m. Lunch
between an Advanced text and a readabla ver-
sion of the reference manual, provided valu- 1:00 - 2:30 Laboratory
able Information to the more advanced 2:40 - 3:30 Class
participants. 3:30 - 5:00 Laboratory

Software Components with Ads, Grady looch, The laboratory was also available during
Benjamin Cumings, 1987: An affordable exam- evening hours, on weekends, and, by popular demand,
ple of the software components Industry pre- early in the morning. The 50-minute class periods,
dicted to develop as a result of Ada packages. interspersed with 1-1/2 hour lab periods aeemed to

optimize the learning experience.
Order of Presentation of Topics

Participants
The most natural way to present a language as

large and complex as Ada is top-down, with an Attending the Seminar were fourteen partici-
overview of the history, philosophy, and structure pants from fourteen Institutions which raged from
of the language providing a context for the de- 2-year colleges through universities and included a
tils. Uhten the course Involves laboratory exer- U.S. Army graduate school. Five of the partici-
clues (unquestionably the best way to teach a pants possessed a doctoral degree, and all had
language) and is presenttd as an intensive expo- advanced degrees in computer science. In an at-
sure with the end loo ; only a few weeks after tempt to attain a relatively homogeneous group, the
the beginning, couproit. must be made between the prerequisite of "experience in one or more modern
most logical order of presentation and the need to programming languages, preferably including Pascal"
have details necessary for writing programs in the was specLfied.
laboratory.

Every Ads course in which any of the seminar
One compromise resulted in postponement of the staff have been involved has had a heterogeneous

history until late in the course: this was prob- mix of participant backgrounds; even with the
ably a mistake. The greater appreciation for the stated prerequisite, this course was no exception.
language through knowing its historical context,
would be worth the small delay in writing more The level of experience included those who had
complex programs. taught advanced Ada courses, those who had taught

Computer Science courses but had only a cursory
Another compromise, which was pedagogically introduction to Ads, and those with substantial

sound and worked well, was to cover the language computer background to whom Ada was completely
features in a natural order, but to treat then new.
lightly the first time through and then go back
again (and sometimes again) with more detail each A particularly gratifying response on all the
time. The basic order of topics (with minor end-of-course evaluations indicated that, in spite
variations to accommodate specific needs for lab of the variance in preparedness among participants,
exercises) was: "The seminar was very worthwhile for me." Appar-

ently the complexity of Ads lends itself well to
Overview of the language learning it on many levels. The beginners learned
Program structure Ada concepts and structure without (in some casesO
Discrete types (wit necessary i/O) appreciating all the details, while the most exper-
Statements (simple and compound) lenced found that their prior knowledge of Ada was
Procedures and functions drawn together and the finer details were filled
Packages in. The variation was used to advantage in the lab
Input/Output (incl. files and formatting) assignments with stronger participants on teams
Scope & Visibility (incl. Block statement) with weaker ones; the weaker ones and the stronger
Separate compilation ones learned from each other--on the one hand
Object-oriented design & Software engineering learning about programming in Ada, and on the other
Exceptions hand appreciating points of difficulty their stu-
Generic units dents might have.
Access types
Tasking

290 7th Annual National Conference on Ada Technology 1989

One su~prising observation vis that, in spite Exorcise Title Ada Feature
of the high level of experience Af the class, the
course syllabus vas covered mort (lovly than in a 5 th Library Nonintric racks&*,
typical undergraduate class. This was due In part Exception$
because of the many excellent penetrating ques-
tions. As a result, the material was also studied 6 Income Tax Array, Record,
in greater depth. sontext Files

Guest Lecturer Program 7 lingo, Team Project Abstract Data Type,
Package, 1/0,

because of time constraints, only tvo guest Enumeration Types
lecturers vere brought in. Jsames . Schell, form-
erly Director of the US Army's Center for Softvare a Stack Package Cneric Package
Lifecycle Support, discussed the background and
political Issues surrounding Ada's development and bridge, Team Project Abstract Data Type,
use. Captain David A. Cook, US Air Force Academy, Package, I/0,
spoke on tasking. both vire considered by the Enumeration Types
participants to be valuable additions to the
course. 10 TuAda Compiler Tasking, Separate

Team Project Compilation,
Ceneric Packages

LAIORATORY ACTIVITIES Team Projects

Overviev The first teas project proved to be an Inter-
esting problem In that once the package uas com-

Ten programming exercises were given over the pleted, the specification only via given to another
four veek period. The programs were of ever in- team which was required to vrite a driver program
creasing complexity and length and were coordinated to test the package. What vas considered intuit-
vith the material covered In lectures. Each nov ively rbvious to the package specification writer
programming exercise required the programmer to use va not always crystal clear to the user of that
new features of the language. The assignments ere package. The proper choice of function and pro-
scheduled to be assigned after the language feature cedure names and the parameters required by these
had been covered in the lectures. All of the subprograms proved to be a real challenge to the
assignments were made in vritten form and placed participants. This was the first Attempt by the
electronically into each participant's directory participants at object-oriented design and caused
separately and at appropriate times. them to look at the problem in a different light.

It was also their first use of enumeration typesEven though all of the students mere seasoned and enumeration I/O.
computer*scientists most preferred the assignments
in hardcopy form. This vas evidenced by the fact The second team project vs similar to the
that most students when given an assignment elec- first in that object-oriented design vas required
tronically Immediately proceeded to get a hardcopy as veil as enumeration 1/0. The team members vere
to read as opposed to reading it at the screen. different from the first project and An attempt was

made to match more advanced particLpanto vith those
There mere three team projects. On the first less advanced. Things went more smoothly.

tvo team projects the team size was held to 2 or 3
per team. The final week-long project involved the The major large project used larger tesms
use of separate procedures, generic and nongeneric because it vas oultiphasic in nature and required a
packages, exception handling, and tasking. The larger programing effort. The project via a
team size vas Increased to 3 or 4 members for the miniature compiler project vith three parts: a
final project. scanner, a parser, and a code generator. This

compiler was different from most in that a bufferThe following is a list of the programming holding tokens via placed betveen the scanner and
exercises shoving the Ada feature that vas &tressed the parser and another buffer holding action rou-
for each particular lab: tines and tokens vas to be placed between the

Exercise Title Ada Feature parser and the code generator.

The scanner vas a table driven finite-stateI First Ada Program VAXIEDT/ACS automaton; the students were given the table and
the algorithm. It vas simple enough but an under-2 Sum of Integers Program Structure, standing of its relationship to the symbol table

Text 10, Int_.T proved to be a major problem. It via assumed that

most computer scientists had rudimentary knowledge
3 Square Root If, Loop, Function of compilers; this assumption proved to be false.

4 Payroll File Type, Procedure

7th Annual National Conference on Ada Technology 1989 291

The parser was the central controlling unit gaining acCed* to their files. The grouping of
And was an LL(1) table driven parser. The teams directories wa* Intendcd to be a techniquo to
Vert given the parsing table; the production rules minimi:e printi M requirements, but we found that
and the parsing algorithm vord provided. The even computer f,%ntiCs are addicted to paper, and
students' Innate curiosity was greatly underesti- wanted tu print aut virtually everything they did,
mated. Instead of treating the problem as Just An even thouSh It was not really necessary.
exercise using tasking, they wanted to know more
about compilers and not only how the parsing table
was used but how it was generated.

SL14AR LOGISTICS
The code generator was the easiest because

syntAx-directed translation Was used and the names Classroo/laboratory faeillties
of the Action routines were embedded directly into
the production rules. The code generator had but A Lecctures ivre presented In a classroom sap-
fev action routines that generated quadrules. 4rate from the laboratory but nearby. The labora-

tory was one of the normal University student
terminal labs, configurcd (or up to 19 terminals.
This arranietent proved satisfactory in all res-

COMMUTR SYSTM SUPPORT pects. There were no distracting terminal or
system Activities during lectures, and the movetnt

SXyasmConfiguration betwen rooms provided a good break. Additionally,
the use of two rooms allowed the seminar faculty to

ltariware: Computer support for the seainar work to prepare lectures, lab exercises, etc. in
was provided by a VAX-11/780 which contained 16 whichever room was not in use. The only problem
Hbytes of memory, 969 Xbytes of disk storage, and which arose was that some of the participants
40 ports. A Digital LA-210 serial printer was wantcd to work long or unusual hours, and the
spooled remotely for hardcopy output. The 16 VT- control of the room key became a logistics exercise
220 classroom terminals ware connected to the in itself.
computer across the campus by statistical ultt-
plexers and a MICO4 600 Port Selector. This con- ludgac
figuration proved adequate for this size program,
even though the system was shared at times with up The budget total of $54,000 covered facuity
to 20 Fortran progrAmming students and various salaries and expenses, courst mAterials, computer
researchers. A system of this size should be able operation and maintenance, seminar logistics, and
to accommodate 20 to 30 Ada students if properly overhead. Participants ware not paid P stipend,
managed. but their on-campus lodging was paid. Funding

support was provided through a U.S. Army grant.
Software: The Digital Equipment Corporation

VAX Ads compiler and the VMS operating system
environment provided excellent support for the Seminar Staff
Seminar. The system %%s managed as recommended in
the compiler installation instructions. Inter- Three people performed various major tasks In
active users were given a Working Set (physical support of the seminar. The Academic Director was
memory) allocation of 1500 pages (.75 tbytes). A the primary instructor; thus, the primary selection
batch queue was established with 3500 pages (1.75 criterion was lengthy teaching experience, includ-
Mbytes) working net for compilations. Ada com- Ing the teaching of Ada. The Lab Director develop-
pilations, even wLph the DEC production quality ed and administered the programming exercises;
compiler, require a great deal of memory, and will thus, the primary qualifications were facility with
generate huge numbers of page faults (disk reads) the language and the ability to work well with
if they are not given enough. Running compilations people. The Systems and Logistics Director's job
from a batch queue imposes a limit on the number of was to handle all system actions and logistics
compiles running simultaneously, allows the jobs to arrangements. The qualifications for this job were
use all the memory they need, and finish quickly. primarily managerial. Due to the critical impor-
it also allows participants to be working on other tance of good computer support, It is essential
tasks while the compilations are running. The that this person occupy a position of authority
result is efficient use of the system and minimal with respect to the computer system and the people
degradation, who directly operate it. Other personnel involved

were the regular computer services technical sup-
System Organization port and administrative staff of the host

institution.
Faculty and participant accounts were placed

in the same User Identification Code (UIC) Group to
facilitate communications and file transfers. All
a isgnments were made by broadcast transmission of
files from faculty to user directories. Faculty
had Group privilege, allowing them access to par-
ticipant files for review and critique. Partici-
pants wishing to do so could set their default file
protection to preclude other participants from

292 7th Annual National Conference on Ada Technology 1989

ASALYSIS OF PAXTICiATn ?O ?ES Academic considerations

participant reactions to the program orte The seminar was so successful that there ore
obtained through Informal discussions during the very fet recommendations for change. One would be,
seminar, during a scheduled verbal discussion as described above, to keep the hstory of Ada in
session, and through comprehensive written assess- the bvginning o the seminar. Ithilt this 4ight
went$. Comments can be categoried as follows: mean doing simple programming exerciees for a

little longer, until the Ada features necessary to
I. trogram length: The tour weeks was found to more challenging programs Ara studied in class,

b adequate but ambitious for the material this trade-off would be advisable. Another pos-
covered. ost participants would have prefer- sible change would be to hAve a more homogeneous
red sore tied, but agreed that a longer pro- group of participants, it that i possible. Since
gram is a problem for most college faculrV the less well-prepargd participants fourd the
without other lumber income, course to be valuable, it would be unforctunte to

exclude them. htile they would have received
2. Program objectives: There was con*inrabl# greater beneilt had they been sore familiar with

misunderstanding of the program otjectives. Ada concepts, if not with the detail, their pre-
Soe participants were correctly expecting an sence did not diminish the value to other partict-
entry level but comprehensive course coampar- pants and may well have increased it in some te-
able to the first one-sedater graduate Ad4 pects.
course. Others expected an Advanced program
which began from A good foundation in the Laboratory considerations
language. This perceived amiguity in the
stated objectives was said to be the cause of The participants didn't got enough practice
the diversity of experience levels, and re- with tasking. Not all of the teams got their toy
sulted in both beinonl and Advanced partic- compiler to the stage where they could implement
ipAnts gaining los than they had hoped from the buffer controlling tasks. One team that did
the program. get that far had some problems And decided to use

the symbolic debugger. Evsrytime they used the
3. Management of diverse backgrounds: Several debugger, the program worked fine, but it would not

suggestions were made for taking better advan- run without it. This presented a very intereating
tage of the advanced backgrounds of some problem in that the asynchronous tasks did not work
participants. Such tactics As optional ad- properly unless the debugger was inserted into the
vanced lectures, maore structured tutoring of equation and it then changed the time so that the
the beginners by the advanced, having advanced %ask worked properly. This experience really drove
people actually present topics from their hood the point that solving tasking problems is not
experience were proposed. The best tactic, as easy as debugging sequential code. Any added
however, was believed to be separate, better disturbance, the symbolic debugger In this case.
defined programs for beginners and advanced, can cause the timing of the asynchronous processed
The consensus was that even greater benefits to be altered dramatically.
could be gained if the participants were of
more comparable backgrounds Ada-vise. In retrospect, a project that required less of

a learning curve And one that creates less curio-
sity could possibly have provided a more meaningful
tasking experience. A tasking problem involving

CONCLUSIONS AD RECOMMENDATIONS something that all of the participants were already
familiar with might have enhanced the tasking part

Program length and composition of the project. The Ada experience was valuable.
The teamwork experience was valuable (teachert are

Four weeks seems t be the best compromise accustomed to working alone). Dealing with soft-
between the divergent issues of cte required to ware engineering aspects of a larger team project
present an exhaustive treatment of the subject with was also a vary valuablo experience.
adequate lab experience and time available to
prospective attendees with other commitments and Group size and composition
opportunities.

The group siz of fourteen was good for pro-
Contract timing gram administration, hut up to 25 could have been

accommodated with the facilities and system support
The availability of funds nine months before available. The group composition of all computer

the seminar enabled recruitment of participants scientists was good in that instruction in elemen-
beginning In January, allowing wide dissemination tary computer techniques was not required, but
of program information. Host participants applied there was still a great diversity in backgrounds in
in March, enabling confirmations to be issued in the group. It is clear that more consistent expec-
late April. Issuance of confirmations in March tations of the program are needed; it is much less
would be preferable, but It is difficult to get clear how that can be achieved.
applications submitted in time to do that.

7th Annual National Conference on Ada Technology 1989 293

8uiget Considerations SIOCUAFHICAL DATA

The budget was Adequate tor th-% cost Icmas Dr. H. Susan Richman is Director at the Ada Educa-
wihich vert included. It would be *a- Idvantageous tion and Software Development center, and Associate
to the program It sufficient funds cculd be mAa fratessor of Mathematics And Computer Science at
Available to provide Participant Ntip4nds as well. The Pennsylvania Scate, University at Harrisburg,
most college faculty supplement their academic year Hiddletovn, Pennsylvania. Dr. Richman is 4 grad-
Income by obt~aining teaching cantraczo ar CoseArCh uAtt of the University ot California, lerkely, and
fellowships In the summer. It is difficult for received the th.D. in Mathematics from the Unir-
many to give up these summer Activities In order to oity ot Aberdeen, Scotland.
attend a seminar for which they are nMt paid.

Dr. Charles G. reteren ts Associate fttfssor at
Staff reeuirementa Computer Science at Mississippi Sctt University.

Dr. tcersen is a graduate at lowa% State Univer-
The staff at three professionals plus support oity ad holdo the M.S. degree In Computer science

(toao the normal computer services sitf was Ade- and the 1%.D. degree in Higher lducatioti from Ioaa
quate. Tover than three would not allow the diver- State University.
*cy ot skills required tor besat success, and would
Impact staft ability to react to unexpected situs- Mr. Donald C. Fuhr is Director af Computer Services
tians such as unusually diverse participant back- at Tuskegee University, Alabama. He is a graduate
ground. Dedicated clerical and system support is at Oregon State University And received the M1.S.
not required It the host Staff are reponSive to degree In Engineering Xanagetment tram the Univer-
requests And problems. Host critical at the host city at Alaska.
support requirements is data communications It the
labs Is rete fram the computer center.

Seminar result* vs.-glanning model

Observed results and participant responses
supported the validity ot the premises set forth In
the planning model. The approach at this seminar,
with intensive Instruction coupled with exwensve
laboratory experience was successful with this
group. It was the consensus of participants and
faculty that a shorter, less detailed seminar would
not have provided the information required in order
tor the participants to become "Ada -evangelists"
at their home institutions.

Conclusion

This seminar was highly succestful in vir-
tually all respects. WThile the classroom and
laboratory planning and execution were primary
(actors in tis success, attention to participant
convenience and comfort were also important to the
overall learning environment in a residence situa-
tion. Credit must also be given to the partici-
pants themselves, who quickly became a very close-
knit Sroup and socialized together away from the
seminar. The tour weeks became a very personal and
meaningtul experience (or all Involved.

294 7th Annual National Conference on Ada Technology 1989

Tzaicuig COBOL Programmers in Ada

by

Jagdish C. AgrAVal
Computtr Science Department

Embry Riddle Aeronautical University

Daytoni Beach, FL 32014

AkjUigaaiJ. ulti-mll1tn lines of COBOL

code hs been an use in large
organizations for a long time. With specification and package body, and

changing requirements, much of this code
is ready for a major sysLem change separate compilation vary attractive and
requirement, or for a radesign. At the

name time, asry large organizations with enjoyable. The prospects or gaining

such code have changed their language
standard from COBOL to Ada. However, control on Ovisibilityn and escope, and

theme organizations slid their support

coOitraotora have very valuable human thereby on abstraction, hidIn g

resources of seasoned COBOL programmers
who can be easily retrained, localization and modularity will make

There neena to be some controversy In their learning of Ada exciting and

Aoademil about how easy or difficult it commensurate with the software engineering

any be to train a COBOL programmer In Ada.
In this paper, the author is proposing a practices they are familiar with Aireadyl
framework for an introductory course
specially designed for the class of
experienced COBOL programners, In this

approach, Ve are capitalizing on the

previous knowledge of the student for the While in the literature there have

purpose of Introducing new knowledge, been papers and books written on

comparison between Pascal and Ada, there

has been little work An the area of

examining Ada, capitalizing on the

The term *packaging is familiar to knowledge o COBOL programmers. I believe

system developers who have been using the that the job at training COBOL programmers

will be made much easier if extensive
Tourdon and Constantine's Structured

Design techniques (1], which uses this literature existed on comparison and

tern to refer to the assignment of modules contrast between COBOL and Ada. This

paper makes a small contribution towards

of a total system into sections handled
as

such literature and it provides

distinct phyical units
for execution on a

machine. COBOL programmers who have been interesting similarities and

dissimilarities or practicing software

practicing Struwtured Deign techniques

are very likely to find Ada's packaging engineering with Ada, For example, the
data structures, control struotures, and

capablitieN, separation of package

1 7th Annual National Conference on Ada Technology 1989 295

the module structures In the two languages
1Z t 1 XRlAIAIJIfl ZXJiZEXgD AMi

will be compared And aontraazed with

examples.

Requirementa for redesigning large

In large organizations like the U.S. systems or developing new ones in

Army Information 3yatems Engineering environments that are adjusting to change

Command (15£C), where COBOL has been the in the Implementation language standard

pro,-renaing language or choice tor quite from COBOL to Ads are expensive to

some time, now there is -neod to train a Impleent and they involve a very large

very large number or eaasoned COBOL invetLent In 'porting' the human

programmers in Ads. However, at the resources from one environment to another.

outset, Ads appears to be intimidatingly Seaaoned programmers ot the old

large and eaeplex compared to COBOL. Such environment with conasierable experience

perceptiona contribute towards making the With the outgoing environment find

job of training experienced COBOL themselves under pressure and stress to

programmers in Ada a very difficult and expeditioualy learn everything about the

challenging task. However, serious new environment and at the same time keep

research to identify some strong meeting the deadlines o the maintenace

similarities in the two languages and in tasks on the outgoing environment.

the ways of practioing sotware

engineering with the two languages can EIA2111L.XU oL XZI JMiI AA IA =12L

make the initial many lensons Ot a PROGNlIkHM AEFTCItTLY

training program very easy for the COBOL

programmers to understand. The author Designers and programmers in the

believes in the principle that initi.al COBOL environment have been using

augkuA1 bLrJLte ArI. ZugiAJ This in turn structured design techniques like those ot

increases the produetivit, from the Yourdon and Constantine [1]. These

training program. sotware developers have been praatioing

296 7th Annual National Conference on Ada Technology 1989

odular design With emphssis on uncoupled

or loosely coupled modules with rutlonxl programmers with experience in COBOL

a aohesIon (see for exaaple programing language. Capitalizing on

Yourdon/Con4tantine (1, pages 84-140) as this experience in the training program

Important Criteria for the goodness of ror Ads can be very useful In Increasing

deaign. These concepts of coupling and " e productivity or the training program,

cohesion are strongly linked to the and alse in reducing the front-4nd cost of

software engineering principals of the ohage In the language standard at

modularity, localization, hiding, agrd these organizations.,

abatraction. Ada supports these

principles very strongly. Raturally, ZAIU U X X.r.MLVL h AL A

seasoned programmers of COBOL can learn

Ada and make this learning enjoys lle by

capitalizing on their experience with good Arthur Jones et al (2] have

design practices. investigated the feasibility of a CAI tool

for transitioning COBOL programmers to
One can also achieve efficiency and Ada. This Ada CAI tool uaes analogy to

productivity gains in the Ada training make learning more efficient. It attempts

program for the class of seasoned COBOL to explain Ada concepts and techniques in

programmers by apitalizing on the terms of COBOL analogues.

experience and understanding of these

programmers with the data structures, Agraw&l and Hilburn [3) have proposed

control structures, module xtruotures, and that rThe benefits of the reverse
the good design principles practiced when engineering process can be realized if the

they used COBOL. redesign team has education in both the

language in which the system was
Several organizationa in the originally implemented, and in Ada, the

Department of Defense, where the use of lanuage of choice for the iplementation

Ada has been mandated, have many of the new redesign. Therefore, there is

7th Annual National Conference on Ada Technology 1989 297

eriLt in eduaatlng members of such

redesign/laplomentation teams In Ada an a programming techniques since the late

second language.o seventies (see, e.g., Tyler Velburn (113).

Therefore, for the select class of people

Because of the Importkqe of Abstract Ve have In mind (experienced COBOL

Data Types, and AbstractLion, it is programers), we can presume knowledge of

Important to eaphasLze these topics. The structured programming techniques and need

knowledge of COBOL D!I-a Structures, to stat thia assumption as Na

Control Structures, and Module Structures prerequisite for the proposed course.

can be used to introduce Ads standards on InfCOL, we need to state all the

these topics. Vide acceptance of COBOL 85 assumptions be , made about the class of

(see, e.g., Jerome Garfunkel (ID]) has students who are expected to take this

increased the number of *uch Ads-COBOL course:

parallel constructs on the above mentioned
1. Students should have reasonable

structures. Teaching modules that
oxperiunce of programming in COBOL, and

capitalize on these Ada-COBOL parallel as efmla ihteCBL8
also be f'amiliar with the COJOl. 85

constructs are likely to significantly standard (5.

increase tho success rate of teaching Ada

to COBOL programmers. This paper 2. Students should be familiar with modern

proposes a framework for a course to Leach program design techniques (structured

Ada to COBOL programmers capitalizing on coding, top-down design, stepwIae

the prior experience of COBOL programmers. refinement, etc.).

3. Students should have some experience
with problem solving courses (e.g.
math or science courses) or computer

Experienced COBOL programmers already programming experience beyond a single

have been practicing structured course.

298 7th Annual National Conference on Ada Technology 1989

The tra k for this course is 9I,1 LJ

being developed ,his paper for the non- l the topical outline below,

traditional student who is an experiepced rrequent reference has been made to the

COBOL programmer and therulore easily Language Reference Manual (LAN) or the

satisfies tho AbuiV, prerequisites, or can Reference Manual for the Ada Programming

acquire thn quickly by alt readLng or Language.

through i gui4*d 3tudy of these

prerequis tes. 1. INTRODUCTION (6 hours)

a. history of the development of Ada

D.JEZ.Za SMQ In ztO= g, b. structured program design and

psaudocode programming

The learning objectives of the Qourse o. softw are engineering and the

are: principal features of Ada
d. commonalty of goals or structured

a. Study and practice of the basic program design and software
engineering and early exposure o

features of the Ads programming language; the Ada features that support these
goals.

using comparison and contrast with COOL. 2. BASIC ADA CONCEPTS (10 hours)

Educators will need to develop detailed DOOLEAN,a. Prejefined types - - BOEN
tables of cooparison and contrast of the CHAiCTER, INTEGER, ENUMERATION,

BOOLEAN, and REAL. (LRH Chapter 3)

features of Ada versus those of COBOL 85. b. context clauses and instantiation

Some examples appear in the following of generic packages in text-io, and
exposure to the package standard

sections of this paper. (LRH 7.1, 8.4, 10.1, 10.1.1)

a. structure of an Ada program

b. Use of packages and their support for declaration part and execution part
declarative region, scope of

modularity and localization, and their declaration, visibility, executable
statements (LRH 3.1, 8.1, 8.2, 8.3,

support for the development of reusable, and 5.1)

easy to maintain program units; d. input/output (LRH 14.3, 14.3.1 -
11.3.10, and 14.4)

c. The various Ada features that support e. an Ada compiler and its environment
(LAM 10.1, 10.4, 10.5)

abstraction and information hiding. 3. OPERATORS AND CONTROL STRUCTURES IN ADA

VERSUS COBOL 85 (6 hours)

7th Annual National Conference on Ada Technology 1989 299

7. ADVANCED TYPES (3 hours)

a. expressions (LAM A a. access types (LAM 3.3, 3.8)

b. control structures - I, case, b. variant parts (LIN 3.7.3, 4.1.3)
loop, goto (LAM chapter 5)

41. DATA STRUCTURES (8 hours) a p types (LAM 3.3, 7A)

8. TASKS (5 hours) (LXX chapter 9)
a. attributes, subtypes, derived

types, conversion betcean a. real time applications in data
types (LAM].l., 3.3.1, 3.3.2, processing ahd concurrent
3.3.3, 3.4, and 4.6) programming

b. enumerated data types (LR 3.5.1, b. tasks and rendezvous
3.3, 3.3.1, 3.5, 3.5.1)

. arrays and strings (LAM 3.3, 3.6, c. task types

3.7.2, 4.6, 3.6.3, 4.2) 10. MISCELLANEOUS ADA TOPICS (3 hours)

d. racords (LAM 3.3, 3.3.1, 3.7, a. exception handling (LIM chapter 11)
3.7.4)

b. implementation dependent features
e. files (LR chapter 14) (LAM chapter 13, and vendor

5. SUDPROOAMS IN ADA VERSUS COBOL 85 (6 supplied LRM's Appendix F)

hours) c. support available in the Ads community

a. functions and procedures (LR 6.1, d. trends and conclusions
6.4, 6.5)

b. operators and overloading (LAM 4.X , NUM S OE E"TO = Ax U 41.5, 8.3# 8.7)

o. recursion (LAM 6.1, 6.3.2, 12.1) C Azi JzR.U 11 COBOL 15 wd "I

6. PACKAGES (5 hours)
1. If Structure3

a. specification and body (LAM 7.2,

7.3) Ada: if <condition> then

b. visibility and scope (LIM 8.2, 8.3) (alsf <ondton> then

<s-o-s> 3
o. library units and order of (else

compilation (LAM chapter 10) <s.ofs>)

d. generic units (LAM chapter 12) end if;

COBOL 85: IF <condition>
a. Ada compilation units, library THEN <3-o-3>

units, order or uompilation, (ELSE IF <condition>
program library, and elaboration of THEN <sos>
library units (LRM 10.1, 10.1.2, ELSE <s_o_s>
10.2, 10.2.1, 10.3, 10.!, 10.5) END-IF.

* s_o_o => sequenoeof _statements

300 7th Annual National Conference on Ada Technology 1989

DL& STPUCTURE U COBOXL a JM AU subfunctions is the tool for achieving the

software engineering goal of mnAulJar.ity
System maintenance Is & natural (7]. COBOL practitioners have been

event. Accepting this basic fact, It i practicing it for some time now and

important to deign systems with the perhaps would welcome many features in Ada

maintenance function in mind. This that are not available in C'30L 85, but

philosophy has been a driving force in these features enforce modularity

establihing aaA±L±XAk.1SAX AL principle.

understndabilty as two of the four goals

of software engineering for the practice Examples of m odulea include

of all programmers as proposed by Ross, procedures, subroutines, and functions.

Ooodenough and Irvine (7] ard Dooch [a]. Hodularization allows the designer to

decompose a systam into functional units,
Poorly structured and poorly and impose hierarchical ordering on

documented systems developed in COBOL in function usage, as well as implement data

the sixties or the early seventies are abstraotion, which Ada allows more than

fast reaching their obsolescence. Many of COBOL 85. An important software

these obsolete systams are so out of design objective is to structure the
control that they have to be discarded and software product so that the number and

replaced with completely new ystems, complexity of Interconnections betwoen

Fundamental theorem of software modules is minimized. Special rules on

engineering proposed by Yourdon and scope and visibility within and outside

Constantine 1]: Ada packages give the designer a strong

C(P/2) + C(P/2) < C(P) control on the interconnections. Separate

points out that the complexity of a compilation of packages and package

problem can be reduced by 4ividing the specification and package body also give a

problem into several smaller problems. strong control for minimizing

Decomposition of a function into component interconnections.

7th Annual National Conference on Ada Technology 1989 301

1. Ed Tourdon and Larry L. Constantine,
ILtnlErJI a au. i und.AIAAL AA AXC A

2AAA12112 AaL CO ufr ZArAAA XALizA
2_LgIrx , Prentice Hall, In*., Englewood
Cliffs, NJ, 1979.

2. Arthur Jones, Daniel Hooking, and
Jagdish Agrawal, "A Tool for Transitioning
COBOL Programers to Ada,w Zlr±tAal.
..undMIAAA AL InforgatELon AhJL ZdLXALrA
,AAtAAAL 1L. XNRIXIAA1 SA~kAAA At
ZXWLILAA At AA =XAAkA1 ILLL AA.I4A,
editors: Prana Zunde and Jagdish Agrawal,
Plenum Press, New York, 1987. pages 415-
422.

3. Agrawal, Jagdish and Hilburn, Thomas,
eAda as a Second Programming Languags4,

IR~jAL jjAg ProasadimLA AL A". Ziak 1IL
Oatober . JA. Jll, Ads Expo, Anaheim,
California, 1988, Setion X: Ada in
Training and Education.

4. Welburn, Tyler, AAIAAI. JIMM1LIL*
COBOL, Hayfield Publishing Company, Palo
Alto, California, 1983.

5. Oerome Garfunkel, I"m COBOL li LxAa~al
lang, John Wiley & Sons, Now York, 1987.

6. RAZArLAAAI XAAAL LAXZ Iii AAA
frAEXaRa~i LAASUBA, iNST/NIL-sTD-1815A-
1913, United States Department of Defense,
Washington, D.C., 1983.

7. Ross, D. T., Ooodenough, J. B., and
Irvine, C. A., nsortware Engineering:
Process, Prinoiples, and Ooal, I=1

nxLaut er, Hay 1975.

8. Booch, 0., jQLLMzA K A niziL jng xMilk
Ada, The Benjamin/Cummings Publishing
Company, Ino., Henlo Park, CA, 1987.

302 7th Annual National Conference on Ada Technology 1989

TEACHING ADA FROM THE OUTSIDE-IN

Donald P. Purdy

Manatee Community College, Bradenton, Florida

Abatract 8. Relating advanced subjects to sched-
uled course topics whenever possible.Teaching Ada from the outside-in is a

concept which the author conceived after 9. DevolopinV follow up, advanced subject
attending the 1988, Department of Defense, presentations, by expanding or refining
Ada Curriculum Development Seminar held at the applications previously used.
Tuskegee University, Alabama. The seminar
members agreed that the more difficult 10. Maintaining an active interest in
topics or exception handling, tasking, student programming efforts.
real time interfacing, user defined
generics, acc ss types and discriminant
records could be ignored in a first year Student Data
Computer Science course (CS-i). The
author agreed with those exclusions, but The student survey forms produced the
felt that without those items, the true following student datai
power of Ada could not be taught. The
outside-in concept was designed to teach Math codes indicate:
the basics and the advanced subjects in a - - 11.5. A b ra 3 - Clg CalC I
way that would maintain student interest I - Clg Alg 1 4 - Clg Calc 11
while they worked on the more mundane 2 - Clg Alg 11 5 - Clg Calc III
aspects of the language. It would also
lead the students into using the advanced Stu Wkg Language Experience
tools that Ada provides. This concept was IDN lirs Ado Pascl COB!. C FORT HAS math
used in our first Introduction To Ada - 3- x - x -
class in the Fall of 1988. 2 52 x x x 3

3 65 x x 2
4 56 x x x x 2
5 45 x x x x 3

Methodoloqy 6 36 x X x x 5
7 69 x x 1

The instructional plan included: 8 52 x x 1
9 60 x x 2

1. Developing a schedulo/syllabus that 10 52 x x 2
would allow teaching simple and complex 11 52 x x 3
subjects at the same time. 12 52 x x 3

13 62 x x 0
2. Identifying advanced students and 14 52 x x 3
neophytes using an experience survey form. 15 52 x x 3

16 48 x x x x 3
3. Scheduling students for different -- --......
class hours and different subjects Totals 2 12 2 4 9 11
depending upon their experience. Corrected 0 7 2 2 9 11

4. Using videotapes for the simple topics Further detailed questions in class
with instructor controlled, tape playback. led to the corrected data line. The two

students, who had indicated Ada experi-
5. Using an overhead and detailed program once, had written short, 20 line programs.
walk-thru for the advanced subjects. The Pascal and C numbers were revised for

a like reason. The Wkg firs column figures
6. Getting the students interest and are based on a combination of actual work-
involvement in the outside-in concept ing hours plus an estimate of 12 hours of
during the first class meeting. study per week for each 3 semester hour

course. This information and the math
7. Maintaining that interest by showing data are used to identify students who may
beneficial usage of the advanced subjects.

7th Annual Natlonal Conference on Ada Technology 1989 303

have difficulty completing the course with Schedule (Continued)
a satisfactory grade. This class had a Wk Rogular Advanced
vary high drop/fail potential considering No Subject Subject
the working houri and a very low potential "6 Arrays/Test 1I Tasks & OOD I

considering the math data. 7 Strings & Records Task Typos
8 Subprograms Generic Subprogrems

The corrected data indicate an almost Recursive Functions
equal level of structured language experi- 9 Generic Subprograms Generic FIFO Pkg2

once and non-structured experience. This Packages
Clans make-up was almost perfect for using 10 Formatted I/O Discriminants
the outside-in approach. The students Overloaded Operators Private Types
having structured experience wore our own 11 Discriminants/Testl2 Access Types/Files
Computer Science majors who chose the 12 List Processing
course as an advanced elective. One of Private Typos
these was a quadriplegic with almost total 13 Exceptions and Files
motor and speech impairment. Most of the 14 Tasking
remaining students worked for a local (14 Cancelled due to Tropical Storm Keith)
defense contractor. These students were 15 Tasking, Low Level 10 and
very difficult to guide, and wore need- Using Ado (or Design
lessly disruptive during the initial 16 Review & Final Exam
classes. One student, self-taught in
BASIC and Pascal, worked for a local Farm The schedule was altered by two
Credit Bureau. To later identify a weather systems we experienced during the
student or a class of students the semester. This caused doubling up on some
following codes will be used: class content, but at the same time allow-

ed the instructor more time to prepare
S - Structured experience concise, direct, more meaningful presen-

(Pascal, Modula-2 & C) tations. Wherever possible, the advanced
N - Non-structured experience subjects were presented so as to improve

(BASIC & FORTRAN) upon the regular subjects.
L - Low math experience

(No college math)
I - High hour schedule Assignments

(Over 60 hours)
Assignments, two per chapter through

the twelfth chapter$, were contained in
The Environment the course syllabus. This left 5 weeks at

the end of the course for work on the team
Eight of the students did their work projects. The students set up their own

on a 1983 validated compiler running on a teams with the instructors approval.
VAX 11/750. This compiler did support Approval was based on each team having at
generics. Integer, Float, and Boolean least one member with structured program-
1/O wore handled by packages nested in the ming experience. Each tcam was allowed to
Text 10 package. During the latter part design their own final project although
of tho semester, the company these stu- they wore strongly encouraged to develop a
dents worked for, locked out the student cruise missile outopilot program. Most
Ada passwords until 5 PM. It seems the teams opted for other final projects,
Ada compile runs were deteriorating the claiming insufficient knowledge of
computer production capacity during daily aerodynamics or flight control systems.
backups. The rest of the class completed
their work using a popular microcomputer
compiler running on the college 640K, hard Toacher/Student/Subject Interaction
drive machines.

During the first two classes, the
students were asked to confirm their

The Schedule acceptance of and participation in the
outside-in concept. The response was

Wk Regular Advanced positive each time. The third class was
No Subject Subject canceled due to severe rainfall and local

I introduction flooding. The advanced subject !or the
2 Names In Ada Using Ada fourth class was real time interfbcing, a
Constants & for Design difficult item, especially since the
Expressions Instantiation compiler 4 did not support the subject. As

3 Pro-defined Types Low Level10 the teacher began the presentation, the
(Class 3 was cancollee due to weather) scudents revolted. They had not prepared
4 Pro-defined Types Low Level 10 for the subject. Learning the syntax and

User Defined Types Exceptions style of Ada plus the complex features was
5 Control Structures Tasks & Packages too much. At this point, the students and

304 7th Annual National Conference on Ada Technology 1989

the teacher reached a compromise. The set. That is, develop useful programs
presentation of advanced subjects would that do no, depend on or support any other
continua, but the students would only be programs. The acceptance of reusable
required to study the regularly scheduled packages and multi-use generics is a
subjects. small hurdle to overcome. Tih second

problem, inbred by BASIC and FORTRAN, is
The clss continued with real-time the tendency to be terse with identifier

interfaces presentation followed by the names. The third problem is a manifesta-
regularly scheduled subject and then tion of the second. Presentation of
another advanced subject, exception complicated, interrelated, programming
handling. Students were advised that they concepts calls for judicious use of media
did not have to stay for advanced subject space. This may leand to bad examples of
presentations for this class or any other self-documenting identifiers or the use of
unless they desired. It is interesting simplistic, useless, program examples.
that no one skipped any of the presenta- The first problem can be overcome. The
tions on advanced subjects even though second and third will require some work.
they were given the opportunity. Fear of A problem relevant to this class was the
being left behind may have been the cause. use of two differant compilers. The older
Student involvement was the very high dur- version had fully defined I/O packages for
ing coverage of advanced subjects. Integer. Float, and Boolean types. The

newer modal required instantiation of
Tasking was the advanced subject for generic I/O packages for these types.

the fifth. Using an overhead projector to
display the programs and the output (text
and float), a walk-thru showed the program Conclusion
progression mixed with task actions. Ti
remaining classes were conducted using Ti outside-in approach obtained good
video tapes for thu simple topics and an results using early introduction of, and
overhead walk-thru for the advanced, student involvement in, the advanced and

more interesting aspects of Ado. Early
discussion of advanced topics made later

In-Class Participation coverage more meaningful. When the topic
was revisited, student participation was

Student participation ran from dis- more intense resulting in greater under-
belief (exception handling) to apprecia- standing of the subject. Ti concept
tive awe (tasking and generics). The use worked well with this particular group:
of packages in program development brought however, testing is needed on a CS-1 class
high interest. Controlled playback of the whore most of the students are first year
instructional tapes allowed more timely Computer Science majors.
and pertinent student questions. The
overhead presentations of advanced topics
evoked high student involvement. The References
students could proceed, arguing and
discussing the subject, with the instruc- 1. Grady Beach, Software Enqincerin with
tor joining in at points where clarifica- Ada, Addison-Weslay, 1981, Chapter 7.
tion or an opinion was required. This
usually fostered further discussion. 2. S. J. Young, An Introduction to Ado,

John Wiley, 1I83, pages 273 -- 274r

Drop Rate and Causes 3. Sabina Saib, ADA: An Introduction,
Holt, Rinehart"and-Winston, lJ8b.

A 12.5% drop rate was recorded when
two of the sixteen students withdrew from 4. JANUS/Ado User Manual, R & R Software,
the class. One of these students was pages 13-5-d 14-38.
forctd to miss several early classes due
to surgery/recuperation. Ti second
student (M13-NL,l) had a vary high drop
potential based on his student evaluation
form. His dropping proved the validity of
the form. Three students were question-
able until the fifth class when they opted
to stay on board. These were all N types.

Problems Encountered

The first r-" .em with teaching Ado
is the general ,: Ad, programming mind-

7th Annual National Conference on Ada Technology 1989 305

Don Purdy is a Computer Lob Supervisor at
Manatee Community College. The lob
supports Ado, Assembler, BASIC, C, COBOL,
FORTRAN, Pascal, RPG, and application
so~twaro for CAD/CAM, data base, word
processing, and spread shoots. The lob
hardware consists of 46 PC-XTs, 10 IBM
System 38 terminals and 7 VAX 11/750
terminals. A retired USAF pilot, Mr.
Purdy graduated Cum Laudo from the
Computer Science Program at Manatee
Community College.

306 7th Annual National Conference on Ada Technology 1989

An Intermediate. Level Problem Set For Experienced
Programmers Or Writing Ada Code That Achieves
The Language Goals

Ruth S. Rudolph

Computer Sciences Corporation
Moorestown, New Jersey 08057

ABSTRACT OBJECTIVES OF THE COURSE

The DoD expected the Ada language to be a solution
to spiraling software costs. However, the The Ada language is large and contains many difficult
development of a tool and the proper use of the tool and subtle features. Subsetting of the language is not
are not the same. DoD understood that realizing an acceptable approach. In fact the following issues
these cost savings would depend (among other must be addressed:
things) on rigorous training in the correct use of the
tool. Improper or Inadequate traning In this language 1. The student must not only be exposed to
tool will produce code which accomplishes nono of the entire language as specified In MIL-
its goals and costs more to write. From experience it STD.1815A but must also develop
seems that the longer a person has been In the expertise In which he can select
Industry, the longer it will take for him to learn this appropriate features of the language for
new language because previous languages required implementation In different circumstances.
the problem to be Implemented from the hardware
perspective. Since Ada views the problem differently, 2. A rigorous style convention must be
retraining of experienced personnel is needed. A adapted or the wordiness of the tool will
solution to the dilemma can be found In the student discourage the coder.
exercises which support the course work. This
means that the problem set must be designed for 3. Available tools (language sensitive editors
experienced personnel but could be used for others. and debuggers) must be used by the

student.

INTRODUCTION None of this Is possible unless a firm foundation has
been laid prior to hands-on exposure which

Experienced programmers have responded to the addresses the software engineering principles that
proliferation of programming languages developed are realized in Ada by using the following:
over the last 30 years with minimal difficulty.
Instruction in these languages has been a syntactic 1. Abstraction
presentation given In a relatively brief time period, 2. Information hiding
and the learning curve has been excellent. This is not 3. Data encapsultation
the case with Ada. The time to learn to use this 4. Reusable components
language tool effectively seems to vary In direct 5. Fault-tolerant processing
proportion to the years of programming experience.
This presents a tremendous dilemma to management SELECTION OF A PROBLEM SET
who find the increase in training costs difficult to
accept and to the student who is accustomed to
learning new languages with relative ease. It is The development of a problem set (not a care study)
essential to develop a curriculum that solves this which will:
problem because without successful adaptation to
the the new language, the goals for which it was 1. Allow the student to utilize many Ada
designed will never be realized. In particular the features
costs of implementing in this language will be more
rather than less. 2. Demonstrate to the student the

appropriateness of each feature

7th Annual National Conference on Ada Technology 1989 307

will help the retraining effort to echieve an effective INTERACTIVE PROCESSING AND
technology transfer. Each problem In the sot should IMPLEMENTATION DEPENDENCIES
Include a template that can be copied and a set of
Instructions explaining the requirements. These InputOutiput is so difficult In most languages that
should focus on very specific aspects of the language usually only a few people 'now how it really works.
Including: In Ada. a reusable package has been provided and

everyone can write 1/0. However, the student must
1. Text.10 versus File,10 overcome his natural fear of this subject and also
2. Use Clauses learn about certain implementation specific problems
3. Attributes wlich must be overcome to achieve reusability. This
4. Records with Discriminants topic provides an excellent opportunity to learn about
5. Derived and Subtypes reusability, Its advantages and limitations, by writing
6. Abstract Data Types 110 code.
7. Packages.Specilication and Body
8. Access Types In the preliminary problem set, the student his
9. Input/Output and Implemontotion initialized all of the variables within the program so

Dependence that he would not have to be confused with

10. Use of tools Input/Output. He has been required to write only
11. Private types Text 10 'Put' statements. These were needed to

dem-nstrate the correctness of the programs. The
Individual problems are chosen instead of a case first problem In this course requires that one of the
study because system experience gained from a preliminary problems be rewritten so that data can be
case study approach Is not the objective here. The entered Interactively from the terminal. The problem
objective is to learn to use Ada language features asks for a count of the number of non-bVank
correctly. characters In any string entered from the terminal.

The solution is facilitated by the use of
PREREQUISITES Text IO.Get Line. Some insight is needed to

Implement this:
At the beginning of this course the student has
received a foundation in the Ada languague and has 1. A string object must be initialized to all
completed a minimal set of Ada problems and Is able blalks.
to

2. A constraint for the length of the string is
1. Create an Ada program library required. (This limits the length of the
2. Write a procedure, function and package string entered from the terminal. The

private types program should Inform the user of this with
3. Use attributes, user defined types and a prompt.)

private types
4. Combine program units by way of a Since the parameter list for Text IO.Get Line is

context clause defined as
5. Instantiate generics to do integer and (Item: out String; Last: out Natural);

enumeration Several limitations appear:
Input/Output

6. Compile, link and run an Ada program 1. If the actual parameter which matches
LAST is of type Positive (a subtype of

Now the students Is ready to become an Ada Natural), an accidental depression of the
programmer. carriage return at the terminal will cause a

constraint error because a value of zero
In the following exercises it is assumed that the VAX will be returned for LAST and that value
Ada Compiler and the VAX Ada program library does not exist for Positive(range
manager(ASC) are used, but any Ada development constraints).
environment can be used.

2. If the user wants to constrain the string to
be very long and does this by defining the
string as 1..Positive'Last(in agreement with
the LRM) a numericlconstraint error will be
raised because the size of strings on Dec's

308 7th Annual National Conference on Ada Technology 1989

Vax are limited to 65,000 (implementation constraint in the definition. Also if you inquire from
dependency). the user as to whether the sesssion should be

terminated, YES or NO and the response is No. an
3. If the size of the string is constrained by a error will occur for two reasons, the length of tle

constant, that constant must be of type string doesn't match and the case doesn't match.
Positive or some subtype thereof to match
the string constraint in package standard. Other things that will be learned about 1/O Include the
It must not be a derived type (strong difference between Open and Create ard the use of
typing), file mode. Certain implementation dependencies

such as when the end of line terminator is read may
Problem 2 continues with more opportunities to also be discovered.
experience Input/output and an introduction to the
'use' clause. The student prefers to use the 'use' In addition, this problem Is designed so that studnots
clause because 4t reduces the amount of code that with different capabilities can be challenged. A simple
must be written. Ada Is a very wordy language and solution is acceptable but a more elegant solution will
this Is annoying to the new user. Since the student
has been told that it Is not good style to use the 'use' appeal to the more knowledgable student.
clause he must have an opportunity to understand When this problem has been submitted correctly, a
the confusion that can result from its use and misuse. change in the specification is mde. Now all the data
Once he has successfully implemented the problem type fn the record s m e nowslted to awithut he 'se'clase achage s mae wichtypes for the records must be encapsulated intowithouJt ilia 'use' ctause a change is made which package and then the problem Is to be recompiled.
results in an error condition which can be solved with packe and ten the prb es to be rec aethe use cluse.Thecomlexiy o th lanuag isrelinked, and rerun, If any of the types In the package
the'usa' clause. The complexity of thea language Is were dorived types (and at least one of them should
such that many aspects of a feature need to be be since some of the types are of type Float fronm
demonstrated. As with some of the other problems, Package Standard and it Is recommended to make a
additional Ada features are utilized in the solution. derived type of Float) an error occurs because of the

This is an inventory maintenance example where hiding of the operators in the new package by the
quantities of liquor are stored In a sequential file. The operators that are visible in package Standard in the
hIformation for each 'record' includes the type, main procedure (see N.Cohen."Ada As A Second
manufacturer, quantity, unit price, and value. These Language")4. Without the use clause, the solution to
data values are entered interactively from the terminal do this Is very awkward. Tie student has a choice of:
and upon a request from the user the program will 1 Using selected component notation for an
produce a total Inventory value broken down by item. operator

The student Is exposed to the following Ada 2. Renaming the operator function "I" (L.R:
concepts: Liquor Data Package.Ouantity,

1. Text 10 Liquor, Data Package.Price) return
2. Sequential 10 Liquor DataPackage.lnv Value renames
3. Records - Liquor Data.Package."O";

4. Instantiation of generic units 3. Inserting the 'use' clause for the
5. Mixed types Llquor Data Package and clearly
6. Use clause commenting why it has been added. In
7. Exceptions addition all the expanded names which

have been Included when the 'use' clause
In addition the student must mail the teacher the was not there should remain in place. A
inventory file In readable form. The student must final touch to this problem to guarantee the
read data of different types from the terminal, store use of a style convention is to submit il
the data In a sequential file, make calculations on the source to the Ada repository "pretty
data in the file and translate the sequential file back to printer" program. The student must be
an ASCII file. sure the result Is copied to a new file in

case the changes made by the pretty
Furthermore the 10 Exceptions can raise many errors printer are not acceptable.
so exception handlers must be written. One of the
errors that becomes apparent is that strings are case A final touch to this problem to guarantee the use of a
sensitive and fixed length. The user must know to style convention is to submit the source to the Ada
blank pad the string that Is entered to match the repository "pretty printer" program. The student

7th Annual National Conference on Ada Technology 1989 309

must be sure the result is copied to a new file In case should try each type before embedding it to be sure it
the changes made by the pretty printer are not is implementable.
acceptable.

Problem 4 on discriminants requires a description of
boats where boats can be of two classes, sailboats or

USING THE DEBUGGER AND DATA notorboats, and sailboats contain two subclasses.
STRUCTURES WITH COMPOSITE TYPES All of the boats have some components in common.The first class of boats also has some new uniquecomponents. In the second class, both subclasses

The next two problems are to be compiled, linked have some components in common but also have
and run under Debug. The student has received some unique components.
Instruction on how to use the debugger and has
completed a trivial exercise which allowed him to
practice with the debugger. There are three solutions to this problem. The correct

solution is the one In which a component of the
Ada has an excellent capability for modelling data record with the discriminant Is itself a record with a
with composite types. However, the syntax to discriminant. The outer most record contains a
implement these structures can be rather confusing. discrim!nant that 5hapes the record as a tworboat
Even the experienced programmer finds these or a sailboat. The components that are common to
structures difficult to Implement. These problems are all boats are listed and then the variant part describes
Included to force the student to practice with these the components which are unique to sailboats and
constructs and become comfortable with them. motorboats. For a sailboat the component nanes

another variant part which allows the shape to model
The wo problems: a schooner or a ketch. The other two solutions:

1. Building an atlas using nested records and 1. Creating two discriminants
arrays 2. Renaming equivalent components

2. Building a variable record using nested do not result In very well definad structures. Creation
records with discriminants of two discriminants requires a null value for one of

the three kinds of boats which does not use the
were designed to provide experience n how to second discriminant and renaming equivalent
Implement these structures so that In a real-world components is not good modelling. This problem
situation the student will not be afraid, for lack of demonstrates to the student the difficulty of using this
understanding, to take advantage of this rich feature without abusing some of the languages
expressive capability. objectives(i.e. readability). It also shows the student
Problem 3 for nested records and arrays requires an excellent modeling technlque.nested variant

Probem fornesed rcors an arays equresrecords-wl'ucl may not have been intuitive.
five type definitions to create an array of records
where one of the record components is an array of
arrays and the inner array contains records. This Is DEVELOPING ABSTRACT DATA TYPES AND
not a trivial exercise. The difficulty Is in accessing CONSIDERING ADT'S AS CANDIDATES FOR
some of the deeply nested components. Running the GENERIC PROGRAM UNITS
program under the debugger makes this easier to
understand. However, the student now discovers
some limitations In the VAX debugger as it supports An abstract data type (ADT) can be defined as a data
the Ada language. Arrays of records with four fields type with a set of operations valid for that type.
are not supported. If an 'examine' is done of such a Abstract data types involve the following three
structure it will be found that the third and fourth fields concepts:
receive the same default value for all of the
aggregates even though an Ada 'Put' statement 1. Abstraction.extraction and presentation of
(using TextIO) shows the aggregate values that are the essential properties of a data type
expected. No warning or error message is given so
the novice may think an error exists in the program 2. Information Hiding.maklng inaccessible all
(using the debugger) when in fact no error Is there. implementation details of a data type

In addition, when defining deeply nested composite 3. Encapsulation.grouping together the
types it is easy to raise a storage error. The student various details of a data type abstraction

and its implementation

310 7th Annual National Conference on Ada Technology 1989

These concepts are supported In Ada by the literals such as train stations or other things you may
following features: want to identify as belonging to a set.

1. Private types This problem is not particularly difficult to implennt
2. Umited private types but It does provide an opportunity to apply the Ada
3. Package with pfivate parts language In a way which was intended by its authors.

ADT's are ncturally implemented In Ada and help to
enforce many of the language goals such as SUMMARY
readability. reusability, and maintainability. The
experienced programmer probably has never worked Even without formal training the experienced
with ADT's since he has probably never built user Even will o al erned
defined types. The use of them is not intuitive and if programnr will no doubt eventually learn to write
the Ada language is to be used to its full advantage, h Ada programs that will work but they will probably notis essential that the student understand wthat theyir achieve the language goals an'd 'well assuredly result

I essentiplatestdent nderstand wt ddeysare in Increased development costs. The major abuses
and how to Implement them. Problem 5 addresses ta perwl e
all these things by buiding an ADT for sets and using that appear will be:
the ADT to solve a problem which requires the
generation of 4 sets. The set unNerse which Is to be 2. Lack of readability
implemented is the universe of Integers from 1 to 100. 2. Lack of dusa bity
The application requires the computation of the 4. Misuse to Ada featuresfollowing four sets: 4. Failure to use Ada featuzres 'which

contribute to the accomplishment of the

1. Set divisible by 2.3,or 5 language goals
2. Set divisible by 2 or 3 but not 5 This problem set was designed to help the student
3. Set divisible by 3 and 5 overcome these difficulties. The use of a uniform
4. Set not divisible by 3 template as a starting point for thle class helps to

address tle readability and reusability issues. The
The solution for this application requires the creation student is started in tle right direction. The selection
of an ADT where the universe Is defined to be an of these five problems highlights many of the
array of Booleans and the array is Indexed by a Important language features which are essential to
subset of Integers constrained by I to 100. This array writing good Ada code.
should be of type private so that the abstraction will
be enlorced and therefore it must be encapsulated In Those features Include:
a package with all of the set operations. The
Implementation of those operations are hidden in the 1. Input.Output (Sequential and Text)
package body. It is useful when implementing an 2. Packages
ADT for sets to declare two constants, one for the 3. Records
universe and one for the empty set. Since the type 4. Functions
which models the universe Is private, it will be 5. Exceptions
necessary for the student to use deferred constants 6. Private Types
It will probably be the first time the student has had 7. Attributes
the need to use them and therefore it is the first time
he will understand their need and syntax. Deferred In addition. implementation dependencies and style
type definitions will be needed when access types are issues are highlighted. Furthermore, the use of Ada
introduced so this is an important idea to develop, development tools is required as part of the problem
Not all of the possible set operations are required to solution. This kind of direction enables the student to
solve this problem but they should all be included in produce solutions that use good Ada code. The
the package because it becomes a candidate for a student gains an appreciation of what is expected
reusable component. In fact when the problem has from the language. When good coding habits are
been successfully completed the student should go established during the initial learning phase, the
back and rewrite the package as a generic. The results will be a continued growth in ability to use
formal type parameter should be defined as (< >, rather than misuse Ada. The DoD goals of reduced
that is it should be capable of being matched by any costs to produce code that is readable, maintainable,
discrete type because that allows the reusability to reliable, and reusable will be achieved.
extend to a universe that includes things other than
just numbers. The universe of discrete objects could
consist of the alphabet or any lists of enumeration

7th Annual National Conference on Ada Technology 1989 311

REFERENCES

I ADA03 . Reference Mammul Wo ilie Ada
Pr *Vmn~ Longue AN i~iM y Slandard

MlL STD'181ISA United States Depattimlen of
Defense. Janury 1963.

2. ADV86 - Advanced Ma YqicLS95)ouesO
Notes. U.S. Army CommvicaftinsElfctronics
Comimand (CECOM). Ft. Monmouthi. NJ ION,.

3. ADV84 -A dvn AM WdR kbook. U.S, Army
Commwuocations Electronics CommandW
(CECOM). Ft. Monrmoutti. NJ 1984.

4, COW -.Nman H Col.AdsaSecond~
LRw.gu*ag. McGraw-Hill. Inc IM6

5. FEIOSS - Michael 8, Feldrm. DaaStructur'es
With Ada. Restont Publishing Coqnpany. Inc..
1965

ABOUT THE AUTHOR

Ruth S. Rudolph, Training Cocedinator for thle Tactical
Systems Center at Computer Sciences Corporaton.
Defense Systems Division (DSD). Moorestown. New
Jersey. is responsible for developing the Internal
technical training courses given within the center.
Included in this technical training Is an Ada
curriculum. which she designed. For the lost 7 years
Ms. Rudolph has taught Ada courses throughout
DSD.

312 7th Annual National Conference on Ada Technology 1989

A iO-VAY ADA COURSE FOR THlE T1.%fTXY

reridoon Yoiniarw

Cameron University
1,414Cm, oklAhu~ma

Abtrrr Toe'ls and MazhodA of Insitruction

Teaching Ada Is considered A chal'n~ing task The students vdre sal given time off from
for osteductor. Te #14 o thelanuag, cie coirdaily responsibilities to attend the. course

frost euatrTh ie of nnrdtoa thues lAngud the on Aultm basis. Availability of a computer
presence of noradtona prcstrucg reso and the eo- laboratory Is Absolutely vital for a bettor under-
prexitns fo phirallepoeing Aarisone of the Mtnding Of the n~tgw1AX and hands-on training.
reasosfr Ithlvs Alletinae.Aoastrainis nd ings Lectures that exceed 50 or GO minutes In length ate
indw r challengs aditinatruconr. ins pae po very likely to bccomo tiring. This may cause
snt# hll erenges to the i nstructo T I pae r- Individuals to lose Interest In the subject. The
stehe edptrIncestr ofesina s.o Th papr aily schedul~e should combine a mixture of claor-
tecinuda wth ondutyn rofssienals Th pae room Instruction And laboratory practice using an

ovncludecih an coecting ofsidlarIntt have Alternating forzmat. There should also be appro-
poro fetv n odcigsmia nes priate breaks between each session. Early in the

courses.course only one lecture hour was Included In the
Afternoon. Later, the students spent All of the
afternoon hours working on the lab assignents. On

Introdurtion the average, the students spent 40% of their time
In the classroom and 602 In the coa- utcr lab.

i.'hen teaching In Academia, the Insrruz.tor can
usually mike valid assu1MPtions About the a'kills of All lectiras ware video taped and were m-ade
the students. These assumptions generally provide AvaiIla to students at the end oi eachs day.
guidelines to selecting the proper level of In-
struction and the amount of coverage; however, Course Outline
these assumptions can not be applied when training Students had access to several reference books
Industry personnel. The training period Is
usually much shorter and the students come from throughout the course. A copy of all handouts In a
diverse bkruds textbook format was made available to each student.

aegous.The outline chosen to cover Ada was as follows:
The students who attended the 10-day Ada 1 nr~uto

course Are managers, software engineers, pro- -ritr hitioy
grammaers and other personnel. Some have limited -Brie hidSotre niern
programming skills while others may h~ave -StdacandeSoftAa Eporsimpe yo
experience in FORTRAN, COBOL, Assemb~y or a mili- -tutr fAapormsml ye
tory language. Unlike academia, only a fau of the 2. Subprograms
students have familiarity with Pascal. This
diversity creates a new difficulty In teaching Ada 3. Control Structures
In such A short period. -If stints., loops, exceptions

Student Goals 4. Scalar Data Types
Each student has a different reason and rin-al

for attending the course. Managers arc intu~rested 5. Packoges
In becoming familiar with basic principles ard~
features of Ada. Software engineers may be 6. Composite Data Types, Files
Intcrested In learning how Ada can help then with
design Issues in complex projects. Programmors 7. Access Types, Private Types
simply want to learn all of the language details
since they will be coding in Ada in the near fu- 8. Generics
ture. As difficult as it may seem, it is pousible
to incorporate a careful and non-aggressive ap- 9. Tasking
proach In presentations that can satisfy the
expectations of all attendees. All simple and composite types were covered in

detail. Packages, private types, and control

7th Annual National Conference on Ada Technology 1989 313

structuro4 were given extra Attention. The re- Au~mn-.
aling topics ware covered an An introductory A. Implement thit package Class Koster ?US

srurfom@hgp. At tendoftile to provide resources needed -to Gradea a
Coursethe Clotuscnts warn rie ls class of #Eudonts.
topics which word noz covered. Thle students 5. loplementc the pAckr&ge Stack 1'kg And
gained enough knowledge and training fro&a ct provide the comon stack opearations.
course that they could easily learn other language
ftatures Individually. Sowe of the topics that As~f~-
ware not covered Include: tasks with family of A. Using the stack package from Assignment
entries, proaas, and low-level 1/0. -4 write A program to determine If a

As~irmentsgiven piece of text contain* balanced
parenthesis.

Thore were two typos of exorciseii% review ~ tc akg n h ie
problems and programing assignments. The review B. lUsrnttVia sta prokgrAnd t convert
problems were a collection of simple questionsaloih.wteapgrmocnvt
that were given to the clans every day during the An Infix expression Into the poatfix
last leeture hour. The purpose oftheite Assign- notation.
;mets was to recall the topics covered during the As~mn-
day and to familiarize thle student with thle syntax
and semantics of thle language. It also helped nib" A. Write A generic procedure called
programmer students become Acquainted with Ada Array Search to search An array for a
code. The problem solutions were made availaible given-item.
during the same hour. B. Moif thse Stack kS to use a linked

Each programming Assignment was composed of list structure.
two or three problems having different difficulty C. Convert the Stack pkg into a generic
levels. Each student was Asked to select a problem package.
and Implement it. This method proved beneficial
since students did not share common programming Ass ianment-7
skills and the course did not become too demanding A. Write independent task* to find the max
for those who were not going to code In Ada. Stu- and Min Of A list of Items stored in An
dents felt comfortabla with thle lAtiunga~e as they Array.
were not coMpting against co-workers.

b. Write a protram to Implement thle fol-
The following Is a brief sumary of the pro- lowing tasks:

gratiming problems that were =ado Available. Input Task rads In a list of

Assircnmtnt-1 words from A data file
and stores thet% In a

A. Write a program to compute ua person's buffer by calling the
age. buffer-Task.

B. Implement And test thle conversion Buffer ,Task :a server task vith en-
functions Inche,,,,oCntimeters, tries for depocit And
)'ahren-to-Cl s tQuarta to Liters. removal of data items.

Assl.nmant-2 Output Task : removes data items from
thle buffer task And

A. Uaiuig thle given algorithm, write the atores them in a data
function Square -Root and print thle file.
table o f square roots icr numbers from
1.0 to 10.0 in steps of 0.5. Student Evaluations

B. Write a program to calculate thle weekly Thle attendees of two courses were surveyed to
wiges of an employee, evaluate the overall quality of the Instruction.

Thle following summary Is the evaluation of a
Assignment-3 group composed of managers (5Z), software engi-

A. Using the square root function from neers (172), programmers (39Z), and other person-
assignment-2, write a program to print nel (392).
thle windchill factor table. According to the survey, 15% of the students

B. Coivert the conversion functions of found that the Ada history could be eliminated
absignment-I into a package. from the course. About 16% were Interested in in-

C. Convert the payroll program of assign- cluding Pragmas In the course. More than half of
mert-2 into a package, the students indicated that tasking and generics

should be covered in more depth. More than 65% of
the attendees believed it was a good iVon to use

314 7th Annual National Conference on Ada Technology 1989

the* standard 110 Instantiations afttr studying
generics (the Instructor used pre-instAnciations
of Integer 10 and Float 10 for Input And output). Terldocon W'onian Is An Asistant
HtAlf of Ohe students believed the Assignments wore professior in cte UlpArtmont of
fair And 25Z found then simple. The course length XAthemAtical Sc'iences At
VAS just right According to 722 And finally, POT* Caeo Unvriy lie re.-
than 9i4Z Of All students believed that cte lcture ceived his H.S. in Computer

perids wre sfficent.Science from the University
perids wre sfficentof Oklahoma In 1951. Prior to

iuar tYecaching, het worked In Industry
instucto' a xpeienc andtheAnd was Involved In developing

It toi o!itrco' xprec nd th educational software. Ieo has
students' overall response that Ada con be taught designed And taught several Ada
effectively to Industry professionals In short, lang~uag~e courses to computer science students and
intensive courses. In order to cover most of the to Industry personnel since 1987.
lAnXUACC features, the training period should not
be less than 10 days. Other factors that are 11athemAtical Sciences Department
found to be beneficial In conducting such courses Cameron University
are As follows: Lawton, Oklahoma 73505

1. The studentit should be given time Off to At-
tend the course; otherwise, job responsibili-
ties can create a lack of time anJ Interest In
Ada which defeats the* training purposes.

2. A computer facility must be Accessible to pro-
vide: hands-en practice. Thea Instructor should
be Available In the lab to Assist the students
with their problems and to provide personal
guidance on design issues.

3. Lectures should not exceed 50 minutes And
should be followed by lab practices. Total
lecture hours during the day should not exceed
three. Maximum tine for the Afternoon lecture
should be one hour. To reduce the* Intensity
of the* course, short breaks between sessions
are highly recomended.

4. If posiible, lectures mitht be video taped to
provide the students additional reinforcement.

5. Students do not usually shavre common skills;
therefore, each Assignment should provide pro-
blems with varying levels of difficulty to
meet cte needs of every Individual.

6. At the end of the course the students should be
recognized by awarding certificates of atten-
dance.

7th Annual National Conference on Ada Technology 1989 315

Integrating AdaTraining with Software Development
laulinc Fortin and Freeman L. Moore

Computer Systems Training
Texas Instruments Incorporated

Dallas Texas 75265

ABSTRACT provide for organized paths for satisfying training netb.
We have learned about the needs of the engineering staff
duiring tlhe development of courses, and we are expanding

Te.rs Insrrwntens has been providing training to its the training opportunities to cover the complete life-cycle.
engineering stff since 1977, with a curriculun that has Ill
evolved with tine and e.,tp:rience. The introdhction ofAda
training in 1983 and more recent emphasis on requirements
analysis. has provided the imiemus to integrate the CURRICULUM
curriculum ttof available courses i to a coherent sofnvare
enginering curriculum, covering the fill DoD.STD-2167A
life cycle. The Ada programming lan.guage affects several Most of lte software dvcloptent in DSEG supporte
courses, which we hare tied together using common embedded microprocessor systems running a real-time
alqroches, and common exercises. We see this as vital environment. As a general rule, the MIL-STD-I750A

processor is used although other microprocessors are being
aousls our efforts f nmaxmiing the training resources introduced. The MIL-STD-1750A is a 16-bit instruction set
aallablero so nture engineers" architecture developed by the Air Force. Within DSEG,

there are many diverse projects working under an

INTRODUCTION everchanging set of requirements, developed according to
military standard specifications and documentation
requirements. These projects may involve electro-optics,

Tile Computer Systems Training branch within Texas avionics, missile systems, or software development
Instruments has been providing needed training forsoftware applications. The primary thrust is real-tine systems, with
engineers in the Defense Systems and Electronics Group an increasing emphasis on making Ada applications work
(DSEG) since 1977. Ada training was first introduced in withinenmbeddedsystens.
1983 with a five day introductory course with ha'ds-on
experience. This course has been the staple of the Ada Figure 1 represents the basic training model for DSEG
training curriculum and has had an impact on the software engineers. Some of the courses support software
development of other courses in the software engineering development skills whereas others involve software
curriculum offered withinTexas instruments, engineering training using CASE toolsets.

The introductory course has been supplemented with an The Software Engineering Workshop is a three-day course
advanced topics course, manager's overview, and technical to assist software, electrical, and mechanical engineers who
proposal issues workshop. In the interest of maximizing the are developing software. The course introduces DSEG
benefits oftraining, acomprehensive review of thecomputer software practices, standards, and DoD-STD-2167A [2] life
systems training curriculum was undertaken to determine cycle requirements. Participants work in teams to analyze
where courses overlapped each other and to determine how actual project documentation, write portions of a
courses could betterrelate to oneanother requirement specification, and participate in a Software

Specification Review.
With a history of separate courses which either present
portions of the Ada programming language, or provide A Software Quality Assurance (SQA) Orientation Class is
overviews, Texas Instruments has chosen to look at the available for software quality assurance engineers after
entiresetofcoursesinanattempt tointegratethecurriculum attending the Software Engineering Workshop. This is a
available to our software engineers. The analogy to a salad three-day course which introduces the attendee to SQA
bar has been made about the courses that were available in practices in the product lifecycle. Participants work in teams
the past -- that is, the prospective attendee can to define evaluation criteria, audit test results, trace test
pick-and-choose what is wanted, without any guarantees of requirements to requirements specifications, and evaluate
getting a complete and balanced selection. This has been approved DSEG project documentation.
partially resolved by the introduction of training plans which

316 7th Annual National Conference on Ada Technology 1989

Software Engineering Workshop

SCM

Introduction to Real-Time systems

Structured Analysis(IBM VMWCMS(Ec.rT J
M O Structured Design

Ada
IFortran

Languages ISP/Pascal
JOVIAL

1750A9900 Processor Architecture
80486
68020

Advanced topics

Tasking Issues

Software Testing
Language Features

Software Management 1
Program Design Language

Figure I-

Real-Time principles are fundamental to software followed by a structured design course. Ilie design course
development perfonied within DSEG. Computer Systems extends the analysis by developing the application model
Training provides an "Introduction to Real-Time Systems" from the analysis course into a top level software design
course to supply the necessary background to those model.
engineers who need it. Other course, deal with the
architecture issues of a MIL-STD-1750A processor, as well CASE toolsets are gaining acceptance and credibility in the
as how to microprognu anray processors that are used by software design community. Software engineers are now
some projects, using software that csts more than the hardware it runs on.

CASE toolsets help automate sonic of the work involved in
"In the near temi, says Barry Boehm... most organizations documenting the products ofstnictured aialysis and design.
could double software productivity using nothing more than The toolsets can even provide sonic help in code generation
the best software practices and tecluologies already and producing military standard documentation. The
available." [3] Our DSEG CASE Steering Committee capabilities of Excelenitor/RTS are taught in a hands-on
recognizes this importance on standardizing an approach to course.
software development. Our approach is based upon work
done by Paul Ward and documented in his books [4]. We The Ada component of the curriculum is perhaps the most
now have in place a real-time structured analysis course, stable, yet the most dynamic portion. Grady Booch's book

7th Annual National Conference on Ada Technology 1989 317

(5) provides ilia basis forour Introduclory course. whih ho closses, and provides aconsistcnt application front which the
been available for five years. i7he course has changed studcnt can learn. Starting fromt the analysis phase through
support environments, fromt NYU Ada/ED to Data Gaweal, tlia implenicntaadon phase, students are exposed to all facets
to Dcc-Ada, aitd now, workstations. 'flK courses hav of a problem with which they have become quite familiar.
stressed proper software devclopmewnt (not simply syntwo. Sonic of thecomm"O threads ar identified imthe appendix.
With the Introductionof iheTartanAdAl75oAeonplkcr, we
ame In the process of developing additional training aids to IT G A IG A A IT H
satisfy demand forpromcessorspeific triig CUTER TIGCUAUMO TH

The Software Engineering Project Managemtent courseC
helps software maniagers and lead engineers to plan. budget.
and control software projcts. Thea course uses case studies As previously nioned, Ada hao been a pan of 'he
andi handouts that deal with typical software life-cycle Computer Systems Training curriculumn for several yemr.
deliverables Int confonnianee with DSEG software With a review ofnhe ctntire software e igitiering curriculum
tethodology and thet DoD acquisition cycle. We rvised this needed, a review of the Ada curriculumt is also in order. T7his
course In early 1988 to accoinmodatc, additional data about was facilitated in pan, by the introduction of two additional
rnagingAda projects. Instructors, who offered their fresh perspectives on the

content and roleof the Ada courses.

CURRICULUM INTEGRATION In 1988, weaded a reallniestructured design course to our
curriculum. Introducingthlscoursehas required us toreview
the approach that Booch takes to object-oriented design in

To rernove thea "salad-bar" Invage of the software his book. It was necessary tor us to refine minor portions of
engineering curriculunt, it has been necessary to review lte IIot couirses to make the content flow consistently fromt one
content of thea various courses. By understandling why a course to lteother. Ourapproach is to cninuethliause of thea
course is needed, we arebetterable to dkrifthow thcotursts transforination schema and structure charts fromt thet
can interface with one another. For example, several Of thet Analysis/design course, refining the Information content
later courses assumc knowledge of DoD-STD-2167A for into "booch-gramsw used in thet Ada course. We have
documentation purposes. Beyond having prerequisites for reisted Introducing new graphical notations due to thea
courses, we have chosen to integrate lte content of certainl natureoftiheCASE tools wehavcavailable(7J.
courses.

'Ilia concept of a prograin design language (PDL) is used in
For example, thea SW Engineering Workshop introduces the thia structured design course as a means of writing process
DoD lifecycleand documentation requirements by mecans; of specifications. With thet use of integrAda in thea Introductory
a case study. Real.Tinie structured analysis topics are Ada course, we are able to continue thea use of PDL
introduced to lead into thea Real-Time Structured Analysis annotations easily as p~ut ofdevelopingsolutions to exercise
course. Ilie cast study used in thea Real-Time Structured problems. Theli Advanced Ada course continues this
Analysis, Structured Design, and Excelerator/RT'S courses emphasis onl design notation by utilizing the AdaDL toolset
is lte same, thu low level control of a, plotter. Thec to producena software design document. AdaDL is ant Ad;a
implementation phase of the plotter wats recently introduced Program Design Luaguige supported by VAX hosted tools
into thea introductory Ada course, adding yet another [8).
commion thread between lte courses.

The importance of DSEG Programmning Standards is
The Structured Design course introduces people to tlie identified in the Software Engineering Workshop, Software
concept and notation of program design languages (PDL). Quality Assurance workshop, and reinforced in the Ada
which is continued into practice in thia Introductory Ada classes with attention drawn to thea content of thea standards.
course. With the availability of better workstation Discuzsion is alsorisedabout the motivationof sonicof ili
compilers, we have chosen to teach four out of thea five dLays; standards, such as restricting thewinh and aibort statements.
using a workstation crivironment. Thet last day of thea course
will deal with intrriLng with a VAX environment and its Wecfind it necessary to integratetiliarolecof the lifecycle with
set of tools for Ada development. This represents a recent softwart development spracticed inthe Adaiclasses.T1his is
change from when the course was entirely VAX oriented, evident in thea structure of the exercises developed, starting
7The workstation environment we have selected, IntegrAda with analyso, top-level design, detailed design, and then
[61, provides an interface for using PDL notations which is implementation. One of the programming exercises is a
consistent with VAX based tools. miodification of existing software, allowing them ithe

As notedl above, the use of one or more case studies has oprtnytowk ttemieacehseswl.

allowed use to reinforce the conniections beween the various

318 7th Annual Natlonal Conference on Ada Technology 1989

Our introductory Ada course covers the entire Ada We have, started to Introduce thle comcmp of prc and
pmrwning -wiage inr fcLy lasdays. The programmning post-Icsfing its son ecourses. We see thisuastheopportunity
labs Include timei where studctts have an opportunity to to documelnt(th1311 acoure. is achieving A training goal in X
exercisc most orfith language features. We have taken thle measurable sense. This work was recently begun and will
approach of leiting the Advanced Ada course deal with continue toexpand.
efficiency issues. We find this approach useful since
students will have learned the complete lai guagc lin the
Introductory Ada course. and now are refining their tkiign LEARNING FROM OUR MISTAKES
aid Implem~entaion skills In the Advanced Ada cotarse. This
Is carrid a step further in our Ada/I750A traininrg by rcuiulmhshagdoefnc.FrItnet
addressing la ge/gtprocessor specific dtails li det Oi r curclmhsearc ve iK o ntne h
this fmaterial, courses dealing with Pascal that were taught just three yars

ago, arc no longer taught due to our emphasis on:% single
One of thle goals of our Ada training is to continue the language, Ada. ht took u: too long to develop a coherent
involvement of thle instructors beyond the classroom picture of software development. and itegrate it with the
environment into the projet world. This benefits boih wof k enviroonents, starting with% PC-bascd work through
Instructor andt project. The Instructor Is kept up to date withI VAX-basedcmveloncnt.
hlow material is being aliHed on the various projects. The hntl nrdutr &cus a frtitoueiproject benefit by having an outside Ada expert available "'' " ''Aacus a btitouei
for candtid review of software andi documnct Imon. %w offered as a five day course, presented in one week. We

have since modified this delivery schedule to have the same
five days spread out over:a two week period, meeting every

ASSESSMENT OF TRAINING other day. We have found tileextra day between class days
reduces the impression that a great deal of informat ion wasEFFECTIVENESS being presented. The course content is the same, just

Mostcouseshav exrcie contintrts o rinfrce delivered ovr two weeks time instead of one.

concepts discussed in lecture. To encourage the completion W aecagdoreape n xri"t elc
of exercises. completion ceriificates ame provided to those project needs. Ourstudets am hem to learnhow to applytile
that successfully riish thle work. The class schedule laniguatge back on thlejob, IHavinig relevant exmnples is one
provides time to finish work during class, although a few way of having thle course reflect thle job requirements.

may equieesta tie inthe~acousesAnother way is to mrake sure the software training
peope toomplte evironmntn Is the same as the work eniviromencit. We find

the work:This has been accomplished in the past by making prjcsaewicngtwoktinsorofae
thle necessary computer accounts available for one dievelopment. This has been reflected In our introductory
additional weekafterthe class. Ada course switching from the VAX environment to a

Theeffctienss f or taiingactvitesis easredby workstation for training purposes. We have kept in anThesrisdln effithees the VAX environmen aciote sitsf mehoseb
several meanis. First is the infornial observation by thle students who have the requirement of doing software
instructor of the class. The questions raised by the people development on a VAX.
often provide the necessary clues as to the quality of the
traininig, anid the on-the-spot customlization often needed A ru level deciso bu ierl rt.iighsmd
when dealing with classes with diverse backgrounds. susata imp io ao t t he r(ol of t wrk.ninghs made

Proect hve equstd secal ffeins o th Aa taiing direction, traininig was primarily used to meet an immediate
courses which has required additional preparation by the need. With training plans in place, we are seeing a more
instructorto have the training reflect the needs of thle project organized approach to raising theskill level of a largergroup
environment. ofsoft ware engineers. instead of isolated groups as before.

Toward theend of enchiclass delivery, astandard Participant
Evaluation Form ispassed out to the attendees to complete in FUTURE WORK
a multiple-choice fashion. Written contients are
encouraged, but often are not collected in an organized
fashion. The Participant Evaluation Form is machine To complete thle training front a life-cycle perspective, we
scored, with results being merged into a department need tofill agap in integrtionliesting. We shall be attacking
database. By looking at the results over a period of time, this probleniin 1989.We are continuing our development of
trends can be detected and acted upon if necessary. training for Ada as implementations become available on

various processors, including the TMS32OC30 signal
processor.

7th Annual National Conference on Ada Technology 1989 319

Ourgoal ha% heen to integrate Ada training with oursoftware study andl exercise. Introduces 1P01. notation to describe
development curriculum. We believe that we have procs i5Pf's)omownts.
essentially met this challtnge. We found tliat several I %,t rtrKS udicia
courses were affected in the process. Integrating the courses Ii~iet oaino tutrdaayi/eino
meant more than adding prereq~uisites. The greatest Exc rto/ tor usigcurnex aple fromitheo
challenge is nw In providing the best course on Ada triig AS i.cocleraT tlolt uig omo xmlefo .
but rather making sure thai AMa is properly used as the SSeus~~otr
vehicle toward building bcttcrcngnecrcl systems. lFuind nctiaisof Ada Deign andf Prograrimng:

Object-orientation is followed fromn the structured design
REFERENCES cuswith im~plemenfttion of thm Plotter which was used in

Ilanalysis, design, and lExcelcrator/RTS courses. POL
notation is used, following on the notation introduced In the

111 Connolly. Daniel, "An Ada Training Lire Cycle dk.igncOursc.
Curriculum", 6th National Conference on Ada Technology, dacdosinA:
Murch 1988. daic opeinA :

Relates topics back to systent analysis and design concerns,
(21 DoD.STD.2167A, Dfease ystent Sofmirerc inforigobject orientation. Provides greater detail on the
Devedpntern, Department or Defense Mlilitary Standard, 29 use and benefits of 'DI.zas a rmans to describe processes.

Ferur 1r9ngGp8nS8wae.Foue ABlOUrTHAUTHOKS
(31 Newport, Johli, "Ati Orswn aa mIbn oftar" theCopucr ysem

April28, 1986rning Brnanch~ of the Humn Resources Development

(4) Ward,. Paul & Mcllor. Stephen, Striscisr.i~civepninr Departmient at Tecxas Instruments. She has a Master of
for Reaig-Tnse Systems. Englewood Cliffs. NJ: Science degree in CornputrScience front NonhTcxas State
l'rcticc-l fall, 1986. University. She has been involved in the dkvelopstent arid

delivery of courses within the software engineering
15) Booch, Grady, Sofmro Engsineering wigh Add, Menlo curriculum. She is the lead engineer for the Software
Parkc,CA: Benjainlnuilings, 1987. Quality Assurance, Software Engineering Wotkshop. and

IntruductoryAdacourses.
(61 IntegrAda, product of AcTech, Inc, Solana Beach,
California. Mailing Address:

P.0. 650311 NVMS: 3928
(7) Alaiso, Brmno, "Transformation of Data I-low Analysis Dallzts,Texas 75265
Models to Object Oriented Design", OOPSLA '88 e.:nvail: fortitnflon2.i.com

ProcedinsSqanbe 198. Frcenm Moore is also a mnember of the Computer Systemns
(8) AdaDL Ada-Based Documentation and Design Tlraining Branch. fie has masters degrees in Mathematics
Language, product of Software System Design, Claremont, and Computer Science from Central Michigan University.
California. Ile is completing his doctoral courses in Computer Science

-it thie University of North Texas. Ile has been involved in

thie Ada training curriculum for the last four yews~, with
APPENDIX: Common Threads recent attention being given to Integrating real-time

Between Courses structured antalysis/soflware design training capability into
the software engineering curriculum. lie is the lead engineer
for Advanced Ada and the Real-Time Structured Analysis /

Software Engineering Workshop: Software Design courses. Both authors are working on the
Introduces DoD-STD-2167A, project background, need for development of processor specific training for Ada and
standard ized software development. maintain heavy involvement with the project commnunity

with~in Texas Instruments.
Real-Time Structured Analysis:
Relates methodology to 2167A environment, defines steps Moiling Address:
to follow, introduces case study, and exercises. P.O. 869305, M/S: 8435

PlasoTexas 75086
Real-Time Structured Design: e-mail: fmioore@skvaxl.ti.com
Continues structured analysis methodology using same case

320 7th Annual National Conference on Ada Technology 1989

VAAILUATION OF TEA CHING
SOFTWARE ENGINEERING REQUIREAIEW~S AMVAL.YSIS (SERA)

Jag Sodhi

TMiOS Federal Systemis
iAAtOrl, Olh

AMSTEACrC AAchITc

UnderStanding and analyzin a cutsromds rcquihcrixnts for a SIIRA course was designed on thc basis or thc structured
system's software cnigincenng Is ihe primary focus or this approAch to undcrsiand customner rojenearis and translate

papr. hispaper evaluates the teaching of the Software correctly these requirements to dcvclop software efficiently
EngnecingRcquirerocats Analysis (SEiRA) Course for and cost effectively to the customnces satisfaction. Softw-are
undestaningand analyzing the customies requiremnts of engineering Is to be maintained for a tire cycle w~ith frequent

real-time, emnbeddcd systems. Thc systems software changes in plemnited fironi the users.
engineering arc being dcvclopcd In Ada for US Arntty
Comtmunications. Electironies Command (CECOM), Fire Thei first SEIRA course was expcrimnricd with by selecting a1
Support Systems, and Life Cyclc Software Engineecring few professionals to walk-through the mnaierial. The lessons
Centers (LSEC). lea.rned were included In future revisions.

Thec course wa-s revised to suite the need of TELOS. This wasm
used for lte In-house education And training of profcssionals

INMROUMIONrather than only An educational course. The expectation was
thAt students leamt fromt hands-on training which benefits their

A system neeis analysis first Including 1rotype modedlin work. This concept Is different than thc comtmercial course$
before starting the system's design.- Prliinary design and9 available In the tnarkct where the students are provided only
Detailed design. The SERA course uses structurctd techniques exposure to the sub~ject in five days.
to graphically analyze customer requiremeints. The techniques
separate the requircroents into mniageable logical independent The Course Was originally prepard to be offered for five full
functions. The relationship of functions and objects are then days duration. Mdany professionals had time constraints to
established for use later on by the Object Oriented Design finish their assigned tasks. Then classes were offered ten half
Method (00DM) and Ada wivancd features. The course days with a lecture In the morning and workshop Ins the
covers software engineering goals and principles. The course afterInoon so thie student Can take the assignmenit back to the
discusses various phases of the softwvare cnineeicring life cycle office to complete. I experimented with all of these
deveclopment phases In accordance with DOD-STD-2167A as alternatives As suggested by the students. All of these
Illustrated In Figure 1. suggestions had somne good points. Finally, I accepted the

Majority consensus to teach thie course for three full days with
PARADIGMS OF SEBA the commuitment. that the students %%ll accepit and complete the

workshop as homework. This technique Is working very
SERA has gone through many revisions to include appropriate well. The co:nipany Is saving timec and money. Each student
work-related examples, exercises, and ease studies. A generic willingly acceiiis homnework and spends their exita time to
real-time example as shown In Figure 2 Is discussed In detail Complete It onl ltme. Some of SERA teaching characteristics
along with many exercises and case studies. Upon completion Are.
of the course, thme students understand the vark-jus phases of
software engineering, the Importance of system modeling, * Functionality
(modeling assists in importing pre-tested reusable Ada
packages fromt other related systems), structured technique to * Follows set standards
analyze requirements, and possess at least one view of the
"blue print". * Structured approach

The students gain practical experience in perforpiing structured * Accuracy
wilk-throughs. Exercises are included to give the student
practice in analyzing solutions with ithe help of tools. Tests * Consistency
and quizzes are used to measure the students' progress and
achievement. * Modifiability

This paper also discusses how SERA can be automated with * Produce quality results
the help of Computer Aided Software Engineering (CASE)
tools. Trhis is helpful in creaming quality and reducing costs of .Easy to understand and follow
the system software engineering products. Thus the systems
produced are more reliable and well documented.

7th Annual National Conference on Ada Technology 1939 321

b3OTUM& W CA 1M

pf"MACAIN &L
"FAM"W I NALIM iNTLiFAC

MACIAtMW gotCIILwu
oft*"A~ WEWIUT

Ulgur 2:*Ra.icSse oTexA Daga

322 ~ ~ ~ ~ "JVX 7tvnul ainlCofrneonAaTcnooy18

L\ M CS ASM N IC BS rofessionals this knowledge so that they can utilize these
~~I~flU~~S ANTI l~~~S toois onthe ob.therrntcssnarzda

Memeis Are used :as :k nians for qu~rtitivcly Assessing the * Pnmfcssional satisfaction
characteristics of leaching SE~RA. Vic ittics arc in icalrs
that Objectively assess the quality of teaching and detenninife . Maaemn Return or Value (ROV)
how usuch knowlede the students have :asorbed. These
indicators Aid ,nobaining valuable feedlback froma the * lgnrla.gtcrfsini
students. The student evaluation 1% carefully dsgned to
seeve thc corrct Assessment of the course As shown In . Positive f dback from the studcnts

l i e o u c o f t h a c r e s a d n i c t r s I n r d c e r e o r ju A i ly P r o d u c t s on t h e j e t)

* Build teaml Spirit in the collanty

Man exrie* Inim cnivemet of the Individual's job

*Stiudents make their own work reltedJ case sitaty fo . Effective. use of liic: Andl rcsources

the finl exanination * luemeasecoortion

*walk-throughs r, VA II lAM 0 X

*Open discussions SERA has Lvcn succcsirully taught to over one hundred fifty
professionals at TELOS for the last ow years. Each onc of
these professionals has evaluated the course very high. Thlc
evaluations have many positive suggestions which have

SrUDIMS'r F~VATION NItIUr :assisted In course revisions for akingl Itimore resenaleand

COMP E.O ampablc by professiorials.
Requirements Atu)ijii (SPAO ile, concept or student participation was stresscd throughout
(Bly: Jmoitwhi) the course. The cl:ass was limited to six students for

DAMfctiveness. fhls sehcomc leads to a more personal touchl
NAMVE trEI~ between the students And the teacher. Thei class was further

divided iiito two teamas to Introduce the team concept. each
You CAM Make S ptsonAI COWtribUtlo to tisk ciftO I member first triedi the ease study himscir before having the
by sis"Crtag the I'OlOu Ing quolons: wilk-throuPh with other memibers of the teat::. Fach team::

selected their leader for a ease study to present the solution on
1. What did you Mek matt about thecouse the board. The other inctuberi or the team t lked-througl: the

7. ~ha di yu Ikt a~ ubut 7solutiomn. 'Ic tearn memibers Assisted and supported their
L Wht dd~o lie Ia~i bou th corkpresenter. This not only created healthy comiptiioin but also

3. What %ouid you hklin %o cc tcld fromt thit Aided the students to learn faster in A shorter time.
course! All :available tools of educating :and inraining aire used in the

4. Wat Aoud~oulik toIke ddc tothe oure.1classroom. T1hese tools arc thc vui-graph (ovedhead projector).
I. Wutudyotikccczddctothcousr7board. and hands-on cornputcr training. I have Always

believed In teaching a little. then put that teaching into practice
S. Arcyou %tilnto adopt these tools In by showing an example, :and finally providing ar, exercise to

your-Aowk ccxm the training.

~. I no o a pte~c 1t~ c~sntn~~hy ot~At the beginning of class. I Introduce mnyself and recjuesteach
7. Ay aditona coumcts7student to provide a brief job Introduction. iluis also liclps mec
7. Ay *dit~alcmmctsadjust the teaching for that set of professionali. I explatithe

goals and objectives of the SERA course. a brief hi:story of
how this in-house education and training initiated and what I
ain expecting fromt my students. *Thei criteria of their

Figure 3: Student Evaluation Shie(t performiance in the class will be evaluated as follows:
.Positive attitude

EPIRAMJfI * Work As :a teamn member

T7he parameters are charac~terized amiong the professionals for * Constrive conments
the knowledge gained fromn the SERA course. They have
mnany years of hard experience of trying to mutually * Raise constructive positive questions
understand thie customers requirements for developing
software. After course completion they appreciate SEiRA's . Active participation
usefulness in making their jobs' performance easier. Teaching
SEiRA is not only to share the knowledge but to inruse into the * Help other members of the team

7th Annual National Conference on Ada Technology 1989 323

" CommounicAte l'or productivity Th1C innovative students :Ire concerned with gaining personal
knowledge through discussions and Interaction. and asking

" F'inish homework questions to learn *Wily'. The11 analytical1 students seek the
facts about an issue ty analyzing ideas or knowing and

" Prom inewsputicwtr In attending the class and learning by asking -WYiiA1. *The inquisitive sudents
cmnbakfo acand breaks independentldy CArM on the caue studies th sel~ves through to

conleion. They learn by trial and error and set f-discovery.
T1he students evaluate the SERA course-. how the Instructor They vain knowledgec hy asking "if I DO T1llS. WHAT
prsented the course. Is the instructor knowledgeable eniough WVILL -I - --i-__iNARIRESUI.1'. Tfhe practical students
toaaswr ll their queistionis? Is the course useful to nie.(their riccd to know how things work ad lean through hands-on
job needs? Arc theexamples. exercises, and case studies exreces. They- believe In the practical application of Wdas,
rted totejb Acte iling to support the pro rIm and learm by asking 'HOW DOIS IT WORK". It has been a
Do they want any~ change in the material or the programr The challenge for me to satisfy all these typesi of Professionals.
cvaluation of the students aire statistically compiled and
analy-ted as foliow$- I have fotund that sltudents like the approach of developing their

onwork related case study. They select a requirementt and
*Tchexr it) to write an understantlabc case study. Often one hears in

the computer industry that the customies reqluiremenits re not
*Open crd presentation undcrstandable specially when the project Is filling or

Gets everyone to parlicpate and contribute s~cdules arc slipping. I encourage studentsto creait thir
*Knows the subject own rnteaningfual, understandlable requirement. Thils approach
*Excellent presenitation assists students to understand their own requirements and

Omiret enthusiasmn to motivate students to learn the rduesolutions as they- progress and learn In the class. On
the fina day of class the students are given a chance; to present

*Adjust with the clms andi walk-through the solution with other members of the
Well pard class.

*Right logical apiproac
*Positive attitude I experiecedci that the selection of students to form a class is
*Quality Instructions Important. Ilicse studcnts are selected from different sections

so that they can learn from each other's expeirices Then the
* ~4arialclass Is divided Iwo twb teams of three. Thc twits ar divided

in such a way that not :ill members of the team belong to the
r Ecellnt material samei section/dcparimcnt. Th1is scheme provides a variety of

*Logical format student experiences to he shared with each other. This also
*Structured creamecs A good atmosphere and is a vecry effective learning
*Well otgarilmd rcsuh tas evidenced by student evaluations.
*Quality
*practical eas studies I learned that the students prefer to have an Individual work
*Cecar explanions station. This plan assists In using hands-on training on

automated tool kits in the workshop more effectively. The
*General Comnts work station should have a good Ada compiler. Debugger.

Configuration Management. Editor, and Backup facilites.
. Excellent course: There arc many Comiputtr Aided Software Enginecring
. Good atmosphere (CASE) tools available In the market which art suitable to
. Doing execses Instead of only lecture one's requirements. I use Yourdon automated tool kit for my
. All memibers of the class learned SERA classes.
. Relaxedatmsphere
. Smooth continuity COCIt5iN
. Teacher prtsetation and m~aterial tie toge therThteci ofSR floweaymtdsohlpcpur
. Group discussion 1ctahn fSR olw ayichtst epcmur
. Student interaction nrofessionals to understand customer requirements. 11e
. Motivated to learn by doing exercises and case requirements are translated Into graphic models to convince the

studies customer easily that their requiremnrts are understood and ih
. Real education and learnting software will be developed In accordance w~ith DOD.STD-

2167A in Adm. Thec teaching lays out, in clear detil. exactly
i.PSSON~ LE~ARNED how the customer requirements should be miutually

understood. By understanding the requiremnrts professionals
I found that there are four basic different types of students. take a smooth journey through the software development

phases. This approach saves time and money. And most
" Innovative important of all. as the journey progresses. profressionals and

the customer feel more aind more comfortable and gain
" Analytical confidence in implementing the software engineering.

" Inquisitive I acknowledge that the evaluation of all my students, who have
attended SERA course, has assisted nit in building a course

" Practical worthy of presentation. I treat every class as a project to be
completed ;n time and successfully.

324 7th Annual National Conference on Ada Technology 1989

1. Sodhl, 3:;, Cnn'nuter Sygrint T1WhnIquc, Pctroccill
1ooks' Pnecton. New Jersey. (in rNoting),

2. Scdhi, Jag, Efficient Techniques foe Analysts. Design.
and Proiramming, Scientlie and Blusiness Systems.

3. Sodhi. Jag, A Meihodalogy f&~ SnD*-rg Focineerdnc

4. Sadhl. Jag. "A Handbook for Structured
Wa:1khrouhs". TM~OS. 1986.

S. Sodhl. .1r. Michael D. Sakpenter, Maagcoxvnt Aspects
or Hc:i.Tii Systems In Ada". SUINIORLIT SIGAdak
Conference, Novemuber 19H8.

6. Sodhl. Jar. Softwar Pnenerinr Remuirfcall
Anglvt (SERAL 11LOS. 1M8.

7. Sodhl, ia. otwr Pn'rivierin.- Orign (Sri)!,
T111.OS. IW

S. Sodhl. Jag. Overview of Ad& Features for Heal.Tsic
Systems, Defense Science, December. 1988.

9. Sodhi, isg, M\.lniing Ad2 Pr1kI'i 1tcing qnftwnrg
Cmifin:.In P!lreMi l~k mdccton, New Jersy,
(in rNting).

10. Sodhi, Jag, George. KZ. NI.. "Objels with Multiple
Represenations In Ada". Seventh National Conference
on Ada Technology. 1989.

11 ;US. ep. Dc!'etisc, Military Standard. Defense System:
SfrcDevelopmnt. DOD.STD.2167A. WVashington.

D.C. n9 February 198S.

JAG SODI 11 has a Master De~rcc In Matbenatics. a Degree In
'relclonuunic~don Enginecnng, and Is a Grndumze of IBM in
Data *Procssing. fit ha mny years or Data Processing
experience In business. inancial and scientific appl ications in
various EDP machines and languages. Ile has conducted
numecrous proressiona1 classes aind seminars on thcse subjects.
His publishing credits include numerous training courses on
Ada and software engineering. Jag is a senior system engineer
and in charge of education and training at rELOS Federal
Systems, Region 1.

71h Annual National Conference on Ada Technology 1989 325

Ada Abstract Data Types-the Foundation of an
Interactive Ada Command Environment

John A. Thalhamner, William P. Loftus, Charles L. ei, Ralph A. Foy

Unisys Defense Systems
Paoli Research Center

suites. Some environments have adopted the style and
syntax of the underlying command language.f6] This ap-
proach blends their tool suite with one of the command

Abstract languages supported on the host machine. The interface
to this compilation environment may then change when the

A set of Ada abstract data types (ADTs) is the identical Ada environment is available on a different hard-

underlying substrate that defines a common, Ada- ware/software platform. Other environments have adopted

oriented interface to diverse host environments. The the style and syntax of the Ada programming language.[5]
Ada AMTs, in conjuction with the use of Ada as a This approach incorporates some of the features of Ada
command language, serve as a unifying concept in (e.g. procedure call) into the command language. With
the description of a portable Ada command envi- this approach, a more uniform Ada compilation environ-
ronment. The benefits provided by ADTs and Ada ment may be available on a diverse set of platforms.
in a software engineering environment are extended
into the command language arena. The Ada Coin- However, interfacing with the Ada compilation environ-

mand Environment (ACE)' combines the power of ment is only one of the typical tasks performed by an Ada

Ada as a command language with the description of developer. Some of the other tasks performed include the

the host environment through ADTs. ACE presents management of file objects (e.g. create a file, list a di-
to the user a consistent Ada-oriented, development rectory, type the file), the interaction with a diverse set
environment that supports a uniform interface across of applications (e.g. electronic mail, configuration man-
a heterogenous set of development architectures. agement, editor) and creation of scripts to easily perform

repeated sequences of tasks. For these tasks, the developer

1 Introduction must describe the action to be performed via the command
language provided by the host system. The developer must
leave the paradigms of Ada and the Ada development enyi-

There are many Ada development environments available ren d o the paradigms supporte enco-

today that function on a variety of platforms. These plat- mand language.

forms consist of both hardware and the necessary support

software. Each Ada development environment provides at Rather than require the developer to learn and operate

interface through which its Ada tools are invoked and con- under two different paradigms, Ada and that of the par-

trolled. Each hardware and software platform provides at ticular command language, the Ada Command Environ-

least one command interpreter through which the many fa- ment supports a single paradigm-Ada. Ada is both the
cilities provided in the host environment are accessed and programming language and command language with ACE.
acquired. Associated with a command interpreter is the The paradigm of Ada that is familiar in the programming

command language which defines the names, syntax, and development environment is also the mechanism used to

interface semantics of the available commands. This com- interact with the underlying system in the other various

bination of Ada environments and host operating environ- tasks performed by the developer.
ments presents a diverse, formidable set of paradigms. The
developer must be familiar with the conventions of both
the host environment and the particular Ada environment.
The differences between these environments makes it diffl- 2 ACE Overview
cult for an Ada developer to easily move between different

host environments. The Ada Command Environment[3] is an interactive,

Ada compilation environmnenit builders have taken differ- object-oriented command language environment for Ada

ent approaches in designing the interface to their Ada tool software development. ACE supports Ada as the program-
ming language and the command language. The command

iThe- work durll,-l l"rmin was performed inder Omce of Naval environment of ACE is defined through a set of Ada ab-
2h6areh contract nunl'r N 1, C 1-o7-C-0743.9

228 7th Annual National Conference on Ada Technology 1989

- - - - - - - - - - - - - - - - - - I

ACLI ACE

Enviroftmtnt Abstract NO.%. Types

Ads Window File

Compiler ISystem ISystem Application

Host Operating System1

Ada, Command Environment
#tract data typos which encapoulate thetilwi. ctnvironinctit, principles u"e in the elevviopisntt of software apphicA.
into am, Alat framework. ACE prowidle # portable corrotton t1005.111 The 'otion oA 4dat4 absitfrctiIs a1l10 a Powerful
connoand language use initrface that curmi~tly runs on mechanism for the defInition of A commnand e"irotiment-
Sun work aiio%c ad the Uniqs l'W2/300Q#an Intel 00O86 an environment, that contains a Pot of objects Mpon which
based personal computer running M.MO. With AdA as at group Of Cott11tfind operations act.
the Command Iawguair, the enivironmcnt "say We easily ex-
tended ad tailoced through the defliiton Of Additional An iitroct data tppcis an abotraction mnechazlsin that to.
ADTs via Ada statements. capitulates Ia set Of Values together with a set of operations

that apply to the valucs.[2) Within software tkvlopmenI.,
ACE is co~npwsd of two logically separate parts-an Ada the dccounpotitiot of the system way be definedl through
interpreter A a set of Ada packages that define the en- a set or objects, the opertions; applicable to thst objects,
viroatocunt through &bstract da1t typt.. The Ada cal- andi the operations needed by the objects. AID. swrve
mnand interpreter providecs an interactive exccution of Ada As at natural description methodl for this type of system
statements And compilatio units. TeI nterpreter in ACE decomposition. AI)T% arm also a key component of the
seres the engine (Or processing the cosuniand lJUauag Objet-faenited design And d0vlopment approach.
zad driving the Ada software development process. Ad,
sa a commsand language, is used to invoke operations and The directives issued by a software developer to the un-
to manipulate environment objects. lEnvironmleiit objetsi denlying boat environnment may AMo be naturally defined
are exprewsd as Ada data types and commands Are ex through the use of ADTs. Each directiveor commanmd may
pressed as operations on the data types. Ada paiae am he viewed as anl operation; the qualifiers or paruneiters nmay
used to group data types and operations Into Abstract datat he viewed as thet objects upon which the operation is per-
types. formned. Ilogially associated objects and operations may

he gathered together into collections which are related to
ACE allows a - anbon set of Ada-orienitd objects and op. particular components of the undersyinig host environmnt.
erations to be defined And implenmented on ia diverse set9 Thtus, a parallel can be drawn between abstract data types
of platformis. ACE's Abstract data types encapsulate the And lte composition of a conunand language.
objects and operations into appropriate user abstractions. Mn ftenwrpoeua agae rvd ytci
The implemuentation of ACE's AWNs allows ACE to be inMan of to neerl pcdurald lanulatoie sntai

easiy prte toa heeroeneus et f hot evirunwds. is one sucit language. The constructs of packages (specifie.a-
tion and body), subprograms (functions and procedures),

3 Abstract Data Types and ACE subprograin invocation, type declarations, object declara-
tions, and context clauses are examples of Ada's support
for ADTs. The Ada Command Environment makes use

Dama abstraction, information hiding, modularity, and ho- of these Ada constructs to define the environment objects
cality ame some of the the modern software engineering and operations through ADTs.

7th Annual National Conference on Ada Technology 1989 327

ACE provides; an Ada. AinI interface to thle underlying p~rinting th14 result ofn a printer may bie viewed4 as either A
hoot environment in thr formn of Ada pa~ckage specific. single operatloit or A series of lower level operations. Low
tions. Thle package specificationositre proca~ctl by ACE levl Writ scr'e ms the building blocks for higher level
upon initiation. Thus, a set of iredtfinied types an1d opc. AlI)Ts.
astifts arm made Available to the user front the beginning
of an ACE session. Since thesec types and operations are Within the lanuasge definition of Ada, Ada is used to
defined via the Ada package construct, the methods uft extend its own definition. The Ad& input-output opera.
to manipulate Ada packxgcs are also used to ninalati: tions (chaptecr 14 of the referene manual j~j) are provided
tloptoofthe ciiaiiu DIs in the language by the mecans of predefined package. In

opertio of he nvirnmet AITs.adidition, other prctiefinctd library package are required for
each Ada littpletnt tation. ACE has ifnpienvented thle Ada
predefined packages, such as Standard, ASCII, Calendar,

4 Benefits of the ACE Approach System, and Text..!. This set of packages makes thse stan-
dard Ada type# And operations available in the command
envirofllnknt. Continuity is esablished between the corn-The conmbination of AWNs andi Ada providec mtany benefits mand environment and the typical Ada developricnt, envi*

in a command environment. Ada iprovikies a strong Ian. omet
guage foundation for thle construction Andi uwe of AWNl',
and AWNT provide the metchanismn for enivirotnsent, nanip. ACE also views the set of Ada& predetfilned packatges definsed
ulation. Tile following sectionis decscribec the unique fca- in the reference manual As at set of guidelintA to be followed
tures (above and beyond normal command languages) of in thle development of enivironntt Ai)'rs. The input-
the ACE approach. output packageo of chapter 14 of the reference tlisantalL7l

denote a style of opetration definition andi manipulation
that ACE has expatndedt to encapsulate the entire envi.

4.1 The Ada Language Standard roninent. The Create, Open, Closs, Andi Delete proce-
dures that are applicable to file objects are used within

Ada, as a modern procedural language, cncoulJAses man thle conimand envirounment. to decfine similar control ope-a-
of thle state-of-the-art software engineering principles. tious upon other types of objects. As) example of this is the
Theft principles Are extended into the command eniviron. similar treatment of file objects and window objects. File:
ment through thle use of Ada to define tile environmnrt objects anti window objects are eAch Abstract dAta type*
with AWNs. in ACE that are created using the Create procedure and

removed using the Delete p~rocedure. The operations that
The Ada package construct supports the principles of data thle Ada developer is familiar with in the program develop.
absraction Andi inforfmation hiding through the separation nient, enviromnzt are the slun 12operationst that .,:e to he
Of thle package speciicationl front the Package bodIy. ThM invoked within thc host environfment to accoll, similar
separation of thle specification and inmplenmentation of thle tasks.
abstract data type in Ada andi ACE is a key elemnent, in ThgudlnsAeflot4i r ealtanimythe ability to tailor thme environtincnt. ifferent implenmen- thrhe gubpne r o lowe r in Nme dti than oipiy
tations of an environment ADT specilication are an obvi- truhsbrga ae.Nmsadmdso aan
ous mnechaisin for tailoring thle environment to a p~roject's eters, tile selection of as procedure versus a function, and
tmte. For example, a commnon configuration inanagemient. the use of th~e Form paramneter as A string data type to
inte: face may be defined through a sinigle Awr! specifica. spiecify no1-ulefalit implementation options are Bill further
tion, but different implementations mnay be writteni based examiples of following thle style of Ada as defined in the
upon thie project's piarticular selection of a configuration language standard. These and other instansces of confor-
management aplctomsse.asnce withina ACE, enforce anl Ada-oriented style of AIMT

applcatin sytem.within the ACE environment.
The ability to layer ADTs within Ada supports the prin-
ciples cf modularity and locality. Environment extensibil-
ity may be accomplished through, the use of layered Al, ,, 4.2 Command Structure
For example, a new ADT specification may be written that
presents an iinterface that is more familiar or comfortable to Consistency and uniformity in the command environment
the user. Thle implementation of that ADT simply invokes of ACE is achieved through tile uie of Ada and ADTs.
the standard set of operations. Thle ADT makes the trans- Commands and objects are logically grouped together As
lation from user orientation to system orientation, rather AD'rs via tile Ada package mechanisms. This grouping al-
than forcing the human to mentally perform the transla- lows the environment to he structured and ordered. In ad-
tion. Layered ADTs also support the notion of different dition, by nesting packages and subprograms the environ-
levels of abstraction. For example, the notion of format- ment, provides controlled access to information. Users ex-
ting a textual document, building its table of contunts, and plore the environment ir. an orderly and informative man-

328 11h Annual National Conference on Ada Technology 1989

net. This logical grouping of enivirousnent componen1ts has tirely compiled system me1rely by compiling tile command
many benefits over the flat struc~ture sujppotted by nmt In"guage, whereas ill a tradlitional command language, tile
command lIangutcse. 'gle wold~ have to be rewritten into thle system'ls pro.

For rxample, if a specific windowing package is nie;e in- 6tliln fanguasae.
side IL basi windowing pck~age, novice users mnust %scf" 4.4 Command Specialization
or reference the basic windtowiig package before they call
atccets thle specific widowing package. This does not gor Through tle ume of derivedl typsand derivedl sobprograns,
antec, that novice U"el understand tile eivi roilnmtent. How. new Objects call be described a" specialixAtionot of existing
ever, it does guaranitee that novice us4ers underAlnd the Objects, i.e., described as differences front exigting object..
logical structure of thle enviromuinent. Of course, expert For example, the entire Abstract data type for ACE's I.
users who know the structure or thle enivirountent are not crarchical ie systms is constructed of existing A!)Ts that
hindered, since they cAnl Simply reference Anl arbitrarily are spcaiain Of a general ile AIYP. 'rie general file
nested comnmand via the Ada expanided nmamne foature. AI)T provides the basic operations (e.g., Create, Delete,

Another benefit of this command structure combined with Copy, Renanet, etc.) that Caio he performed oil ,Hl films
Atil is the ability to define a user interface that is consis- ril immediate spcciahizations or thle general file ADYI are
tent with tile parsaignis of Ada, as well am uniform init Text.jleu, Dimetory.Filits, and sinary.Fileu. Each

treatment at objects and oprations in the envirounmtt or these specializations pirovides specific new or redefined
Stich an cnvironment would stipport (at all levels or inter- operations for each type. Any oWeation defined for the
action with the environment) Ada philosphies, providing genllt) ile AI)'!' that it not redefined in% ft ipeciAlixation's
tit e.xcellent vehicle for Ada development. The facilities operations is inhecrited by thlt specilxation. tercfore,

of oerladig ad drivd suproram inAdaproide each spectialization of thme general file Aml inherits thlt
ofe opperloaditg tnd derie ubpora int e tda poiall create. Delete, etc. operations, which in turn allows ev.
rte oportio ad e unior inesraces tove loilt: ery type of ile in thle ile systemu to be manipulated via the
ablit ofcl rate operations and bects As tesrie bofe, the gemieral file operattions. Specialization provides a very pow-

ronnitnt object is sup~ported in Adak through Overloading. cene ores taccioredn foriatinu Appeictin oreus cal b
ACE supports overloadling to Allow the uniformn dfiition exeddo iirc frptcuaaplainsruerms
of abstract data types acros thle entire comnmnand emiviron- thectics without havinS to describe the entire AmY.
luent. Inl Addition to being consistent with the Ada litAtm In addition, since Ada (And consvequently ACE,) implicitly
dard, the enviroinmnt is als uniform amng the Al's derives subprograms for every derived type, mutcht of thle
that are definedl within it. work that is normally assuciated With strong$ typing in a

conmnand language And thle collitrmmctionl of at hierarchical
4.3 ommnd ppliabiitycommnand environment is removed tromn the user. Each
4.3 ommnd A 1)lcabiityderived type implicitly inherits a set, of commands that

One benefit of mnoderni procedural languages is the notion eal t ai aiuain

of strong typing. The benefits of strong typing within Ada
are also of benefit to Ada As a command language And the 4. Command Extensibility
definition of ADTs. While Ai)Ts allow the definition of op.
orations for objects, strong typing enforces the proper use
of thle operations. Many of thle problems associated with a Ani important part of Any state-of-the-art environment is
novice's use of a command language canl be attributed to thle Ability of thie envirounment to evolve as technmology And
the application of operations to inappropriate objects (e.g., methodologies evolve. ACE's Approach is to use Ada AM)Ts
printing a binlary image).)in a strongly typmed command to define the commnud language (creating a commuand oin.
language, and in particular ACE, if there is no operation vironment). As described before, Ada AD'l's have a clean
Uprint" defined for binary image objects then the uscr call separation of implementation from specification. There.
not (even Accidentally) Apply thle operation. fore, as technology makes small leaps, thme new techniques

Anoter eneil, f sron typng n Acommnd angage can be incorporated in the AD'!' implementation while not
As nthe beatfit of r typig inftar cotms. lanyg effecting the specification. [it Addition, whmen radical break.
iftebnftso si Ms in the operarution of veylre otae ytm.ma throughs Are made in technology, new environment AD~rs
softwar bseneis fe u tin edIY' in the comnstrct ngfthee canl be constructed And incorporated into the command

which acts as the "glue~ which holds such systems together. teailimt ofsAda t Aimia , new areohliits. b

Having a strongly typ)ed commafnd language helps guaran- teaiiyo d oAsmlt e prahs

tee that thle systems are correctly constructed fromn their
components. In addition, having a compilable command
language allows anl interpreted system to be,:orne anl en-

7th Annual National Conference on Ada Technology 1989 329

5 ADT Interfaces within ACE 5.2 External Images

Abittact. data, types within ACE ate dtfinedl by Ada, pack. A vast array of %pplicationsi and supplort tools are typl.

agos. 'rhe packaJge specificAtions coapsulate tile definition cally available within thle host environment. ACE does

of the objcts and thlt operattionls that are app~icabit: to the not bilpose a restrictive eliwirOlinmtt that limits the flacil.
objects. Additionally, tile package specification providesi a iies availabile to thle software decveloper. Through a host

mechanimn for information hiding particularly, hitting of Operating system A D?, ACIE provides anl Iiterbice muecha.
the operattions' hiplementations. Thle Adli package body "it'll which itmakes externtal executable images oil time host,

contains thle impknmlentation or thle object and its resptc- systelil avatilable frail) within thle command enviroment.
tive opetationls. Thus, envirounmnt AD? specifications are able to tfint

a consistent Ada paradigm for thet user that may imlIterface
ACE supprts two muechamismits ror thle linulentatloit or with a diverse set or Atia and non.Ada external inuges,
(lhe AD? bodies: inferprrid and iwiII-in. Both or thefe including the hoot operatimig system.
tKcchaIIIitis support A dilrerent facet or covironmncit. defi.
nition, and togr-ter they provide thet facilities to conipose Tilt ability to Access external imiages providecs thlt oppor.

and extend the Ada commnand environment. Additionally, tunlity to build hmighm level, Ada abstractions front low level,
ACE through its ADTs provides a mnechanismt to access non.Ala applications. Rielationshmips nay berformcvd anrg
executable images external to ACE. This provides added stand-alone applications, providing a higher level data abl.

power and flexibility to thle commnand environnment. straction that encomlpasses thet wwsr's decsired fiuctiounal.
ity. 'rte intricacies and/or idiosyncrasies of the individual
Applications are hidden from the lier in the Al)? inp6e

5.1 A T Bod Implmentaions ntation. 'rlte implementation also hidles thle handling

5.1 A T Boy Izphcmcntaionsof imntermediate results bWing passed between Applications.

As previously state%), Ada is the command language Ac- 'reuser simply sees thlt pecification, which is designed

cepted by ACE and interpreted by ACE's commnd Ian- to provide a consistent interface within thet Ada-oriented

guage interpreter. 'rite environment (as definedl as Ada nirnet

packages) is read by thie command language interpreter fly invoking external imges through environment AlYI's,
Andi processed, resulting in the claboration of Ada pack- tile functionality of ACK canl be extended into domlains
ages. Trhis process of interpreting Ada. A D? package spec- Which Canl be tailored to specific environments, projects, or
ificationls and bodies is thme typical method through which usr.P eapapojcoitedongrtona.

AD'r aredec.%re wihin CE.agemnent A)T can be definedl which, provides software Conl-

ACE provides ani additional mlechanisni by which package figuration control objects and operations. 'te programis

bodies my be defined. Rather than interpreting anl Adai wich must be accessed to support these facinities may ex-

package bodly, the Ada code may be comp~iled and linkedl ist scattered about the ile system, or perhaps in% a common

into the ACE ex<ecutable. rte package specification for directory with miany other programs unrelated to configu.

thc package is still Adai code that is interpreted by ACE. ration mnagemnent, tasks. The configuration management

A pragmna directive informis ACE that the package bodly as- AD? canl provide a coherent view of these operations and

sociated with this package specification is already compiled hide thle organization or disorganization of the underlying
andl included withina ACE. programs.

This method of package body inclusion provides benefits
to the runtimne efficiency of ACE. ACE may be tuned such 6 X Window System Example
that frequently invoked code is executedI at the machine
language level (i.e., the compiled level), rather than inter-
pretedl. This section describes the use of abstract data types to in-

Another benefit of compiled implementation is that it pro- traet h idwSse.TeXWno
vide ineraciveinvcatin ad copostio of ompled System(41), or simply X, dlefines a window system protocol,

cides wintcie nctoand ciompontion ofxcmpledo with which client applications and window system servers

code it the comando Ssenviront AnE whzich pof communicate. For application programmers to make use of

tis Ais trcst the X Window System AD(AC hc ro-tl X, a set of library routines (Xlib) and a set of higher level

impemenAda inrface stioe ndo Sytm)c.rnl programmable interfaces (toolkits) are necessary. Ada in-
implmened i C;seesectoii6).terfaces to the Mlb routines and toolkits have been imple-

mented that allow Ada applications to make use of X[81.

330 7th Annual National Conference on Ada Technology 1989

ACE contains x. st or AWNS that providcs 1InterActiVO AV. Fac of thecse two ablstractions Are specified within AM.'
Coss to tile X Windiow System routines. This permits through AIIrs. The user may thrn select which altac
ACE to be used as a1 rapid prototYping enviroliffict (Or tiont is mnebt App~i~it for ilia particular circumsILtance.
the developmlent. or X application$. In1tractIvely, windolws D~irect visibility or lte desired set or operations may hie
ily lie created and destroyed, events processed anid prop- acquirt) bjy ithin a -ioc"' sotmi for lte respectiv
xglited. and graphical elements manipu1111lated withinl Will- parkAge.
dows.

The ACE AWNs for X support each window As :tAvx 7 Conclusion
rately Instantilted window Object. Once a window object
has been declared anti elaborated, a set of opcrations miay
bet Applied to each Witdow object. rihe window object and 'rie Ada ('enniumnd Vinvirontmnt providesa. commitand lan.
tile appdieabijle set Of opMration Are defined through ACE Siag tt isAit and supports ani ADTI view of lihe un.
ABI's. These AI)Ts corsist or Ada packAgc s~e iltoue def ying operating systeism and application tools. Through
andi bodies. 'rile 111ajority of tile pacIMag ilntplelmwttatlott ani ADT 4iefinitlon, unique, hetertotcnous systemus may he
consists or interracing with tile Ada bjinding to thle X Will- presented1 to a user in A unliforni and4 consistent dAlccrip.
(low System I. tion. Tile specifications or the ADT remailin constant across

limterogenotus environmenctts (mlachinles and operutings Sys.
,rile x Window Systemci providles an excellent, exxample, or tcit) with different impkicutution or the AB~rs to ac-
using AIYI's to tailor the Ada commandl lilliuzigi to skn cootmaw cnvirounistal differeces. The AIYI Approach
individual or project,$ perspective. 'rie X Windlow Systemi enconimass the paradigms or time Ada langiage iind ex.
is described and defined through a set or tcrinlmolg ti tends (lit prograimittg language approach into the uiscr's
is basedl oil wind1ow system concepts And thle directions or typical Interactive enivironmenclt.
thle developers and lnpimentors or X. X was designed to
be hardware, operating system And langsuage indepenldent,
hence tile namesc or operations within tile X library and
the X toolkits arc couched in window systemt terminology. References
This terminology 1ay be flavored with thle imlplemencitor's
primary target environment dialect as necesaliry. (11 Grady Booch. Sofluirr Enyintering th Ada. llcn.

ACE defines two sets or x Window Sysete AWNs within jamiut/Cui~mitmigi Publishing Co., Menlo Pairk, Callifor.

the: standardl ACE. Bloth of these support X in ant Ada . niia, 1987. (Second Edition).

vironnwlnt, but with different terminology. One set or X 2J David W. Emnbly and Scott Nl. Woodfield. Asswsiny
Window System ADTs is defined using.X terminology; thle thie Quality of Abslntcl Dalt T'pcf It'ruilcn: in Ads.
other set or A Drs is defined in Ada terminology. Ani exm- Technical Report, Brighm Young Univesity, Plrovo,
pie or differences between X terminology anid Ada. terminal. UTp lteibcr 1987. I)YU-CS87-1O.
ogy is in thle Operations Used to instantiate it new window
and to terminate ant existing window. Using Ada termi. [31 William P1. Loftus, Charles L. Oci. and Jolhn A. Thai.
nology, these operations are named Creats andl Delete re- Isamer. 'rile Ada Command Envimnnt-ACE. lit

spectively. These niamles were chosen because they aire used Procceedings of .da EFrpo '8$, Anaheimn, California, Oc.
in Ada, to define similatr operations when applied to exter- tober 1988.
nal files inl Adla's ile management packages. This supports
thle notion or a single paradtigin to the user-Ada, where all [4) Robert WV. Schecifler and Jill Cettys. rihe X Will.

operations, including those with other applications, are de- (low System. lin A01. Th,stictions oil Grazphics, April

fined and invoked in a consistent, uniform manner. Utsing 1980.
X terinlology thlese operations are named Create.11indov (5 Aly Ada Suit Workstatlion Compiler User's Guide.
and DeutroyifndoV, respectively, to conform snlore Closely Alsys Inc., Walthamn, Massachusetts, 1957.
to thle standard lmnes found in thle X Window Systeml.
This permits users who are more familiar with X to oper- [6] IDS Users Guide. \'ERI~X Corporation, Chantilly,
ate in anl environment in which they are mnore comfortable.2 Virginia, 1987.

ItNotc tbat these do not conform exactly to tlit C Xlib intelface [7] Rererce ?.anual for the Ada Programming Language.
routine nairmsof 1Createlliadavbtd IDroyViado. Since AC~is United States Department of Defense, 17 February
an Ads environment, the X m'ames were slightly modified to resemble 1983. (ANSI/M IL.STD.1815A).
typical Ada subprosramn names. it time desire were to support a C-
oriented interface to Xlib, an A DT could easily be defined that would (81 Statemenst of W ork for Ada-X Binding. Science Ap-
support the C Xlib interface. plications International Corporation, San Diego, Cali-

fornia, September 1987. STARS Foundation contract
#N00014-87.C.0742.

7th Annual National Conference on Ada Technology 1989 331

8 Biogra~phy

Johni A. TIhAslAiner is the ;nanaxtr of STARS Founiations C1hiarks I.- Geli is a inillsr of the Ad1a Commands Bnviron.
P~rOicts at Unisys. I1k has ovcr ninleyears experience In lte inesh 41evopineni trainS. I1k has over six yvkrs experienice
design and ilmpknilationl of softwxre support tools. hIN In the designt and devrloplunet of compilation, windowings,
primtary illierests are lin lte areas of trst/validation tools, and operating sytits sotware Ii is primary ittrests are
Ada, compilers, and kuser interfaces. lit holds all M.S. its In time areas of *Ofkware engineering, compiler Iccdmnology,
Computer Scienlco fronti cornlsli University and U.S. In windlowings systems, andl enginecring Workstation lechnol.
couttr Scence front ltme Pennsylvania State Universlty. OU. lit! 110141s anl M4S. In compilutcr Science front the Uni.
lit is a riember of the ACM istlte 1lM1E Computer So- vermity of Illinois, And L B.S. in Physics foist Butler tfni.
ciety. versity. Ile is a mesuber of the ACM. and thme IXl and

IINAMOComjnmtcr Society.

William P. Loftus is the chief programmer for thme Ad& hIAhl A. Pay is a member of the Ada Command Rnviron.-
Command Envircn it STArounmmdation project. Ile mnent de~velopment team. Ile Itas over two years expriene
hIas Over five Year$s perience in the design and develop, With software development environmnents and database
mnent of comtpiler generattion systemis. hfis primary interests mtfigemekft systems. His primary interest is in the area
are in tilt areS Of Attribute gramnmars, compiler construc- Of softWAre- engineering environmentsIAJ. Ile holds A B.S. in
tion enivirolnents, And Ada. Ile holds a B.S. in Corn- Computer Science fromt Villanova University.
puter Science fromt VihlanovA University, and is a member
of the ACM including SIGAda, SICPLAN, SICSOFPT, and Authors' present address:
SICART. Unisys - Paoli Research Center

P.O. Box 517
Pali, PA 19301

332 7th Annual National Conference on Ada Technology 1989

A Software Engineering Documentkn Environmient

Thom'as J. 117ticckr

U.S. Army CECOM
Center for Software Engineering

Rt. Monmouth N.J.

Abutract: Documentation wse uussall excord& ptootm Ife In ffout the computer, and used to amist the creator and users of
qmi the i effort to undetutand and orgsnos the itclmtty the documentation in their v3sks; and the structure of the

and itchnsq~wt of documentation and of piotdlng tooti fot its documentation can be captured in a formal qwecicaiov,
prepar-stio and iii ut Ii small compared to that %rftkI4 to allowing significant parts of the systcm to be methodically
ptoprmmfog#. ThMa paper dwt i~ an effort to detop an tnniovA. or even automatically generated; and the documentation
t1" approach to the entry, gtae. mnaipruatton, and ptvitmon enivironment has tin ordiicure for which centers around
of gruwird text. taplics. and format (boh "ecifitmwri aid a semantic database of typed objects. relationships among
1w05um) documnmationt'AhiCh entanCei the efficency and elftC. objects, and semantic functions defining properties of ob.
0vten of the auto and uitri of the documentation jects. The databae is generated from a formal specifics.

Our approach to the creation or itie docunentation trvmmo tion of the classes of objects, yielding a set of abstract
ptovidet afraoikt based on three concirpts Owe documentation 1i data type packages, in Ada, whose types are instantiated
Mtted~. and Othereote saint of tOw semantics can We captured, to form the database. Activities using the database art
manipulated by the comnputer. and tW to atsmc the cseator and methodically dtvcloptd as applications programs using

vit ftedocuwnntmion in their ixls. the structure of the hspcfatowiharsftemgnaedrmth
dlocumntaton can be captured in a AttmWo jpc1caiO4. alloiiingthseifctoswthprsotem enrtdrmte
90ficant pats of the srstem to be niehodically W tern automnal. speifications enhancd by semantic functions.

catty generated; and the d ouientation cetnnit~mnt has an rar- hspprfrtdcsestecneto tuimchitectioee %i~hch centers around a semantic database of tqped obTi.ae l~tdsusstecncp fsrcue
ject;, retatiortthl among objects, and Ronlntic funnsft defining documentation then describes the documentation eniviron.
properts of objects. Tw database and applications ptottami are ment's architecture, explore its use, and illustrate the
Steietated from for mal specifIcatIons of the classes of Objecti. yklit. technique of generating the database arit applications. A
Ing a we of Ads packaiges. This paper describs the documentaion omano piper describesthdelomnofnefte
triitonment architecture. explores its use, and luutrates the itch. copnnthdelpmnofoefte
n"qu of Senerating the database and applICAtions. A ceimpanion applications and experience with the use of the technique.
paper describes the developmnent of one of the applications and ex-
perlence %ith dte use of the itchnilue.

Introduction Structured Documnentalion

While documentation usually for exceeds program code in When a document is written, the author has in mind an
size in most systems, the effort to understand and or. organ!zational pattern of the contents along with the stan.
ganize the technology and techniques of documentation dard organizing structure of the type of document being
and of providing tools for its preparation and its use is written. Readers, likewise, look for both typographic andi
miniscule compared to that applied to programming.This semantic organizational patterns which are either implicit
paper describes an RMD effort to develop technology for int the flow i-f the material or explicit, providing
preparation, maintenance and use of textual, graphical cuesltqxjas to the author's intended organization of the
and formal documentation in an integrated fashion within material. Documntation has structure, a significant part
an advanced Software Engineering Environment. The of a reader's ability to understand a document is the
paper describes an innovative approach to the entry, ability to discern the author's intended structure and then
storage, manipulation, and presentation of structured text, to tunderstantd the contents of the document within that
graphics, and formal (both specification and programs) fromeworklontial.
documentation which enhances the efficiency and effec- Everyone knows that documents have structure, the
tiveness of the authors and users of the documentation. last paragraph of the introduction of this paper, along

The approach taken here to the creation of the with its section headings trys to expose this paper's struc-
documentation environment (a documetntation e.iianment is turelmeyssi, so the issue is not whether documents have
aflaiojros to the combinarion of w., TROFF. Pic. sis... of Unix-) structure but rather whether the doctimenmation develop.
provides a framesvork for its construction based on three ment environment should have knowledge of that struc-
concepts: the documentation is structured, and therefore ture and if so how does it get that knowledge and what
some of the semantics can be captured, manipulated by use can it make of it.

7th Annual National Conference on Ada Technology 1989 333

Olij D11] Old Store

A.c.A /Data Base

0 0Q

*0
0

Figure I Apparent Archilecture

The idea of using the structwtre of a document to assist not capture the structure in a way which allows the
in the automation of the document's preparation began storage system to provide access to that structure to other
with the Scribe iKs system which separated the work of tools for other purposes than printing.
the author from that of the document's designer. Scribe In order to provide this integration and semantic sup.
provided the author with structurc describing commands port, we must look to the technology areas where high
to use to delineate the structural parts of the document; quality systems with these characteristics have been
these commands were Interspersed with the text in the developed. Concepts and facilities to provide the integrat.
input to the Scribe system, which was prepared with a text tion we need have been developed in the database field
editor. More recently, the LaTeX Itxis system has and thus we base our architecture on the concept of an
provided a similar cabability as a macro package to the integrated documentation database. The major advances
TeXIrnsal document preparation system and SGML IStoM,.nI in the area of semantic support for automation have been
has defined a standard external transmission form for made in compiler research and thus we base our ap-
electronically transmitting and printing documents using proach on the use of the structure and techniques of cam-
similar concepts. All of these systems are 'batch" sys. pliers. The architecture and its implementation based on
tems producing the printed output document directly, and these techniques from database and compiler technology
completely, form the textual input. They allow the author are discussed in the rest of the paper. The architecture is
to encode the structure of the document in the text but discussed in the next section, followed by a description
they do not capture that structure in a form which allows and analysis of the usage of this type of environment
processing other than printing, along with the advanced functionalities made possible by

The Etudeittamtil system, and its decendent Inter, this approach. A description of the implementation ap.
leaftwpii, provided interactive editing-formatting based proach will follow that and then an example will illustrate
on this structural paradigm by integrating an interactive the method and show its advantages.
formatting system into an editing system. "rie Interleaf Documentation Environment Architecture
system, on which this paper was created, provides a well
engineered "what you see is what you get" (WYSIWYG), The overall structure of the environment (Figure 1) is that
interface providing the structuring commands in an un- of a database systenitDAPSE). a central database of struc.
obtrusive manner by function keys and menu selections. tured objects, which are of numerous types, worked on by
While all of these systems, progressively, provide authors people in various roles, performing appropriate activities,
with easy to use document preparation systems, they do creating, manipulating, and using collections of objects
not provide the integration of information storage and and their components, through presentations of those ob.
processing nor the semantic assistance which is pro~ided je.ts made available through appropriate views on the
for programming by the best integrated programming en- database. The types of objects important for this paper
vironments, eg. smalltalk and interlisp. That is, they do are various types of documents, but we expect the docu-

334 7th Annual National Conference on Ada Technology 1989

Cst 1ouon i

It An Wmpk nilt

ih Msii anciamrt "umm A"or

dtIic h s:tu*Jt nt) a h"j*

nunilvt of ditltfcni tipc* to)o
a :Catusl I hw I till Anxili) Text
W.~ a "Uen: SectiontIx II k'tctt
142('Mt urMInIAM t-ranpoon"4 fi a number 44 lub-
rDowmeicnt:~i comliftni timU31 segment oft~ 4ci eot lirvi to shpw
)1utut I 4fn fOotnot I it .i,~u~uli
ati udcA otlher scement a=M.-go:40.

ti~so tttf. stj.t al cmn iJ1- -t~ -

DA t1 eUg~iton Splcm) enili

In tile documnent Along uilth section

Srcmtnt.11fote lo c ote tpe* of stture

Segmnent.rfrtc fF_ t V..ai__

ParseAs
Uttnars ,

il .. e

Formattitrcd .

Figure 2 Formaultilig Activily

ments to be just part of an integrated collection of obijects display'ed within windows on thle warkstaion screen anti
in the environment, to Include programs, test plans. for- in hard copy form through presentations of thle absira&.
mnt Specifications, Ce. in an overall system database. tions provided by the views.

At its core, the architecture provides, n repository of The objects arc structured (witli thle uv'era tree'4. otutI

objects. along with their properties and relationships to being rtovdcd by tile 'is made up of" relation of an .ttx, I, it%

other objects; and, as the objects may be structured. it components) with thle components of objects being thenm.
provides for composition of objects from sub-objects selves objects, thus there is no real ditincion b'otveen
along with their properties and relationships. Collections the coarse grained structure used to describle the aritec.
of objects. with subsets of their properties and relation- lure and the fine grained structure of an object %isible to
ships, are presented to users through views which provide an activity. This uniformity of concept provides a unifor.
contexts for those users to work, The users are involved in mity in the user's interface, as well as in the us-Ws con.
somec activities using these views, with a user behaving in cepitualization of the system; the uniformity assists the

a rle knwntothe environment. with~ respect to each user at both the stirface(syntactic) and the deep(semantic)
acrolvkntny t level. Making use of this uniformity, a preview of thle

actiitymain example to be presented later will illustrate thle an.
Tfhe database appears to the users as a, basically tree chitecture.

structured, collection of objects, defined by a set of
abstract data types. These abstract data types define the The formatting activity (Figure 2) produces typeset
abstractions provided by the views of the database; the text from textual input annotated by formal
implementations of the abstract data types provide the markupfsgmil, in this case using the LaTeX markutp Ian.
representations of the objects, in a form chosen and op- guage. The input is one of the presentations of the docui.
timised by the environment's administrator(a rote Analogous ment being processed, being presented and edited in the
to that or a database administrator). The contents of objects are LaTeX language. It is interpreted by the environment as a

7th Annual National Conference on Ada Technology 19C9 335

concrete syntax tree stru.;turcil by %he UnTe>N concrete 111 CXAMPle %ie Will use Is the developer's documnen.
grammar. itis transformed Into~ the absract syn~tax tre 16011 ofda snml embedded computcr system using .1 style
stored in the dalabas and th-31 15 then transvirflhd ito Md111red by usiwtmu front that used on the A-7 project at
the typeset d~ivoment i(n-0rtr -fs-1C O)ifui 'feel defined NRL.,t- The hird copy form of this exampte is avail.
b) the document's dcoin oieedI, h "'cv's able in Adli Leticrswmit wwt%. The entry of the contents
L~~ft g'natfi. The J-%umnent's k"WiLcai structure is of the ti ummittion is done throuih tilt use of a format.
sluiun In the figure ai the indcni ite Iviw etei' the ting linguage or a structure eiting System generated
rrcnimiotlnsl of thia two ;oizrc s~iitax tirec The nor- from 4 structural sp cifiation of the logil structure of
mil nicth,,-- of use. os shumn by this example0. Is the th doucaln we uil illustrate both.

m~nrultio an u~ ofPircsclations derived frarn the
nobiut ' anrurd olwstored in the databast. Text entry. using the formatting; language. takes tex.

tajitac trcturd of ~tis *i~htcucrisa ol tualI input inteirsocrsed with logical markup omminds,
tinmf pcnintikns of th sraicturs.ei rst i 4 thlec for example. the beginning of the bcha~ior sction of the

dion. and their prsenttio'ni Abstractions arc speitzied sytmlicf.,onwudbIpta.
through abstract grammars. prestntatlmns through con. Ns, repiht Cont~rol System athvior Susys,
crete grammars and rerre sentamions through data struc. ,X
tures. Thesc specifcations ore procssed into abstract data oll
type definitions. transformations of objects front their " " ~ IO*
abstract type to or fromt one of the concrete types. and pAr This 3toplight Control Softwrar Subsystem
implementations of the abitract. andi concrete types SPOC fict l Usg A conceptuali Aodol of thit
through a methodical technique developed in the comipil. tj~hxvior. A stAto rschina. for rativstion In
ing community andi describedl in the section on Formal undorsthrdin; the functioning of tht system
SpcificltP'n and Software Generation. An a A IrAaOwcrII to dtiscribo the funttonint

LUsige of the documentation environm~ent. structured of 04I system. The stoplight control systos
according to this database architecture will be covered in cAn be understood As A finitt. StiALO wschine
the next section. showing somec of the advantages and In. whose states ar the coined states of An
novations of this approach, The methodical implemernta. Approoich for each direction. each of whir% Can

tion technique will then be described, showing how the be 9apty or occupied. and a light which csn be
database anti its activities can be specified and thc red. yellow" or green In each direction. Tho
software implementing it can be methodically, or even traffic flow In tho Intersection controls the
automatically, derived front those specifications. After values of the, Approsch sLtos and the system
that, example activities. providinig the formatting of struc. Adjusts the light staWs to control the
tured text, will be described, illustrating the approach. trAff ic.

Docuinentatioti Enivironmenit Usag~e Nsub(Systa behavior)

The database orientation of thea environment provides the Npar The Lehnvior of the Control Software is
well known advantages of information sharing, organiza. Specified A3 a Nait~inite state AAchina) In
tion and control, buz the enhanced concept used here also tem of the following concepts:
provides for assistance in performing work on a system's \snP(Thr* are two \kw(Dirclons). named
development, and functionality just not possible in non- \a=mpS) and *=(Ey)j
automated systems. We will illustrate the capabilities of An Nkw(Approach) for each \kwidiroction)
the environmenti by showing the developme-a and use of ~ itch r~y be \cm(Occupied) or Xci(Upt).
parts of an example of the developer's documentation of A \Itw(Light) for ach \kw(direction) which
an embedded computer systemistopl). We' will first show r~ b

an storage,) ilutaigteifr\ e=(Yallow) or \a=(Orlicn).the information entry an trgilsraigteifr kw(Switch) labeled \a=(Off). xam(On) or:
mniton organization capabilities of the system and show- \mVtYr~a.
Ing how this approach provides assistance to the user in
performing necessary functions. Wec then illustrate the ad.
vanced functionality made possible by this approach by
making use of the fine structure of the documentation and Given the meaning of the commands, (\ec a section. \Suba
relationships among components of that structure to subsection. \pr w p~ragrapli. \inp er indented p~r:Cr~ph. \kwa
provide a hyper-media browsing capability for the keyword, Nem u emphasized text) this input would be parsed to
documentation. place the contents into a structured object in the database,

As bisIa lcholoy totopmnipsote. Sme~35S eis ina lnhed as will be sho%%n in the next section. and that object could
form, some pails ate in a psotolype form and some pat ol exs Incneta then be formatted to produce the followving output-
design form.

336 7th Annual National Conference on Ada Technology 1989

4. Stoplight Control System Behavior Subsystem. Woen filled In, it would enter the informiation in the
4.1 oncetua Ntocl.bibliogrAplhic ditbMis and altoch a rcfercn,:e relatlion to
4.1 Cncq~at ~the text segment.

'this Stoplight Control Software Subiviten Forival specification - Sortware Generationi
Specficotlmn uses a conceptuil niokel of the be.
hAvlor. a state machine. for motivation lin undecr. The Idea of methodicailly, even auroni,;i;lly. generat.
stanlding the functioning of the system and as a lng progranms front specifications started with thle '*struc.
framework to describe the functioning of the sys. turcd programmning" miethios of Ja,:ksonY*,t: and
tcm. T~he stoplight control system can be under. Wirthn~o-i n the midt seventies. I ere. one %vould define
stoodl as a finite state machine whose stes are the the 01t3 structure$ which A rN.rani nceded to work and,
combined Slam of an approach for each dlirection, from the natural correspoindenc bet%%cn da~ta structures
ch of which can be emupty or occupied. and a and progran structure oc ini c5ms sin t to "t j c,;,3t

light which can be red, yellow or green in eah tWis"n o 4,As the PrOgrOn's MtUcture would be
direction. The inraffic flow in the interscin con. inedl~~ically derived. 11T Mlomic neriration of both
trots the values of the approch states ,.nd -,he sys. dmW structures and programnt rurucr. In lte limited

the tafficdomin of programming lngua-e compilcrs. canmc into
temadjstStheligt sate toconrolbeing with the compiler-compikcrs. at about thle sanme

4.2 System Behavior. timcivAcc. w,'iTe extension (if this technique to
prcsramming environments occurred later with the Gin.

The behavior of thle Control Software Is cllfiti44"Al pfolecr lit CMU and th1c l)AI'S
speccified! as a finfic state moehiitc in terms of the prjetiDl ~ . We ore extending the DAPS13 approach
following concpts: into lte (structured) documentation area.

Trhere oire two D~irections. The specifications ore written in on attribute Smrnit.
named N S and E % ntiA nlotationl andI a conintition i f methadilkal andi

An Approach for eachi direction automatii generation of the databas e and programs is
which may be Occupied or FEm'piq. used to construct the environment facilities tncujoi A

" Light for each direction which may be enrita ukd to PlA0 a rumtson. -- ting out the dtiis so
Red, Yellow or Green, 11:1AM MOMMI 1u00ti tOcn Ne geneertd).

A Switch labeled Off. On or No tinn.Te technique is best explained by illustration-. sup.
Which has the same logical sinwiture as tile input, with: pos itis desired to niake a system Which formats text,

the oncetesynax cnsieraly indaireaul difernt. including subscripts. le. on input of 11- sub) .%,al should
the oncetesynax cnsieraly anduuful~# difernt. produce E1.val. Using this technique, we would write an

Structure editors have a k-nowvledge of the logical attribute grammar,. specifying thle structure and
structure of thle object(s) they are edliting. This knowledge functionality of [the system:
Is provided to the editor In the form of a speccification and S B
Is presented to the uiser in thle form of help or assistani.e
In thle entering and manipulating of thle contents of the MBps :a Iti)
object. WVe will illustrate this b showing thle use of ti form (S.h11 :a fl1ht)
based reference editor for entering bibliographic R3 -:m 131 1
references in the text. For Instance, When attaching a (I3) .ps :M BMps)
bibliographic reference to a segment of text, a vwindow (l32.ps :a B.ps)
With a form based editor would appear on thle user's (131 :- max(131.lit. 12.lut))
screen; it would request the type of reference joutnal 13 :-. B1 sub 132
paper, book. ctc.) and then prompt for the contents- {rn.ps :a B.ps)

Refcren=e (132.ps :-- shrink(13.ps))
7ype: book(B.hrt :- displfll.ht, 132.hit))
7Y~oe: book1i ::- text

Author: (13.ht :- text.hrt X ll.ps)

Title: Where S - segment, B - block, ps -point siz.e. lit
height, shrink a function to cakulate lte size of a numeral

Publisher: when used as a subscript. disp a function to calculate thle
height of two boxes displaced vertically, and {attr :- val)

D a t e:j is an attribute semantic function
__ 'We limit the tramma bete to, specifling, the height gauulion lot ximrli.it

7th Annual National Conference on Ada Technology 1989 337

P'rogram~

JForua chett1rtor
SpeciicauionGe rad

GjnnitdI T

Jnti'rface

Figure± 3 Approachi

TIhis mrmmar is methodlically transfornied into a Aulomaik gencration of $o~ar' pr Nitcds similarly.
st,m.ge definition moilule owt itt it is wrnca s out %kith top downi gcnerators producing recursive dats struc-
rt..1im 0 m I. 11 .v 11101. and 8a tcxt whid, 'con- tures and fornctins similar to those illustrated above,
tains the folowing dtia types to store Block nutms definite clause grammars in PIROLOGtis'. ot tables

similar to those useti in Bot7I f~ttom tip generators
~ ~ s tt~d1O t14flw~l. ft~T~iusing table driven techniques similar to those used in

t~lw %nI cn ntljgtt I#Jt IiT . IVACI. The apprm'clt to dc~elopin; systems using this
Ite techcI CC. 1~~wi~ nique is illustrateld In figure 3.

Pi se ailiut We will illustrate the documentatlon environment and its
cavV.6l construction by dcecekplng the structure of a component

%hen 11501 *: 0,. 11,1 %nje -- 8 of the enironment. the subsystem which Igansforms tex-
%hen flinhutti b~ ft. ol. I nodt.-JI . Isxab tuil input into a structured document in the database and
,Ahen OiTt w> lot sizg -d.M fel tranfl~ormls that document Into typeset output. This func-

texc1 igh st -nrn.,j~ tion can be viewed as a bat formatter as Illustrated in
endt Case: figure 41. but in our approach itis viewecd as the three

end recorid: components that were illustratedJ in figure 2: a translator
front the textual concrete s~ntdx tit the tibstrjd. syntax. a

and a function module which provides the following func- database to store the abstract syntax. and a translator
tikon to process Block nodes: from the abstract syntax to the output concrete syntax.
funiction It On fl o i. Inps. lvotLue) return heti~it 6~ The database to store the abstract syntax is generated
begin from a specification of the abstract structure of a docu.

case Un Vatictv Is ment, as is shown on the right hand side of figure 5,
when it ntin .~i un.nt~pi -a IOn-p. -- se IsAefili which specifies the prtiductions showing the componenits

0n,1.ps *MO-. fll it v ""n ildrsol of the objects which make up n doument along with their
BIn.XI. fln.02.-ps . attributes (in italics). T'his generates the type definition

c akulate n,:,ibutets) ofscII modules out of which the database is constructed by the
when Diiaid3utt P-UJit.ps a Dr-s parsing function; the database resulting from inputting the

Iln.112.ps wz shrink(OJps); example document is shown on the left side of figure 5.
Dnrilit -a dispt BtIOn.D. fln.I1t.). T7he parsing function is generated fromt a concrete gram-

Bltfn.02. lin.112.ps M; mar. such as:
when~ fliTexi => Dn.ht :a Drinji * 1n.texIj; Iocument := (Ttle. Author. Abstract. Text. References)

end case; Tritle ::m "\ti" Text
return (fln.tnI; -- renutn xvnftw.i:(J attutezIaf) self Author ::- "\au" Text

end 11; Abstract -:- "\ob" Text
etc

338 7th Annual National Conference on Ada Technology 1989

%tl An WrMk An Exaample
~U Tomi %%kvt o %Iwk

ilith *wCwUge in it AIAP 7Wi mClr
I IM10ooft I ThK

docw ffl it firwwtwM u~a 4/0-funwal wish Ittualie 14 it.

10a 4 (',h I" domi~ b± wot 1%
$eadocu"CmI~

uawnmf I gtnj'ltgw WAOt 3 rAtter.I @I sub-
DwftmitWio cof4wi tv~tulI w~tm 0(J4ttctm 111cs to ilow

tJrunof tiafi wcti

Indgutct c'thirr t)pcs of sitctwts.
itsh pit t lhcs of p(o0r4"01,1M

Figure 4 Text Formatting

Doumnt, (Tak;c

Title Aiof Abstraci Text Iecae Title : (T64)

fn exam, TsH% Mitticr T~ t~ld.u'1
.i~ i IF~A unt 1~f~vt iU F~w mil Author ~a(Text)

reali; Ht12 Absiract Tex
Jilpn:aRI12

Weerences :m Stq Ttxt)
311 ngaurm/F- FantwuomJ2

Section Section Footnote ::w Stq(Tv)
Nurnb~i. I Number. 2 ___Text Flvlo

JMaJing. Introduction H~eading:DOcurintarlon :n sq icin
114 ont: t12 ld~t cIgt 12 : Fu Sv(Sc.on

Tex~rot Fnt. Tet.FlSection ::. Scq(Pa3ragraph)
Nuamber

... Heading: Text
Paragraph IldiafonrwirtAXA.S: lItt/
Font:. Sect.Foat Pon Texzr.Fonl I crpr

Paragraph Paragraph ::a Scq(Segment)
Font: Sec:FongFont:. SEt.Fol I expr

Sesment T: (T*)

SEmn elment Segment F ~ r'n"
Foni:. r.fant Foei:lt& 3.rs Fowt~ 0?.fat semn Segment Rterence:Text

documentI.mtstucur Fot~~Partfont Font:./hi,~ Typeface w.rm I It I md I
Doc ... structure. It ..programs £ISY)

FoototeFontiia 6: (181 12 1
DAPSE doc.. 14 IS 124)

Font ::= Typeface &Fonsize

Figure 5 Database

7th Annual National Conference on Ada Technology 1989 339

__________________An Example

is An Emmnt rk
',"Tm UWhqv Abltr3mt Mhs M en cmmpm'?

Iih)lOtWgitt I TN

3 ~i 3'tc f Ii 'h 1 't~w
for 3 documet sctatfts of Oddtt Itrs to shew

.1 WDcm#A 3 tc3*t1c fytle ti uftfor 3 doc-
gilte I %fn fmftoc) Ii Iti(W~t
allnlcludcs othr outmnt~rcs of saucs. Iuch 3t ~att~wlstits tas

eOphic of Plottamt I 4c (NWlxtl OC t31
PAM$I d ~inft1jif $PtCI Includes; Other tyM or stfnctuiru.in th doctuntMootUh Uch 2t tophitta of Pfrpml IIin

hm An £tanipk

~ocu enTomo %icrDocumenation <bs> Nt Is 3n cmpl document
Environmenst v~h ujict in it.

<cpar>This documit Is tttiitured
Iwto a number of diffrent typts to

Title .. SGML a icatistk

foc a document.
ParIpi ____ ___

Figure 6 Environment Structure

along with the abstract grammar producing, for example, advantages of the software generation approach fostered
recursive procedures like: by the architecture, and the opportunities for providing

innoviive functionalitics made possible by it. As an ex-procedure DOCUMENT (D: out DocumcntStructure) Is ample of the reuse and productivity advantages, a S(ThIL
begin exporter is a, relatively simple. tree walking unparser

if Next Token - "\ti" then which can be generated from the ast grammar specifica.
TITLE3(1); -- reads title string into T lion and a SGMIL concrete grammar specification, figure

elsif Next Token u '\au" then 6, while a SGMIL importer is a parser similar to the
ALMT IOR(A); -- reads author string into A LaTeX parser. As an example of the provision of innova-

en ... tive functionality, consider a WYSIWVYG document entry
d I Psystem, in this architecture it is a combination or an un.D :. Make-Document Node(T, A,..) u eLs parser, similar to the typesetting unparser, along with a

- abstraci-grammar to construct node14 purser of that concrete syntax. figure 6. A final exampleend DOCUMENT; of innovative functionality is a hyper-text browser which
when the recursive decent generation technique is used. can be implemented as a menu based system which
The unparser is generated similarly, walking the tree like provides a menu entry for each relation from a node, fol-
the formction "B" above rather than scanning the input like lows that relation to its destination node upon selection
"DOCUMENT" does. and displays the destination node using the WYSIWVYG's

The main advAntages cf this archi;;. tre are the op. unparser.
portunities for reus-e of the subfunclions which become
manageable entities in the architecture, the productivity

340 7th Annual National Conference on Ada Technology 1989

IMc41 Brian Reid Scribe Document rouctfon Ssvem
Unilogl, t. 1984I

Conclusions (SGMIL Staindard Generalimei Markup Languaqe ISO SS79

The capturing of the structure or the documentation In the IwrsSSI Workstation Rublishing Sysem, Interleaf In.
documentation environment presents many advantages. In MS8
the providing of advanced functionality. in the flexibility [Mi I T. Whccler "Embedded System Design with Ada$
of system and In th:-, productivity of the development an as a System Design Language" The Journal of Systemssystem evolution proccss. The documentation cnviron. adSfwrVl2p. -1181mient project introduced here has shown that the arehite-. adSfwr.Vl2p.12 91
ture and approach described arc fessable and desirable, jWhS6j WheeI.-r. T. 'An Example of the Developer~s
leading to high quality high functionality s55toms1. Dumntution, for an Embedded Comnputer System Writ.
References ten in Ada' Ada letters Vi-no.6 IMS

(CIS1 Clcksn, W & c~lih. . POtanminSin WhS7I Wheeler. T. 'Ais 13-itmpke of the Developer's
PXCI S7JClckinerW. & M erlinh C.19S7 nt~,~i Documentation for an Embedded Computer System Writ.

I'XOLOG ~~~ ~te InigrVra, eln18 Ada" Pdri 11 Atli letters VII-no.1 19S7
(I)APSEJ Marcus, M.. Seahffncr. S.. SAtsky, K.. & Albert. IWir761 Niklaus Wirth Alg~jrithms + Data Structures
13L "DAPSI3 A Distribuitd Ada Programming Support E3n. Pjasretc-0 EgwodCifNJ17
vironment" 2nd IEEE31 Ada Applications & Environments rra:rnic-lllngwodCffNJ17
Conf. 1986 IVACCI Johnson, S, "Vacc-yet another compiler corn.

(GindalfSSJ1 The Gandalf Project, Journal of Systems and piler" ll Labs Tech. Report #32 1975
Software, May SS(entire issue))1iograpliy

IllamSil Hammer. NI. "Etude: tLn Integrated Document Dr. Toni Wheeler Is in
Provicessing System" 19SI Office Automation Con- charge of the research
ference program In C11CONI's

Advanced Softmare
(Ja7Sj Michael Jackson Principles of J'ram Design Technology Division. lie
Academic Press London 1975 has the Phd. Degree in

1Jan85 I David Jonassen The Technology of Towt Educational Computer Science from
Technology Publkcotlons. Englewood Cliffs NJ 1985 Stevens Institute of

Technology. the Masters
(JonSSaI Jonassen, David "Generative learning is Mathe. degree In CS from Fair.
maogenic Control of Text Processing" in lionSSI leigh Dickenson Univer.

sity, the BSEE degree
[Kn84] Donald E. Knuth The TeXbook Addison-Wesley, from Monmouth Col-
Reading MA 1984 lege, and the M% dcgrec

in Physics from Ua Salle
[Kn6SJ Knuth, D. 'Semantics of Contemt Free Lan. University. Ilie has worked in Computer Aided Design,
guages" Mathematical Systems Theory 2(2) 196S Software Methodoligies, and Software Environmepts. Ilie
(U8S61 Leslie Lamport LaTeX User's Guide & Reference has performed Research in formal methods for software

Manul Adisn-Weley RedingMA 986development, system's programming, system design. dis.
Manul Adisn-Weley RedingMA 986tributed programming, requirements development, and

[hfeySSI Meyer. Bonnie "Signaling the Structure of Text" rapid prototyping. IlIe has taught Ada. computer science,
in (JonSSI and software engineering tit Stevens Institute of Technol.

ogy, Monmouth College. in industry and w~aain the
[NRL] "The A-7 Documents" available fronm NRL code Government. He is currently organizing a rescarc' project
7590 Wash., D.C. 20375 into an alternate approach to Software Engine.-ring, En.

vironments and Information Systems.

7th Annual National Conference on Ada Technology 1989 341

DOCUMENTATION GENERATION SYSTEM

Dudley Rodericks, Ismael Rivera, Bruce Kolofske, Roberto Quinones

U. S. Army Communkatlons and Electroncs Command
Center for Software Engineering

Fort Monmouth, New Jersey

ABSTRACT format. These commands would be provided in a
User's Manual.

The goal of this projcci was to investigate Since this project was to Investigate the
the application of compiler technology to the application or compiler technology, a context-free
development or an integrated documentation granmar was first defined. An intermediate
generation system. A prototype text formattcr representation, the Abstract Syntax Tree, was
was developed as a demonstration of the then decided upon. Following this, attributes
application of this technology to such a system. wer: chosen and the scanner and parser

designed. These ar discussed in the following
sections. It must be noted that the overall
system is not restricted to a formatter. Once the
Intermediate representation is known, several

1.0 INTRODUCTION applications may bm developed based on the
structure of this representation. This may be

Once a system has been designed and done by producing different back.cnd code
developed, it is often the supporting generators. As such, several subsystems may
documentation that is or the greatest concern to be developed and integrated as pan of an overall
the developer. The required documentation is environment.
very often neglected due to schedule overruns.
An integrated cnvironment with tools to support
the user would be a very desirable system. As
such, it was decided to design and implement a 2.0 COMPILER DESIGN
text rormatter using aspects of the existing
compiler technology. This text formatter was This section provides some background on the
treated as a prototype subsystem of the overall asp ect o comier sru ctu r th eenvisioned system and was attempted mainly to aspects of compiler structure that were deemed
envisige s application of this technology to to be of importance to this project. The maininvestigate the nlation engineehng, phases of a compiler (4) are the following:
the area or documentation engineering.

The text formatter w,.; designed to be a
batch system and acts mainly as a filter. From (a) Scanner: The function of the scanner
the user's point of view, the system reads in an is to read in characters from a source file and
input file, acts on it (as indicated by the produce tokens as an output. These tokens are
appropriate commands contained within the defined by the context-free grammar.
document), and produces some output. An
ASCII editor is needed to enter the text in a file. (b) Parser: The parser reads in the
Commands are to be used to achieve the desired tokens produced by the scanner and sorts them

342 7th Annual National Conference on Ada Technology 1989

into groups based on the productions defined In and non-tcrminals (the Icft-hand side of a
the context-trce gramrfl . production). All non-terminals are first resolved

into terminals by the system before proceeding
(c) Semantic Rotilines :Semantic and this is done as dcincd by the appropriate

routines check the semantics of the constnicts production. As such, by knowing the productions
and perform a translation by producing an and recognizing a valid non-tcnninal, the system
Intermediate representation, knows what should follow. This grammar Is

described as follows:
(d) Code Generator: The Intermediate

reprcsentation produced by the semantic routines
Is then convened into some target maciinc code <Docuttxnt> *.> <itle> <Date>
As such, if code were need" for a different target <Author> <Sections>
machine, only the back-end code generator would
have to be changed. <Titk> > <Line> (<Line>)

This, very bricfly, describes the structure <Line> > Char..String
of acomipiler and is shown in Figure 1. <~e . hr.Srn

<Author> *> <Line> I <Line>)

OWI Tku<Sections> *> <Sec..Title>
Nrw(<Paragraphs>

(<SubSections>)

Srcue<Sc.Titlc> > Char-.String

<Pargraphs> -- > <Block> (<Block>)

Codet ntzclac Smui <SubSections> *> <SubSec..Title>
Target (",<Paragraphs>)
hischine, Reeao W"rsntdn Roa~
code <SubScjitle>..> Char_.String

Fleury I Structure of a Syntactic Comnilci <Block> ..> Char_.String

The < > brackets indicate a non-terminal
which must be resolved into terminals. The
braces () denote optional items from 0 onwards.

3.0 CONTEXT-FREE GRAMMAR Associated with the grammar defined above are
attributes. These attributes are associated with

A context-free grammar was first defined certain terminals and non-terminals. These are
for Whi project as this would influence the design shown below:
of the parser. An LL(l) type grammar was
decided upon as this would facilitate top.dcwn
parsing. This grammar utilized the idea of IMM AIERBUT1~E
productions or rules for the system followed by
terminals (the right-hand side of a production) Paragraphs Indent of three spaces

7th Annual National Conference on Ada Technology 1989 343

accompanying text at the nodes. Each node has
Section.Title SectionNo certain attributcs associated with it. These

(Generated by system) attributes are either set by thc user or ar
provided for by dcfault settings within the code.Subcc.Titlc SubSecTitle.No

(Generated by system)
Code Generator :Thc Code Generator

CharString Font, Size, Quality, consists of the Tree Reader, Node Identifier, and
Underline, Bold the Node Translator. The Tree Reader reads the

Abstract Syntax Tree and retrieves the nodes.
Appropriate default settings arc provided for The nodes are sent to the Node identifier which

the attributes, decides what type of node they ame This node
information is then passed to the Node Translator
which produces the desired formatted output.
The Code Generator is dependent upon the

4.0 SYSTEM DESIGN application desired. There are two generators for
The design or the system consisted of the this project. One produces output targeted for an

Scanner, the Parser, and the Code Generator. IBM compatible dot matrix printer while the other
This was consistent with the effort to explore produces output in Postscript.
compiler technology as a development technique
for the system.

The system design is shown in Figure 2.
and the first-level decomposition is shown in

Scanner :The Scanner follows the same Figure 3.
functionality as the scanner in a compiler
scheme. It consists of the Reader and the
Translator. The reader reads in characters front
the input file and the Translator converts these
characters to tokens. These tokens are the Chtmatct" Tomens
terminals and appropriate commands.S

Parser: The Parser consists of the Token A bsux t
Identifie, "'Ken Translator, Attribute Manager,
and the Tree Manager. The Token Identifier Code

receives tokens front the Scanner and groups Generator
them into commands and attributes. These outpatted
commands and attributes are then passed to the Output

Token Translator. The Token Translator sends
the attributes to the Attribute Manager and the
commands to the Tree Manager. The Attribute Figure 2 Ton-Level System Design
Manager groups incoming attributes into sets and
sends them to the Tree Manager. The Tree
Manager receives commands and sets of
attributes and creates the Abstract Syntax Tree
with the appropriate nodes. It then enters the

344 7th Annual National Conference on Ada Technology 1989

system was Adat. Thc com~pilers used were the
Alsys1 Ada compiler on a Zenith3 AT and thc
Verdix4 Ada compiler on the Sun5 workstations.

Chuxtt% The modules produced arm shown below:

Packaga:

(a) Tokcn..Scanncr This package
Tokensencapsulatcs the functions of the Scatner from

the system design. It consists of the procedure
ConuvwtsandOpen-ile and the procedure Get-.Token.

Uw~sor Ies(Iler(b) P'arscr : This package. addresses
the functions of the Parser fronm the system
design. It consists of the procedure Appcnd-CST,

(c) Code..Gencrator This package
contains the procedure Generate..Output which

Attribwt Attibute Tr" provides the functions for the Code..Gcnerator
Mauqer S MaNapItr from the system design.

(d) Type...Declarations :This package
ASI contains all the data types necessary for the

other packages.

(c) Tree :This package contains the
Node Nodes Tree types necessary for the Parsr and

Iffl Reader Code-.Generator packages in order to isolate
these types from the Scanner, which does not

Node nfo.need them.

ronnatedj Output Sevcral types of nodes were needed in the
NO& Abstract Syntax Tree. The type of node was

Transistor indicated by the structure of the contexs-frec
grammar (eg. Section nodes, Subsection nodes
etc.). These nodes then had certain attributes
associated with then. Discriminant records were

Fieure 3 Breakdown of Syscm Desig used to represent the various kinds of nodes.
The nodes were differentiated based on the
contents of a field called Kind. '[be software top-
level dependency diagram is shown in Figure 4.

5.0 SOFTWARE DESIGN 1. Adaisregistered trdemakof AJPO.
The software design closely followed the 2.. Aly is a registered tadetnak of Atsys, Inc.

system design. The language used to code this 3. Zenith Is a registered trdadc of Zenith Data
Systems.
41. Verdix is a registered urademarkc of the Venusx

Corporation.
5. Sun is a registered tradcmark or Sun Microsystems.

7th Annual National Conference on Ada Technology 1989 345

make it more user.friendly. The ability to input
the productions desired and have the scanning
and par ing routincs incorporate these rules

Te mwould make for flexibility.

(b) An underlying database could be
integrated. The Abstract Syntax Tree could then
be permanently stored In the database Instead of
being resident in memory. This would allow for
the incorporation of roles within the environment.

Takes Tre
t qcruihsa (C) The technique of swapping could be

added in order to increase performance.

(d) The option for different output
generators could be added. Selection could be
made from a menu. Thus the user could choose to
obtain a printed copy, observe the formatted copy
on the screen. or achieve any goal for which thee

Cwt /€ an output gencrator. This would not affect
, Ner Of (Nowr the parser or the scanner.

70 CONCLUSION
This project demonstrated the porting of

compiler technology to a documentation system.
Fleure 4 Ada Package Dependency Diagram The major achievement is the realization of the

Abstract Syntax Tree. Once the structure of this
tree is established, several tools may be
developed and interfaced to provide a
comprehensive environment.

6.0 ENHANCEMENTS This prototype was a tool that
demonstrated this fact. ThIls tool could be further

It must be noted that the main purpose or refined into a viable commercial product. From a

this project was to demonstrate the use of a conceptual level, there were no actual hardware

technology for a particular area. The system or software depetdencies. If output were desired

developed was largely intended to be a vehicle for for a dfferent target machine or purpose, then

the purposes of demonstration. If this prototype only the Code Generator modules need be

were to be further developed, the following changed. The sample commands used were

enhancements should be considered: omitted from this paper. It has been the intention
of this paper to demonstrate the application of a

(a) The system could be made interactive technology to a certain area and not to involve the

(WYSIWYG) and menu-drivn. This would reader in the details of the prototype. The
prototype has only been discussed to the level

346 7th Annual National Conference on Ada Technology 1989

which helps achicvc this goal. Electronics ComimandJ, Center for Softw%=
Engineering, Advanced Software Technology,
Fort Monmouth, New Jersey. fie received his

4, KNO1WLFDGVMENTS B.S. In Electrical Engineering t~rom Texas A&l
University at Kingsville, Texas, and his M.S. in

The, authors wish to express their thanks Software Engineering front Monmouth College,
to Dr. T. J. Wheeler for his technical guidance In New Jersey. lie Is currently working in the
this effort. The authors also wish to acknowledge System Software Technology division.
thi: efforts of Jay Sco for his help in providing the
necessary background material for this Project.
and Bruce Gray for his support and belief in the
project and the project team. Ismael Rivera is an Electronics Engineer

with the U.S. Army Coinmunications-Electronics
Command, Center (or Electronic

RFERNCSWarfcAreleconnalssanice, Surveillance, and
1. Ada Language Reference Manual. Taixet Acquisition, Fm(, Monmouth, N.J. lie

received his B.S. in Computer Engineering fronm

2. Alsys Ada User's Guide. the University or Puerto Rico, Mayaguez, Puerto
Rico, and his NI.S. in Software Engineering front

3. Warren, Kickcnson, and Snodgrass, M Nonmnouth College, New Jersey. lie is currently
Tutorial Introduction to using IDL Department of working in the Technical Support division.
Computer Science, University of North Carolina.

4. Charles N. Fischer and Richard J.
LcI;, Jr.. "Crafting a Compiler", Bruce Kolofske Is an Electronics Engineer

LHenlaminCumig 98 with the U.S. Air Force, Air Logistics Command,
(Bcnamil~uming), 188.Software Production, Robins Air Force Base,

5. Defense System Software Warner Robins, Georgia. lie received his B.S. in
Developmenit C DOD.STD.2167). Chemical Engineering (rom the University of

F'lorida at Gainesville, F'lorida, and his M.S. in

6. Sal Gambino et. al., Text mnatt Software Engineering fromi Monmouth College,
Sy=~, Stevens Institute ofTechnology. 1987. New Jersey. lie is currently working in the

Maintenance division.

Roberto Quinones is an Electronics
Engineer with the U.S. Army Communications-
Electronics Command, Center for Software
Engineering, Tactical Systems, Fort Monmouth,

ABOUT THE AUTHORS New Jersey. Ile received his B.S. in Computer
Engineering frin the University of Puerto Rico,
Mayaguez, Puerto Rico, and his M.S. in Software
Engineering from Monmouth College. New

Dudley Rodericks is an Electronics Jersey. lie is currently working in the Mobile
Engineer with tie U.S. Army Communications- Subscriber Equipment division.

7th Annual National Conference on Ada Technology 1989 347

REDUCING SOFTWARE DEVELOPMENT COSTS WITH ADA

Jeffrey R. Carter. Senior Engineer. Software

Martin Marietta Astronautics Group. Denver. Colorado

lleHowever. Ada must change the traditionalincreases nh bstactisoftware.developiienLt lifecycle if it is to provide aIncreasesoric the abstraction of languges significant reduction in software development
have historically resulted fi significant reductions costs. Many researchers continue to discuss Ada
In the cost or software dvelopment by with the assumption that the full, traditional-
eliminating or reducing software development lcyemolisapcbe.Tsasu tonIphases. These changes In the software- ltcycli model is applicable. This assumption isdevelopmnent lifcy ,cle have significantly reduccd not valid, as this paper demonstrates. If It wcre
the cost of software developmecnt for idnticel true, using Adl: would not result in any major
problems. Ada Is a significant Increase II reductions in software costs.
abstraction over other languages. Ada must Il my work with iht Martin Marietta Ada
change the traditional software-development hnplementation Method (MMAIM) [3. 4l I have
Ilfecycle if It is to provide a significant reduction used MMAIM on a number of problems which
fi software development costs. Comparing the occur frequently in the literature and so have
results obtained using the Martin Marietta Ada been worked with traditional-lfecycle methods
Implementation Method with those obtained for Implementation in traditional languages.
using traditional methods demonstrates that MMAIM reflects and enforces the modern
using Ada with n method which Incorporates the software engineering mind set." By comparing
software engineering mind set (loes change tie the results obtained using MMAIM with those
liecycle. Tis results in a significant reducton of obtained using traditional methods. I can
software development effort and cost. demonstrate that using Ada with a method which

Incorporates the software engineering mind set
does change the Ilfecycle. This results in a
significant reduction of software development
effort.

IThe Cruise-Control ProblemIncreases In the abstraction of languages The problem of a cruise control for an
have historically resulted in significant reductions automobile occurs in nearly all the real-time
in the cost of software development by literature. Ward and Mellor [51 present such a
eliminating or reducing software development problem. but It bears no resemblance to any actual
phases. Obvious examples Include using assembly cruise-control system I have encountered. In this
languages Instead of machine code and using paper I will use a version of the cruise-control
higher-level languages, such as FORTRAN, instead problem to demonstrate the elimination of
of assembly languages. The former eliminated the lifecycle phases using Ada and MMAIM.
phase in which machine code was determined. The cruise-control system Is Intended to
while the latter significantly reduced the coding control the speed of a car by maintaining a
phase. Perhaps less obvious is the use of constant speed. The controls for the system
high-level languages which contain a complete set consist of a two-position switch labeled "off" and
of control structures, which eliminated the phase "on." two buttons labeled "set" and "resume."
in which a "structured" program design language and a sensor connected to the brake pedal.
was translated Into the implementation language. These controls generate five unique Interrupts.
Changes In the software-development lIfecycle The off-on switch generates an Interrupt
such as these have significantly reduced the cost whenever its position is changed: one Interrupt is
of software development for identical problems. generated when the switch Is moved to the "off"

Ada Is a significant Increase In abstraction position and another when It is moved to the
over other languages ill. Ada has been shown to "on" position. The set and resume buttons each
reduce the effort required to develop software generate an interrupt when they are pressed.
when used as the implementation language with The brake sensor generates an Interrupt when
traditional software development methods [21. the brake pedal Is depressed.

348 7th Annual National Conference on Ada Technology 1989

The off-on switch turns the system off and arrows represent control flows. Data flows arc
on. When the system is off it has no effect ol the not associated with control flows. Working along
car's speed. and will only respond to the system the lines suggested by Ward and Mellor produccs
being turned onl. Tile system Ignores the other tie Context diagrain Figure 1.
controls. Note thnt the software continues to
operate when the system is turned off.

When the system Is on. It can be turned off. * *
or It can be Instructed to m aintnln the car's Dr ier c o6.1o
current speed by pressing the set button. i1e he " ,,o. c
system Ignores any other controls.

When tie system is maintaining a speed, It .
can be turned off. or it can be Interrupted by
pressing the brake pedal. The driver can also
override the system by pressing tile accelerator
pedal. In this case the driver cnn have the system
mnintain tile new speed by pressing the set
button. The system Ignores the resume button.

When thie system Is Interrupted, It can be
turned off, or It call be set to maintain n new
speed. or the retune button will cause the syste
to return the car to the pwrevious speed and Cruise Control Cotext Diagram
inrtin It. The systiem Ignores the brnke c)e Cl. Figure 1.

Note that this system has some
simplifications from nn actual cruise control. For
exmple, there is no Intraction with the cars
transmission. e l cruise-control systems take LMMMtranmision Rea criseconrol ystms akeMMAIM's first step) identifies the software
the transmission Into consideration. Also, we will boundary, the entities external to the software
assumc that the specific computer for the system with which it interacts, and the Interfaces across
allows the software to ignore the interrupts which or through the software boundary. liese are
the controls generate. Few actual computers shown on the External Entity Graph. or EEG.
behave this way. Figure 2 presents the EEG for the cruise control.

The EEG shows the software as a doublc-Ilne box
The Software-Deyelooment Process and the external entities as single-line boxes.

in this paper I am concerned only with the The double-line arrows represent Interfaces
software-development process. Any system-level across the software boundary. The direction of
concerns, such as hardware-software partitioning, the arrow represents the direction of control: we
have already been done. I ain not discussing what would say that the software "calls" the throttle
methods are appropriate for dealing with system- controller. This means that the software dlcides
level concerns, or controls when it will get or change tie

Traditional software-development methods throttle's position. The small arrows associated
begin with a phase which Is usually called analysis, with the Interfaces represent data flows
specification. or systems design. One method associated with the Interface.
which is widely used for this software-
development phase is real-tine structured Sten 1--Comgarison
analysis. In this section of the paper I will work The first steps of the two methods are very
through the steps involved in applying real-time sinlar. MMAIM provides some Information not
structured analysis to the cruise-control software- given by real-time structured analysis: the
development problem. and compare this association of data with control.
traditional approach to MMAIM. Both these
methods produce both textual and graphical Steo 2-Real-Time Structured Analysis
results. Since the graphical products contain Real-time structured analysis' next step
more information. 1 will concentrate on them. decomposes the software into its major functions.

data stores. and the data and control flows
SteR 1-Real-Time Structured Analylnl between them. Figure 3 is the top-level (data flow

In applying real-tme structured sualysis to diagram for the cruise control. The solid-line
the cruise-control problem I will uae Ward and circles represent data-transforining functions.
Mellor's solution 151 as a guide. The first step In The dashed-line circles represent control-
applying real-time structured an.alysis is to transforming functions. Two parallel horizontal
describe the context of the software. The context lines represent data stores, which usually mean
diagram shows the software as a circle and the global or common variables. Note that. although
things In Its environment with which it Interacts this diagram inherits arrows from the context
as boxes. Solid arrows represent data flows diagram. a single arrow on the context diagram
between the software andthe boxes, and dashed

7th Annual National Conference on Ada Technology 1989 349

MNIAINIs next step) dCcomposes tile
Driver software into the m ajor entities or the problemn.

rhese entities arc software models of phiysical
things and logical concepts in the problem space.
*rhe interactions between these entitles are
Identified antI the attributes of these entities and
their ittrfaces are recorded. This results In an

'ILI Entity Interaction Graph, or EIG. Thec entities on
__________an EIG are Initially assumed to be concurrfent.

Cruise The top-level EIG inherits the double-line
Cruisel Positoion arrows rroin the EEG. For each cxternl entity onl

the EE&G. a reusablcecntity Is created to iterface
Position cruise control, we would create a drivcr interface

entity wich would be connected to all of the
external arrows connected to the driver rxtcrnal
entity. Similarly. we would create a throttle
controller interfance entity and n drive shaft sensor

Sensor Thlese -edge' entities should fairly closely
miodel their corresponding external entities to
facilitate reuse. For example. another application

Cruise Control External Entity Graph may use the throttle controller hardware. Thei
2 software for tis aipplicaition should be able to

Figure 2reuse the throttle controller interface we wvill

S Rotation r1ict Previous

2. 4

.... ~. Control raeaa

'~"~> Engagement 3pe

Th 11116

4... 4

Cruise Coitrol Level 0 Data Flow Diagram
Figure 3

many be reprcsentcd by mnore than one arrow on create for the cruise control. Double-line boxes
the data flow dingram,. represent reusable entities: single-line boxes

Associated with data flow diagramns is a represent non-reusable (application-dependent)
textual data dictionary. It describes the data flows entitles.
on the data flow diagrmns.

350 71h Annual National Conference on Ada Technology 1989

Tie other entities oil an EIG model logical The remaining feature onl this graph Is the
concepts In the problem. These are those small black circle at the point of some of the
concepts which tile software must hndle arrows. Called 'blocks." these Indicate that the
correctly in order to work. The cruise-control logic of the entity to which tile arrow points
problem has two such concepts. One is the excrcises control over when it will respond to a
concept of the driver's Intentions and the other Is call to tle Interface. For example, tle speed
the concept of controlling the car's speed. To controller will not respond to a call to Its stop
model these concepts we would create driver Intcrfacc when It Is stopped. lowcver, It will
model and speed controller entities. always respond to a call to its maintain Interface.

Given tile simplifications discussed earlier. At this)oint1 a search would be made for
we can see that the driver interface entity we existing reusable software components which
created serves no purpose and performs no match the requirements for the reusable entities
function. We can obtain the same effect by on the EIG. in many cases these can be found.
connecting the external arrows from tile driver Applications which obtain the tlime from n real-
external entity directly to the driver model entity. time clock may be able to use the predefined
I will do this and call the driver model the driver package calendar, to name one example. We will
Interface and model to reflect this. This change assume that none of the reusable entities oil
ellininates the reusability concept for the driver Figure 4 exist, and that we will have to develop
Interface, but I can't conceive of another use for them.
these driver controls. An EIG provides interface specification

Figure 4 shows the resulting EIG for the Information. One of the advantages of Ada is that
cruise control. The two reusable edge entities It provides features to represent interface
closely model their external entities. Tlie speed specifications separately from their Implcmen-
controller entity provides two Interfaces. One tation. Ada is not perfect in this respect. Ada
tells tie speed controller to start maintaining only represents Information about exception
some desired rotation rate. The other tells It to propagation and blocks, for example. as
stop controlling tile car's speed. comments in a specification. Ada is still a great

Inprovement over languages such as FORTRAN In
this respect.

a- MMAIM provides for mechanical conversion
Cotroller, or an EIG to Ada code. By mechanical conversion
Inteilece I mean that the EIG and its associated attribute

Poio Information provides all of the information
r',j provided by the Ada code, and n machine could

perform the conversion, in this way MMAIM uses
S tile Ada compiler to check and enforce tile

' software's interfaces from the very beginning of
___________ tile software-development process. Th'ils elimi-

Intt-,c. Sod nates many problems with integrating tile
- .Med. x ---- software, which is a lengthy and expensive plase

"T-- o.dR.¢n. : o~ of most traditional lethods.
Before Figure 4 can be mlechanically

converted to Ada code. we nlust supply some
additional textual information defining tile data
types on tile EIG and the Ada constructs to be
used to represent the entities. When thls has
been do,|c. Figure 4 produces

package throttle controller interface is
type position-is digits " range

0.0 .. 100.0
CrulseControl Entity Interaction Graph

Figure 4 function get return position;
procedure put

(desired position : in position)

The speed controller needs to get the end throttle controllerinterface;
current rate so it can compare it to the desired
rate. It also needs to command the throttle package drive shaft sensor interface is
controller. The driver Interface and model needs type rate i' range 0 .. 10000;
to determine the rate which the driver Intends function get return rate;
that the system should maintain. It also needs to and drive-shaftsensor interface;
command the speed controller.

7th Annual National Conference on Ada Technology 1989 351

wiith drive shafC sensor interfar.; describing the latter than the former. but It
procedure cruls control is requires about the same amount of time. effort.

task and cost to develop a good top-level data flow
driveintorfaeo and nodol diagram as it (lots to produce a good top-level

is -EIG. They do rcquire very different mental
entry off. orientations.
entry on; Although they cost about the same toentry se ; produce. MMAIM Includes Information not
entry rue; avilable with real-time structured analysis. and

end driver interface and modol; MMAIM provides for mechanical generation of
task spoeedcontro1li ii- Ada code very early in the development process.

entry stop; With a suitable too!, this code generation could be
entry naintain done nutomatically. This gives MMAIM the

(desired raoe : in)otential to eliminate tile coding phase of the
drivesh af r~n~orinorfne.rere lifecycle and to significantly reduce the

Integration phase.

end s'eed controller; Step 3--RI&I Time Strct
task body'driver Interface and a~odeI On large problems, some or tile data-
is separate;- transforming functions on a high-level data flow
task body speed controller diagram will be decomposed Into lower-level data
is separate; flow diagrams. Tli cruise-control problem is

begin -- cruiso control simple enough that Figure 3 is tie only data flow
null; diagranm. lie data-transforming circles on Figure

and cruise-control; 3 have textual "mini-specifications" associated

All the Ada code presented here has been with them which describe the function of the
produced by a (human) simulation of a simple circle In greater detail.
program. This results in Important aspects or the Control transforming functions on data flow
code. such as meaningful comments, being diagrams are not decomposed, but their behavior
missing. I have also omitted the Ada constructs is represented using a Mnealy-model state
which would connect the entries of driver transition diagram. Figure 5 shows tile state
Interface and model to their Interrupts. since this transition diagram for the control CC engagement
Is hardware dependent, circle from Figure 3.

Now that we have this code. we can do Tllis concludes the application of real-time
several Interesting things with it before structured analysis to the cruise-control problem.
continuing the software-dceveopment process. By This has been the traditional analysis phase of
attaching suitable stubs, we can perform software development and takes about twenty
top.down testing. Other stubs can produce a percent of the total software-developinent effort.
prototype system. For large systems. parts of the Real-time structured analysis will be followed by
software can be left as stubs while the rest is the design and coding phases.
completely developed and delivered as a system
which provides partial but useful functionality. SUR 3-IMEM
This partial system may be used while the On arge problems. MMAIM decomposes
remainder of the system is developed some of the entities on a high-level EIG Into
incrementally. lower-level EIG's. I call these entities 'non-

primitive." Cruise control Is simple enough that
St 2--Comoarison Figure 4 is tile only EIG.

These two methods reflect two very MMAIM's third step for primitive entities
different mind sets. The differences between determines the behaviors which the entity
these two mind sets is responsible for the performs and the condltons which determine
differences between Figures 3 and 4. Finding the transitions between these behaviors. Ada
similarities between them is difficult. Both have context Information and declarations required to
the same data coming in and going out of the support the behaviors are specified. This
software. The driver interface and model entity Information Is given by a Behavior Transition
on Figure 4 represents Information similar to Graph (BTG).
circles I and 2 on Figure 3. as well as the data Figure 6 shows the B'fG for the driver
store. The speed controller entity represents Interface and model entity from Figure 4. Each
Information similar to circles 3 and 4. The other shape represents a behavior, except for the two
entities on Figure 4 have no counterparts on top boxes labeled 'context" and -declarations."
Figure 3. The arrows between the shapes represent

Since I assume the reader is more familiar permissible transitions between the behaviors. A
with real-time structured analysis than with box represents sequential Ada code. A diamond
MMAIM. I have devoted more of my text to represents an unconditional wait for an event. A

352 7th Annual National Conference on Ada Technology 1989

Sys"hl On lrgiatn pon

~~3 WeptqM~rh~nSp.

YIggqq *PAiiiid Rgllon Role"
CEnable 'MoInlotn Speed'

7.O2 . OW ie~ '6464A Spood" --daccIicic ad Mo, epirt rasto rp

C 3nr .CC 611 Engagem nt Seed'alInDiga

S.Dsbe Mevinor. sensorU inSpeedd ote -edcnrolr
to he nable from1Asi the ~e'rtin bxiin Snet daceprdccd rm iurI

event.4 o84vf Is thOVBTUs "od'tbo.Tts# iosas

Casethe CC Enamnt Slae t events. Dore rnge smlprrmcapodc

lraleacet represents ti conditional waoiceot. eair epeetdi :gr
in ~ ~ ~ ~ ~ reur Ada tonrms thisI~t is ah seletiv watshee seaae luifcrtr~

transitrans. itions, eetsn cte rr typso ~Inrfc ando Id is t~ g 1 spe cnrl.8
Ott lill causefoi the dlcirir bxpinters and c ehAaviode produced behir iur 1

mdltreunto the initial behavior. S edietfc willde int evibliyd'oaitinl otetI
ransiino. thes Isqnuc da code conainored reurdInIdiaeti ynutn nl'I
ao. rectage anunodtoa a crepondsI h *'* completin thisTes behaviors also1 . rvrinefe. n oe

Weonocr.tedriver inefc n oc iuncnditionlly ecad In th ehavtrt ios x
anod ilmdly transition to the next behavior , sA wth nn -- G diMAINd onecnial

Cahe reaer sould anow bse ablento. unerangte accep it o roduc

res otyiure6 t-.MAIM behsavior-i fs 2; ng

trasiho Anua tatna Conference on Adae Technology 199n5

wbea 2 *> -- triangle accept
select 5w5e~.g seeMaccept off;

o I M b e h a v L x :w l:#a i n-
accept Batt:ooe- .60WIUAM behavior -i eend solet; EI, . ~di w4 ~ efte.ewhen 3 a> -- box

desired rate :a
drive .shaft sensor incorfaci .go

WtAIN behavior :u 4: dsdp.dml .)when 4 9>. -- box
speed cont roller .maintair.

(dsi.red rata)

iXX.MM behavior :a 5;
when 5 * -- triangile accept

select
accept sot
W)t'.Xbehavior :a 3:

or oaccept off: d

orWIM-bhwior :6

accept brake:we:
VAIM behavior :w 7;

end select:
when 6 nN--bo

sped controller. stop;
Z'AThjbehavior :a 1:

when 7 ;' -- box medetandeos. soeslqedrtge .;speedeontroller. stop;El--
1.AIIHrbhavior :w 8:when 8 ;'. -- triangle acep SpWdCOft*Wo lehavior Transition Graph
select Fl~o 7

accept off;

or
accept sot; MMAIM can mechanically produce Ada codeKWM tehavior :* 3; fromn Figure 7. givingor
accept resume; with throttle controller interface;XXAU4 behavior :- 4; separate (crulse control)end selict: task body speed Bontroller isand case: type MAIM beavior id is range 1 .. 5;end loop l, .AIM forever; M.4AIM behavior : MWIM behavior id :end driver intorf-co and model: Z.WAIM behavior id' frrst

Similarly, we can produce the BTG for the wanted ratespeed controller to obtain Figure 7. T7he spted drive -shaft sensor interface, racecontroller requires visibility of the throttlecont, oiler Interface. so the latter Is namned in the procedure maintain ratecontext box. Thle speed controller also uses a (desired-,rate :Invariabic and a procedure which are declared in drive shaft sensor -interface.rate
the declarations box. ;)is separate -

The only new feature on Figure 7 Is the begin -- speed controllercircle. It Introduces a nested (sub-) I3TG. In this KAMforever :loopcase the nested !3TG is the critical region which cse VzIAIM behavior isfoilows the -do" of an accept. Indicated by the when I => 7-boxlabel "do" in the circle. Nested BTG's do not throttle controller interface.puthave a context box, but imay have any other feature (desiied position a'. 0.0)of a BMG.
Note also the -else" transition fromi the I-VAIM behavior :a 2;

accept triangle. T1his corresponds to an else when 2 3; -- diamond maintainalternative of a selective wait.

354 7th Annual National Conference on Ad& Technology 1969

accept mainrain WMIZX ithmi'~r :" 4;
(desire'd rate in end case:
drivo hL and loop r-MiM . eed r:
rate end i-rrfl:

do The throttle controller Interface ndc the
MUJtM 0t0QO1 : declare drive shaft sensor interrace are decpendent on the

type F.A~tt rhavier id is hardware with which they in(cract. so we ran'tLrange 1 .Iproduice real OTO's for thm withoot, knowing
more about the hnirdware. We do kniow enouigh to

~InIN itav±l.r uJ: outline the struicture of their IT0~s. which are
KtMM b-hvir~-Id fIrmgiven In Figures 8 and 9.

begin -- 0AM 00
IMI foovfr :loop

caiko PM11H Iehaviror is nI
when I "' - b
ward rare :*

deaired rate f~b~Il

exit IMAIMfo~raver;
end case;

end loop I^MH forever; acp 1end MUNIMZ 000101,;* u

IMIM behavior :a 4;
when 3 Z> -- circle doboy t~raise programi error:;ifle

owhen 4 a> -- trfangle accept en wol Psto n
select

.accept maintain
(desired rate :in
drive shaftensorinorfaco. ~~Tm~te ~p

rareFiguto I

do
FMI2VNH 00002 : declare

tyfp* FIAlM bohavior Id is

MUNIM4 behavior 'fW-.1
1021M behavior id :a u

K-IM behavlrridl f irst

begin -- VVAIM ,00002 1~itun
MAIZ4 forever : oop mull:

cuse M.I.IMbetbavior is
when 1 P'> 7- boxv

wanted rate :%,
dosrred ratego

exit IMIM11 forever;
end case;

and loop IMAIM forever;
and K14AIM 00002; Wl -- 8-11--8*nd maintaiix d
1~..14 behavior :- 4;

oraccept stop;en
7IlVAM behavior :n 1; #(Oeo(&*

else rtmrlto ~
t.OSAIM behavior a'5;

end select; Drive Shalt Sensor Interface Sehavior Transitli Groph
when 5 x> -- box Figure 9

maintain rate
(desired-rate a>wanted-rate)

7th Annual National Conference on Ada Technology 1989 355

Similarly. we cannot produc Ada code untill While Figure 9 produces something like
we have the final BTG's. but Figures 8 and 9
provide enough information that wc know the package body drive shaft sonsor interface
structure of this code. Figure 8 produces is
something like task rMZ.tAX handler is

entry git (current rate : out race);pmekge bd,/end I iAIM handier:;
package body a MI-ade.

throttlo controllor interface :unction got return rate is
ts - h current rate : rate;task KMHAIM handler: is begin -- fatentry gay (tteurr~t position : out l," Im handltr.got

uirr nt rate -> current rate)

; return curront rat :
entry put (desired position : in end got;

positf6on
I I task body -. AZMharflor is

-- null;
end VMIM hAndlar; begin -- KX.AZM handloer
function got return position s forve loop

current position : position; accept gr
begin -- get do

M.AIM handlor.got -- call hardware to get rotation
(ciT' ont position rt -- rate

currontpoit ion end get;
end loop forovo;

; n t nand XAIM handler;
end get, _position; end driveshaft consor interface;

procedure put Except for implementing the maintain-rate
(desiredposition : in position) procedure we declared in the speed controller.

is this completes the Implementation of the
-- null; cruise-control software. This procedure would

begin -- put get the current rotation rate and throttle
WA' A handler.put position, calculate a new throttle position from

(dis'ired.position -> them and the desired rotation rate, change the
desirod..position throttle position, and return. The details or the

calculation of the new throttle position depend on
* the relationship between the throttle position and

end put; the rotation rate. As this is a function of the
task body t*Mhandler is hardware. I will not pursue It further.

-- null;
begin -- MMAIM handler Sten 3--Comn crson

forever :lop MMAIM has created four lpGs compared
select to one state transition diagram from real-time

accept get structured analysis. This is mainly due to MMAIM
(currentposition out doing some work at this step which real-time

position structured analysis defers to the design phase.
There are some similarities between

do Figures 5 and 6. The "on" diamond of Figure 6
-- call hardware to get corresponds directly to the "system off" state of
-- throttle position Figure 5. Similarly. the top accept triangle

end get; corresponds to the "system on" state. and the
oraccept put bottom accept triangle to the "interrupted" state.

(desired_position : in There are more differences than
position similarities between the two, however. The

middle accept triangle of Figure 6 corresponds todo both of the remaining states of Figure 5. This Is
-- call hardware to change because real-time structured analysis' functional
-- throttle position orientation separates the very similar and logically

end put:; related functions of maintaining speed and
end select; returning to a previous speed. while MMAIM

end loop forever; combin te u he hile cneto
end MMAIM handler; combines them under the higher-level concept of

end t.hrottle -controller-_interface; controlling the speed. This basic difference in

356 7th Annual National Conference on Ada Technology 1989

the orientation of the two methods also causes there should be further savings due to reduced
the differences between the actions of Figure 5 maintenance costs. and reductions in future
and the remahiing behaviors or Figure 6. software development costs due to the

Another difference at this step. as with the identification and development of reusable
second step. is that MMAIM mechanically software. llese cost savings are ai Important
produces Ada code from ITG's. consequence of the software engineering mind

set. It is especially important to note that it
cs app ears that not everyone who can produce

Clearly, using MMAIM has required more sotware in traditional languagcs. such as
effort than real-time structured analysis to reach I'OIr'ITAN. COBOl,. Pascal. and C. can develop this
this point. This additional effort produced the mind set Ill. Since software costs are the
three BTG's for which real-time structured dominant ractor in total systems costs, the use of
analysis has no counterparts. Also. the attribute Ada and the software engineering mind set by
Information associated utth an EIG requires more appropriate personnel can result in a significant
effort from the developer to produce than the system cost advantage.
data dictionary associated with a data flow
diagram. MMAIM appear, to require about fifty
percent more effort than real-time structured I. Gerhardt. M.. ")on't iliame Ada." Defense
analysis. Science and Electronics, 1987 Aug.

MMAIM has completely implemented the 2. Castor. V.. and 1). Preston. "Programmers
software, however, while real-time structured Produce More with Ada." Defense
analysis has barely started. Since the analysis l'lactronks. 1987 Jan.
phase requires about twenty percent of the total 3. Carter. J.. "MMAIM: A Software
software-development effort. It appears at first Development Method for Ada. Part
that MMAIM only requires thirty percent of the l--i)escription." Ada Letters. 1988 May/Jun.
traditional effort to complete Implementation. .1. Carter. J.. "MMAIM: A Software
providing a seventy percent savings. Development Method for Ada. Part

However, this demonstration has not Il--Example." Ada Letters. 1988 Sep/Oct.
Included the effort that must be expended on real 5. Ward. P.. and S. Mellor. Structured
projects for testing. documentation. and Deuelopment for Real-T7ime S!lstems:
integration. Although MMAIM effectively elimi- Volume 2. E:ssential Modeling Techniques.
nates software Integration problems. we still Yourdan Press. 1985.
frequently see problems Integrating the software
with the hardware. This reduces MMAIM's
savings of effort to about fifty percent. Still. "half
price" is a powerful Incentive for buyers.

MMAIM has a number of features which
contribute to this cost savings. 'lie mind set
underlying MMAIM concentrates on such analysis
information as major components of the problem
and their top-level Interfaces, compared to the
traditional emphasis on functions and data flows.

Adding top-level design Information to the
rer,resentation of this analysis Information
eliminates the translation e frort traditionally
required between analysis and design notations.
Coupled with Ada's ability to represent much of
this Interface specification information as Jeffrey R.Carter
compilable Ada code. this allows coding and MS 1.0330
testing to begin Immediately, as well as providing Martin Marietta Astronautics Group
enforcement of the Interfaces. P. 0. Box 179

Finally. the ability to mechanically produce Denver. CO 80201
Ada code from MMAIM graphs effectivelyeliminates the coding phase. Mr. Carter is a senior software engineer for the

Martin Marietta Astronautics Group. lie has been

QW1.at, u Involved with software development for fourteen
We have seen that Ada. when used with a years and with Ada for four and one-half years.

suitable development method which incorporates Prior to joining Martin Marietta he developed
the modern software engineering mind set. software in Belgium and England for five years. A
changes the software development lifecycle. The member of the Association for Computing
result Is a completely-implemented system Machinery (ACM) and its Special Interest Group
without significantly more effort than usually goes on Ada (SIGAda). Mr. Carter was a prize-winner In
Into the traditional analysis phase. In addition, the 1988 Tr-Ada Ilands-On Ada Programming

Contest.

7th Annual National Conference on Ada Technology 1989 357

THE NATIONAL TRAINING CENTER HOVE AND UPGRADE:
A DISTRIBUTED ADA SYSTEM

David L. Pottinger

Science Applications International Corporation
San Diego, Ca. 92121

Abstract measures, and the preparation and
presentation of After Action Reviews

This paper describes a medium sized (AAR).
Ads development activity. The
National Training Center (NTC) move The enhanced system required the use
and upgrade project Involved the move (f Ada as the high-level language.
of the Core Instrumentation System The new workstations were to provide
(CIS) at Ft. Irwin, California, to a a windowing capability and the system
new facility. The project required a was to be composed of off-the-shelf
redesign of the softwAro and the re- components.
hosting of the system on upgraded
hardware. The now architecture was The upgraded system also required the
designed to handle near-real-time development of nuclear and chemical
data rates, digital map graphics, casualty prediction models for
distributed functionality, unit and enhanced indirect fire simulation.
playur 3ymbolvgy, and the recording
and display of selected statistical
measures. Prolect DesCription

Current System The current system is
about six years old. It is based

Tntrodtuction upon a distributed architecture and
is composed of four Vax 11/780s which

The National Training Center (NTC), are quad-ported to four megabytes of
located at Fort Irwin, California, is shared memory. Two of the machines
a training facility which provides process and archive incoming data,
mechanized and armor battalions an while two are file servers which
environment for developing basic respond to requests for data at the
combat skills. U.S. Army units workstations. Each workstation is
participate in two week exercises in made up of an LSI 11/23 processor, a
which they engage an opposition force deAnza graphics monitor and a Hitachi
trained In Warsaw Pact tactics. The tablet for command input. The
exorcises are field instrumented and software includes about 130,000
data from the various battles is source lines of Fortran and 67,000
monitored and recorded for analysis lines of a special menu description
and playback. The incoming data rate language.
is 10K bytes per second.

Enhanced System The enhanced system
The NTC Instrumentation System (NTC- was hosted on Sun Microsystems
IS) provides the means to collect, hardware. There are two compute
process, analyze and display servers and two file servers. The
performance data. Major NTC-IS servers are Sun 3/280s and are
functionality includes the control attached to two local area nets.
and monitoring of field exercises, Thirty two Sun 3/110 workstations are
recording and replay of field data, served by the file servers. All
control of a defensive live fire machines use Ethernet protocol for
range, presentation of statistical communication.
reports in support of performance

358 7th Annual National Conference on Ada Technology 1989

A commercial database management detailed design. The Ada PDL was not
system wai used to load, update and intended to be restrictive. It
maintain the statistical data. provided a means of capturing the

design in a form which can be
The new system carried an Ada processed by machine, and could be
software requirement. The project transformed into Ada code. A PDL
was relatively short fused, with a unique package was developed to
turn-on to delivery period of about support the definition of functions
27 months. The software architecture not yet generated, but which had been
required the development of 50 identified in the design phase.
computer software components (CSC3).
At the time of this writing, the A prototype system written in C
project was 30 days away from its existed prior to the development of
initial operating capability (10C). the upgraded system in Ada. Several

of the CSCs in a baseline system were
identified as candidates for

Software Develooment Anoroaek translation from C to Ada. A tool
developed to convert the C source to

Considgrxtin Several factors led Ada. The Ada was then massaged by
to the determination of a suitable the original C programmer to perform
software development approach. These the same function as in the baseline
factors included system.

- the background of the staff, Appropriate coding standards and
conventions were developed and

- the relatively short development documented. As code was produced, a
time, software quality asurance team

insured adherence to the coding
- the existence of a functional standards document.
baseline system in C and

The Ada development environment was
- the target hardware chosen for provided by the Verdix Ada

the upgrade system. Development System. An in-house
compiler queuing system was developed

The staff was primarily composed of which kept the Ada compilers busy,
experienced C language programmers but not overloaded.
with a strong background in the
techniques of structured design. A commercial graphics package was
Several senior staff members were selected for use with the
strongly Ada literate. The staff workstations. The necessary
profile was rounded out with entry graphics libraries were developed in
level personnei having some the Postscript language. Menu
university Ada experience, description files, also In

Postscript, were prepared by using a
The target hardware system was proprietary menu layout tool.
composed of workstations which were
Ethernetted together and which Problems Several problems arose
supported the development of which had major impact on the
decoupled modular processes which software development process. Of
communicated with each other on these, the Ada development
several different functional types of environment and staff training were
workstations. the most serious.

The Approach The structured analysis Ada training was accomplished through
and design techniques as described by the use of an OJT approach combined
DeMarcol, Yourdon and Constantine2 with a series of Ada round table
with some modification, were used to discussions with the technical staff.
develop and document the system Programmers whose C code was
design. A commercial automated translated into Ada, learned the Ada
design tools from Cadre Technologies syntax while massaging the translated
were used to maintain the design. source into a form which compiled and
Ada PDL was used to describe the executed correctly. Designers not

7th Annual National Conference on Ada Technology 1989 359

familiar with Ada, learned the syntax rate of approximately 15 lines per
when exposed to Ada PD!,. Tite most programmer day.
Ada literate of the staff were
identified as rosources to help the The error detection rate gives an
inexperieced staff members with Idea at the reliability of the NTC
problem resolution. The staff was software system. At the time of this
provided with reference books by writins, the error detection rate is
Booch3, Olsen4, and Barn03%. approximately one medium or highly

critical error per day. A more
The must significant obstacle to be complete analysis of reliability will
surmounted was the inadequacy of the be made at the completion of the
Ada development environment. While integration Phase.
the resources required for the
development of Ada were thought to be 2=I1111= The above project
understood prior to initial coding, description and results lead to
the reality of the situation became several conclusions about real-world
cloar during the design pha. As Ada development:
more Ada PD. was generated and
compiled, the shortage of the - A significant Ada development
secondary storage along with the projact can be successfully
failing of the compiler to keep uip designed and implemented by a
with the demands being made upon it, relatively inexperienced staff,
quickly outweighed the problems with
the language itself. The compiler -the Ada development environment
bottle-neck was partially relieved by must improve to provide more
the purh~ano of two additionail competition for established
compilers and the development of an development languages like C.
in-house Ada queuing system to keep
the :ompilorz busy, but not -structured design techniques
overlo.,dd. Tite technical staff, will produce a workable design
which was used to the rapid edit- for some Ada implementations,1
code-link-execute loop of the C
environment, wAs slow to adjust to -Ada training can be accomplished
the lengthy Ada compiler turnaround without the use of costly and
time. tine consuming commercial Ada

training programs.

gmmarz Project results can be
summarized with several Measures. 1. Detlarco, T. Strgeturad Anglygii4
The design effort produced about 5200 and Swte SoeficAtlon, Prentice-
pages of detailed design Hall, Inc., 1979.
documentation at a cost of 6250 man
days (md). Source lines of code 2. Yourden, E. and Constantine, b.
(SLOC) give a feeling for staff 5tructured Dosign: EuodamntaLs ofj..
productivity and project size. The Discipling of Computer P!rotrAm an
source lines listed below represent Svatems Design, Prentice-Hall Inc.,
non-omment lines of Ada, C, and Englewood, NJ, 1979.

Potsrit PS.3. hooch, G. Software Engineerin
SLOC Ada 210,000 Wih Aa Benjamin Cummings
SLOC C16,000 Publishing Co., Menlo Park, CA,
PS library 31,000 Second Edition 1987.

PS enu1730004. Olsen, E. and iWhitehill, S. MA
Total software development man-days for Programmers, Reston Publishing
from design through integration is Conpany, Inc., Reston, VA, 1983.
projected to be 17,544nd. Not
counting the auto-generated menu 5. Barnes, J.G.P. ProaramInw i
description code, the Ada, C, and A , Addison-Wesley Publishers
Postscript SLOC were produced at a Limited 1984.

360 7th Annual National Conference on Ada Technology 1989

6. Ada PROGRAM DESIGN LANGUAGE
(PDL) GUIDELINES, Vcrsion 1.1, 20
November 1984 (Document No. SAI
10000-025-0002).

TxAda is a reglstered trademark of
the U.S. Government (Ada Joint
Program Office)

David L. Pottinger
S.A.I.C.
10280 Campus Point Drive
San Diego. Ca. 92121

Mr. Pottinger has nine years of
Computer Science experience,
including seven years with SAIC. Mr.
Pottingar has managed several
zoftware development efforts on a
variety of hardware suites. The
projects have Involved data
processing and management systems,
along with workstation based, C3I,
range monitoring and control, and
tactical trainint systems.

7th Annual National Conference on Ada Technology 1989 361

SOFTWARE QUALITY ASSURANCE IN Ax Ada EKVXRONWW

Shan Barkataki John Kelly

California State University Jet Propulsion Laboratory
Nforthridge, California California Institute of Technology

PasadenA, California

inspectors. In order to help create an

M /JL= ego-less environment, managerr do not
participate in the inspections At JPL,
the detailed defect descriptions were notUse of Ad& does not assure software regularly reported to the management;quality. An effective software quality they were provided with a statistical

assurance plan remains a necessity for summary report at the conclusion of the
producing quality software. Such a plan process.
for developing Ada software using DOD-
2167A is described. Experience shows
that this methodology is effective in The Oullity Assurance Plan
detecting misuse of Ada as well as
finding certain design defects early in
the software life cycle. One major objective of the quality

assurance plan was early detection and
removal of defects. With this focus,Xn t120 four series of inspections were devised;
two during the preliminary design and two

This paper describes our experience with for the detailed design phase.
quality assurance work in the design The first inspections were held as soon
phase of an Ada software development as the system (CSCI) functions were
effort using the DOD-2167A methodology allocated to the Top-Level Computer
(1] at the Jet Propulsion Laboratory at Software Components (TLCSCs). These
Pasadena. The design methodology itself inspections were independent of Ada and
is described in a separate paper (2). concentrated on high-level issues such as

completeness of the top-level design,
traceability to the requirements and

Ada and Software Ouality quality related factors such as coupling
and cohesion of the TLCSCs.

Why do we need to worry about software The second series of inspections were
quality when coding with Ada? Doesn't held at the conclusion of the next lower
software quality come automatically with level of decumposition. This is the
Ada? Certainly, Ada has facilities that preliminary design phase, according to
encourage production of quality software, the DOD-2167A methodology, when the
however, like all tools, Ada can be Computer Software Corponents (CSC) are
misused. Use of Ada alone does not produced.
assure software quality. An effective
quality assurance plan is as necessary as The two major attributes established
ever for achieving good software quality, during the preliminary design were the

top-level concurrency (i.e. the number of
tasks in each CSC) and the inter-CSC

The Ins2ection Process interfaces, including task rendezvous.
The design was expressed using compiled
package specifications, textual

The cornerstone of the software quality descriptions and entity diagrams giving
assurance plan used in this project was a pictorial representations of the top-
review process that uses the Fagan's level control and data flows. The
inspection method (3]. The inspection quality factors evaluated at this stage
process is shown in figure 1. were uniformity of the design (clarity

and maintainability) and general
Defect finding is accompli.hed in highly provisions for exception handling
structured meetings by a tam of (reliability). The package

specifications were inspected for

362 7th Annual National Conference on Ada Technology 1989

HE1H
00U) a

0

0.

"

n al N a

0 U4L

0j04

LI.

7th Annual National Conference on Ada Technology 1989 363

information hiding (maintainability) and or minuse arise in the areas of exception
use of strong types (reliability). Other handling, information hiding, use of
points of interest were the concurrency strong types, and generic facilities.
and rendezvous provisions. Thene were Use of Ad style guides provide a partial
inspected from the view point of solution to this problem. However, the
necessity, completeness 4ne efficiency, real solution lies in formal r~views; our
The preliminary design review was held at experience shows that these can be very
the conclusion of the rework originating effective in improving software quality
from the inspections. by weeding out poor or questionable

coding practices. A quality assurance
The third series of inspections were held plan basee on reviews has the additional
very early in the datailed design, that benefit of providing on-the-job training
is isediaely after the preliminary for software personnel new to Ada.

decooposition of the CSCs into the
Computer Software Units (CSU). The Imoroving Sotware Quality with
primary focus of the inspections wtL to
examine the design for cohesion and
coupling characteristics. The distribution of defects during

preliminary and detailed design phases
The fourth and final series of are shown in figures 2 and 3
inspections were hold after production of respectively. These results were
compiled Ads PDL for the package and gathered from inspections on a total of
subprogran bodies. This marks the 53 different CSUs. Our results indicate
conclusion of the detailed design phase. that during the design phase, the process
As most design defects had been is most effective in discovering defects
discovered and fixed previously, the in the areas of clarity, correctness,

focus during the fourth series of teeas of ity, correctency,

inspections was on quality issues seen at completeness nd internal consistency.

the lower levels, including proper use The composition of the Inspection team is
Ada facilities. Examples of the Ada crucial to its effectiveness. A good
related quality factors examined during team consists of engineers specializing
tha inspections were: use of strong in the various different areas of
types, proper encapsulation of software development. The inspectors
exceptions, information hiding, must be Winsiders#, collectively
rendezvous performance, non-use of non- possessing detailed knowledge of the
portable features, use of the Ada generic system being built. The team has to be
facilities, etc. Clarity and readability drawn from people working in the same
of the PDL were hlso examined. The project but in other areas. The
reworked products were submitted for the inspection process demands a good deal of
DOD-2167A critical design review, the engineer's time. As delivery

deadlines approach, inspectors can
L gi&jn..nxar become a very scarce commodity. It is

vital therefore that the manpower
requirements for inspections are factored

The lessons learned are presented in two into the project resource plans.
parts: the first part addresses the
issues related to Ada. The second part In this project a typical Inspection team
deals with the use of inspections for consisted of the author together with a
quality assurance. requirements analyst, tester, user of the

software and a software product assurance
lmoroving-Softwaro Ouality With Ada engineer who acted as the moderator. On

average, it took 0.5 work hour per page
Our experience at JPL, the California to complete the inspection process (this
State University and elsewhere indicates includes all time expanded by the
that classroom training alone does not moderator, reader, recorder, author and
result in programmers writing quality Ada other inspectors for &ll seven phases of
code. Currently, many people are first the inspections). This translates to
time users of Ada and need guidance on approximately 1 person hour to fix ia-ch
proper use of the language's rich defect. In both cases the time quoted
facilities. To some, Ada represents what covers all work related to the
can be best described as a culture shock inspection, ie. planning, together with
. "Why isn't it enough to produce a finding defects, and fix ng and verifying

program, that works"? For these reasons, correctness of the solutions.
failure to use some of Ada's powerful
features for improving software quality, It is important to establish effective
is a major problem. It is not uncommon entrance criteria for each inspection.
to discover Ada code where there is a C This ensures that the work product being
or assembler program trying to get out! inspected has reached the expected level
We found that most problems with non-use of maturity and meets the minimum quality

364 7th Annual National Conference on Ada Technology 1989

IMI'

r c
CLC

= E I ,l.O _b - -0~q~o

CC
-08

Co
ssel~tJo 4) -

AauisisiuoO w

7th Annual National Conference on Ada Technology 1989 365

0*

CI LA:-:"''' °

SPIG O 11,13,18

366 7th Annual National Conference on Ada Cchnology 1939

standards. Failure to do this results In
poorly tocused Inspections which consume
excessive amounts of time. This is
particularly important when inspections
are tied to project milestones and when
now methodologies and languages are
involved.' gifl gx
Our overall experience is that an
inrpection based quality assurance plan
can be very effective in early detection or. Shan lsrkataki
of design and coding defects.considering that there is almost an order

of magnitude escalation in the relative School of Eng and ce-'tar Scionce
cost to fix errors between the design and California state University
testi;g phases, the policy or early Northridge, Ca 91330
detec" removal must pay handsome
dividends for the additional investmant
In effort (4). Dr. Shan Barkataki is a profssor o

Computer Science speciali Ing in Ada and
software engineering. it has worked as a

Bpracticing software Qangineer for over 12years which has included several Ada
projects. Dr Barkataki earned his Ph 0

1. US-DOD; DOO-STO-2167A: Defense in Computer Science in the area of
Systems Software Development; US software portability.
Depurtment of Defense, Feb 1988.

2. Ellison, Goulat: " Practical
Approach to Methodologies, Ada and
DOD-STD-2167A"; Proceedings of the
Seventh National Conference on Ada
Technology, March, 1989.

3. Fagan M E, "DOzign and Code
Inspections to Reduce %rrors in
Program Development"; IXM System
Journal, Vol 15, no 3, 1976, pp181-210. V.

4. Bouhm B: "Software Enginauring

EconomLcs"; Prentice Hall; 1981,
pp 39-41.

Dr. John Kelly

Mail Code 301-47!
Jet Propulsion Labol.tory
Pasadena, Ca 91109

Dr. John Kelly is a Software Product
Assurance 3pecialist and Chief Moderator
at the Jot Propulsion Laboratory. Prioc
to this ae taught Computer Science at
various universitios. Dr. Kelly has
developed and taught classes on the

ThA werk described iii this paper was Formal inspection process. His Ph. D. is
carried out by the Jut Propulsicn in Mathematics Education.
riLc.av,rf, t!alifornia Institute of
Teohnologly unter a contract with the
qrtional Aeronaut icA Lvd Space
A7A N l r netingtioh,

71h Annual National Conference on Ada Technologyl199 387

MU rnC =FZ$WM Yir WnIt tvo~ws =M

14mrdi J. QW&O1~r, Jr. M. Elaine rft~dmY, chid rstcn
.P. S. Amty D XIT~ Fcarch Iai-ttu Zrf 11esearch InttutA

(ktrfor Sotiax'et 2 40 FbOWZ MJ
DElnarn ADM NbY 13440 1"= M 207061

Fr.. halcrro), W 07703

ADS'1 Acr q'n major benefits to devecping tht
=frso~.ax* foa ry- prior to hIa16X1

t) xr - ca~nWts of a sytm iheS bOIt desIgn dacisions vill be bus.4 on u~ sbs
gTO1 for eve-, a deade4 "n a half. 2I* for the software; the W.e=10n~ of hattxt

software fIrst apptwch mris major Atxthe goftwar 1145 Ww 6TftlrVcd, %ick
reviciona to ~cumt y:taa do-lrnnt eables a wisotr cioios c~i spot is)noun
praCtices. Electxts of the ftv-arx first abu the system, as uwe3; av permittirg the

=Vmhame still beyard our technical gntzp. to ratre An r*hiorl fev Years
J ,evr the significarca of roftware first is %,nil the softw-ar is being dwa4oped: and the

dut it Providos the bazaline into '4iid better ranaeswnt or evoluticoaty reqixaownts
!Ilencnts of sysitem develorreft should fit. r-ine -* ha- x ha boon selected and
A is par provides an ovexvie. o. softma twiero Iocki into the sst.
first and dis±aos three alwants of this
&prAch with r-pct to aurent, cabilitics. Xt shmild be rated that several of the
7hose three elemnits are rwprtmn cwvonants of softwars first do not r**xUre a
definition, uses of prototyping, ad - srct adherene to the software first
deveoqent of portable softwr. philosophy. Ibttions of thix meithodology

will, thomrefore, be usable with a sre
tralitiona1 development apfzoadh; other

DnOJ~ri~tIportIons will be specifically liV~nd to Whsn~xMTIMI mhcdology. The significazoo of the soft%am
firs.t apprcach is that it provides a goa19E/ the caly 1970s it W o atria to% uich various elaoents or softuixe

the. ~f~Oh~)*IVI"te al pin & dlcprA=t rhould evolve. For exasle, work
tent. The Air Forca bAdgt for fsAl year on ne asjng strategies should addzess the
1972 in-Jicatad that botwoen $1. billion and rmoos of testing portale softwere s-Wle
$1.5 billion was spent on software, damro.-Ang the sensitivity of the softW~ro and
app'x-..%Wy three tfrv~s the coot of hadr testIM process to OA-z target machine. Byj
f or the ae weIod MOVEM7). Ik-A ca~y was maintaning oonsimatcny with n% oo.x qoal,
so % r0 than thes oadmr h-xcolving trztagies will he Vupcttiva

oavoreIt of a system, but it was also o(a langer reth ogy and be autually
believed to he more responsibla for schadul* costbe adanra of this is that
alippages, cost overrns, operational Msho h benefit of sotrare first can b
pe= ties and performance penAlties, as well real ized without waiting for all the
as for c~plex moO3:kd prchlens that surfacodX technologjy rnoix to fully irLVcne-nt the
after -y-.tem fielding. Bothi the concept of
software first and a software first
davelopxent rachino wei-a p-poed in the early 71i literally' .rple.mnt the rent.IY
1970s (ME73). prcpused rafel of softw-are first (13-OWS ray

ofleenbito te thory f ~be beyond the grasp of today's todisalogy inRcfi==bnto te thory f cotuar sme)ez areas Sevjeral elements of thatfirst have bo~ui ipropood and arm currently =del, howvar, ca be supported with existing
raceiving such at-.enticri from prcgrass such ' ecnloy
the DoD's SMAS (Softaro Technlogy for
da&ptable, Reliabla Systess) progam. 711 !ibe balanm of this paper presents an

ccmonality of these p;Vroachas is the crnCpt mervioni of soft-are first, details the use of
of davelcping the software ocuporsont of a reqireut &-finition, prototyping, an-d
system, the-n selecting the to supporto t portable software within the software first
the system. cocvpt and presents colusicns.

S&Wort for this research was prCvidOd Uthxh RAIX contx-act itbrF30602-
86-C-OlU1 with fund~s providnd Iry CDX Centar for Software Engineering.

388 7th Annual National Conference on Ada Tec~hnology 1989

oVID1or sO "XIM rwr As we pr ceeded vith our definition and
analysis, im discovered that software first

The traditional method of system provided solution-, to many problems
dvelcpgt Is to C*m the hat6ara for the encountered in today's develojw*sz vd
system, fit the softw to the system, then prvuldtd the Pn for ixplaemntir idess.
add ha.ar-am coczx ~nts, awd both um d uich iw.,ld stra ine the over 'all process
altor softwara nivints to raM the y%-tm ~ further* 71e end result is t0e ?cdel rh - in
work. P1 the time the system is fielded, the FIG 2. A major benefit of -Wotvr* first
hatra-Are Is several yem old and no lwar is that it forces the system to be vi ud as a
state of the art The sotware dsg h zyt= as opposed to several systes
bo altard to fit the hax-dwam of choice, (ha.-ro., saoftvLre, logistc) as we do today,
often inco.poratl#n hax re characteristics Uld the "SyCtws" to view of the "Man
into the roftware desig, nddKtA theref a stem. It also .1lows rogair*xi-M "
booe= both midhbj depwident and dffic' o desiqn decisions to be made without

aintain. And, th6 sdwh e has sltIped unnecezary cntraints. To tae adatage of
beauze of this. The notatYov effect# of this this benefit, the softare first a
amrch boom* evm wm 3FIZ',f-oid du.Wln 7 places heavy nr.hasis on requirasuents
the ruintcnaz J*ias of tho life cycle~. In definitiona.
addition, uhen, tho zyxte dovelecmet is
coplaod, often it w~ longer Mdt5 the needs The puTee of xvpiri±-nts definition is
of the user, pri.Jrxlly We t4 the lack of to aszum that the use and the developer, and
Interaction with tho us4- i.-nJ the any other key ople involved in the
delq nt pmr cs. As riginaly cocoeived, developnnt, mutually understand the
the 9=1 of softwa first "s, and still is, roqjlre:n w s. Since English is an wiguous
to rwu total life cylt costs. we felt larqjyp, r**Awxwnt* written in nglish am
this could be done ty increasing user apt to be abiguous: therefore, it is
inVolv-ent and poastpni thq mloction of necessary to iterate the z% irm?*nts to
the hz~re. This ao c~r Any ervigh to aszure that they L.re itumaly underatood.
achieve, in the ideal cme and rmautad in Since ccePletA mutual understanding and
the rodal shoun in MW(R .1. V c xvco~nize ugromnt is a naive goal, the user and
that softVAre &.VolCp.4et Is not wmjs and that developor rust continue to interact during the
departurs from the ideal rdkea are -)Nod if davolopnent to bring to the surface
we are to have a realistic *proach. 4z- 471= difference in interrtation as early as they
ralize that the closer to the Idm. =del wo arm rniza-d.
stay, the easier to widex't&d and iVrrnnt
the 8Pro3C*1. 7th reult is a pln Aidh Other intents of requixemunts definition
allms deputures fru the ideal rdi ony in software firt ae to :.sure that the user

m necs.,xy and view thes e dopartures a, is asking for u4nat he needs, that the izer and
oe= %bich should eventually be solved by developer u .;ctwud each other, and that the
future tm&;nology. In order to rod'Jco require-onts are feasible with today's
ir-Plcs~tAticn tire, we propose to use or tchctmlogy. An underlying thoe of the
adopt as !uch of existing technology epprc-h usod i. Is that the zuin ",ents
(ratxxdstools) Ps possible, and to stx%=tura focus on ithat is to be done, zo hew it Is to
the Irle.nctation in .odular fashion, to be done. Only after the reuiremnts have
allc pioces ot it to be irplenentd and used bon established are they pa.iti cn d into
a sow. as psibla. Tre exaples of this softmra and hadre r6ecairements. Tis will
.od1ar appxwch aru disa=-Ad in depth later facilitate rkidtaining a focus on the
in this p . requi=ents and avoid performing prebire

system design.

USER

R-EQUIRE- DESIGN, iNTEGRA1'E TEST FIELD
MENTS DEVELOP, ON - AN 1

DEFINITION IMPLEMENT HARDWARE tS .P.ORT
SOFTWARE

FIGURE 1. 'hE IAL mmM FoR SCFT RE Fn=

7th Annual National Conference on Ada Technology 1989 369

The A lar9Nge plays a key role in allows the umr and develqoer to rationally
facilitating the regqiremets definition select the best of the available alternatives,
pr.*ss, particularly the Ada package. 7he instead of being forced into makng a decision
package akes two significant contributlons: uder the prazwaes of a delayed, overrun
first, a pacage may defirA a capability that delivery.
will not be UzplImnted in the initial
delivery of the systi; and seond, a package Software first incorporates early
Pay ultljataly bi developed in either hardware training for multiple reascra. First, early
or software. training will identify any discrepancies

be the skills neessary to operate the
The advantage of putting specific syste and the abilities of the anticipated

capabilities into pacage is that the pacage operators. Also, br utilizing a trainer,
is built into the design as part of the another Perspective on the functionality of
initial design prooms, am if the package is the system will be obtained which xey further
not izplam*td as part of thn initial Identify differences between bat the user
dolivery. Sca aconmcations oust be vae, needs and what the developer is bilding.
obviously, to wm r that an wdnlmited Further, with training started early in the
package is not called by the ipl lanted life cycle, trained operators will be
system. Given the nature of the Ma proram available uhen the system is fielded. Thse
design largages, the intedepadsncies of changes to the traditional development cycle
pakages are quite easily oeved and mandate other caes.
controlled. The scon ontrbutict directly
sup.t the oentral theme of software flrzt, First, in order to begin training early,
portpnlnq the selection of hardware as long a prototype of the ran-adne interface mist
as posibe. exist early. This is requixd to define

ea-.tly the set of fuctions that the operator
Once system regArveants have been of the system mt parfor. and to detail the

developd and am being partitioned into Infomation presented to the operator by the
harctamre and software, all functions an to be system. If this early inforation indicates
irplected in software unless hardare is that the rn de interface is Inconsistent
clearly superior for implementing the with the capabilities of the operator, then
function. The rationale for this is to avoid changes can be incorporated into the systm.
the necessity of har.are ugqrad , and the
rsulting irpact on the system. ianging the Training on the host provides other
hadwmv h-ich irplecnts specific system advantages. It provides the oppority to
functions. cause pearturbations in the system Initiate training before the system has been
design; this can possibly be avoided by fielded. This presents the opportunity to
irplemaiting tioe functiors in Loftware. have the operators trained prior to system

fielding. Also, since raintenano is also
In soft-are first, the development host performed on the host, the updated system can

plays a critical role in the su ss of tZe be introduoe to the operators prior to being
project, since all the develqpen , training, fielded. This permits the cpporunity to
and rainte.-anx will be done on it. ville determine the effect on the operator of any
this iireses the izportanoa of chooslng the s-stem upgrades before those grzdes are
host, it alleviates rany prdlems %hich result released. Finally, the host envizu-ent. is
from the use of rultiple hosts (we consider h rmore roist than the fielded sys t .
the target a type of host), during tho Tools that are used for develjoent can also
recainder of a system's life. An ean-ple is a be usi to suport the training prcess.
problem erountered with mony omplex syst
that the intended operator is unable to In addition to the training advantages
operate. This ocurs when the developed ran- that a prototype of the man-vacdine interface
mchine interface is ixcaprehenslble to the provides, the prototype enables the user to
human h o is expected to operate the systm. get yet another view of the developer's
The traditional adjtbtent is to bild another perception of the system. Typically, a
layer onto the existing ran-madd interface system's functionality is viewed frc the
to enhance the system's ease of operation. global perspective, which tends to be
This additionl layer has several negative abstract. Tis glcbai perspective usually is
effects. It degrades performane, it alters expressed in terrs of the effect of the system
the software architecture, it increases cost on its envlront. By definirg the m-
and delays scledule, and generally aggravates rachine interface, the user and developer can
a bad situation. Using the host, the mran- observe eactly how the system will impleent
rachine interface can be inplemented and the desired effect. Vs rore concrete view
tested using all the capabilities available on of how the system will operate increases the
the host. Since it is being developed probability that the user and developer truly
integrally with the rest of the software, understand each other.
irplications of changes to the interfaces can
be gauged accurately. This allows early Mhe system prototype effort will focus on
visibility into potential problem areas and the rt nts that are ccnside-ed '"idi

370 7th Annual National Conference on Ada Technology 1989

risk," and the owvction between thee benefits of using the host for raintenance is
selected requirements an any han)ware twofold. The tools available on the host msak
necessary to implement them will be uptting the software easier, and the total
ccntinnuously explorad. The rar general irpact of any dwqve to tho vofit'.m is
hardware requiramant of the evolving software easir to assess since te diareu am being
will also be monitored an evaluated. 7he Iipl -exnd in the same eivimixvt used for
software first approxd' roqiixu the software deeloprent. *.,=n a je)stot cizan; to
to be ftaeoped before the hazrdwr is systcn soft6-irc is h%-d*, tile Szpyct Of that
selccted. In practice, it will be n ary o the oth st soft-wam Is
to catimate the syst 's hardwar neads early e using the d= bo 4cn. The dchane
in the devel-'aent cycle, and assess the is irplcmented in the wipportive host
feasibility of available harthare to act rhn-en, insta or the austere target
those needs. As th% softwm is being enva , and the enir system is retested
developed, the rsqulx sns for the ha .dam to asm that dvqges made have not had an
shich will executa the r-oftwam will bece wiclrable effect on the systen. Of
sme clear. As thes rwpJl:=t5- baco particular interest are potential effects on
clear, the feasibility of existing haurd to the system's ability to oeat timing
satizfy the req wunts will be assess-d. In riremontz.
this my, the desires of the software world
will be tecerod by the realities of the Several key aspects of software first can
hart arworld, be implavented within today's technology.

These include enhanced requirements
In soft first, the softw is definition, uze of prototyping for maltiple

designed, developed and i pl ted an the Pzjaow-:, and developing portable software.
host ewi . This is to aware that the ha.o facets of the methodology will be
softam portion of tin s funcions as dizsc:ad in detail in the folluwig sections.
intended on the host envlxruiont prior to
selection of, and retaetinig to, the target
envirmnt. 7Th software testing takes place R D IS DEFIN
on the host environment as part of
developr.t, a.A again later as Part of Cidteia
hard/softara integration. Also, all
training and maintawno are to be performed Threr axe two aspmptions on uhici
on tha host eYiroXcont. softwure first is based:

The portability of Ada is a key factor in Software is flexible md can be altered;
the integration of the software and tha target
hUrd6AM. The target machine is chosen basod If developed correctly, software can
upon the needs of the software. Rhile outline s veral generations of har. are.
operating on the host, the mmtory and timing
neods of the software ae evalcated. Hardware Each of these assumptions rust be qualified.
is then selected that can, met these roads. Although software is flexible, the less it is
7Th hardware that is mb*&W into the system ford to flex the are likely the software
to perform specific systm furctios is also development and maintenance will be
Choen at this time. J y delayirg all hardware succesful. To develop software correctly
selections until after the software is neoesitates understanding user requireents
deop, thea most current hardware can be and anticipating future requirements.
used in the he. Terefore, to both reduce the need for

altering software and to increa theDuring a eptanc testing the adequacy of lLklihood of long life necesitates doing
the ha*.ware is assessd. If the initial rore thorough reqirements analysi3.
hardware does not satisfy the system
reirements, then a dange in hardware must This section of this paper outlines the
be made. The likelihood of the hard.are being criteria fa" requdrements analysis relative to
acceptable, however, is very high as the sup orting software first; the next section
precise needs of the hardweM were identified di= es the ability of current tools to
prior to selection. satisfy those criteria.

Te primary significance of the field and Currently, requirements are typically
auVort phase is that the suport is performed written in a -atural language. These
in the host environent. Typically, host do-ents vary in length, but are usually long
environments have access to several enough to prohibit a detailed understanding of
sophisticated software devaloptuent tools, the syst= requirerents by anyone other than
These range frn requrments analysis tools, the author of the document. This inability to
to design tools, to documentation generation understand requirerents doozents is due to
tools, to testing tools. These tools are not the arbiguity and lack of specificity of
availablo in the target envirment wtxe natural language, and the inability to check
maintenance is typically performed. The for consistency or to maintain the document

7th Annual National Conference on Ada Technology 1989 371

due to lack of tools. In spite of these 7h techique shcad be suitable to the
shortcomings, reqiremets continue to bepatclrpliton
written in natural larquage due, in part, toatwl~ pliain
the fact that reading natural documents Vvxe ame addiitional. criteria that mist be
requires no sp'ecific training. Bemause of added to tis set to specifically suport
these shortooiras, there is moement within sotwa first,
the software engiroering coearity toard m=r
formalism in requiiments documixits. Ibe technique Whould support iterative

7bu introdiuce formalism into reqwitma ts devlopent of the document.
documents necessitates a representation -&he technique should snprt step~ise
S&Ae- 0xao representation schemes includereimntothdcun.
finite state machines, program diesign finrtofhedcmn.
languages, decision trw an Per Nes The technique should support the
The advantages of this introuiction of identification of related and
fotrnalis include the virtual elim~ination at Inet~metrqurmnslse in the
&-biguity and the existence at tools to doc%=nt.
v~port the consistarcy and enr*mn the
maintenance of the requiremeants docuat. The 7h technique should sup th oicp
disadvantage to the introductio of formalism that the ran, or operator, is paut of the
into requirerents doommts is that it
necessitates training in the specificsytm
reprewetation schem. A discussion on1 Some elaboration of each ot these
specific techniques for introducing formalism criteria follows.
into requirwients documents is co~ntained in
the next sction.~ The technique oust produoe a document

At tis imeno ingl t iqueforthat is nierstaniable to non-compitcar-
At thvis tie e no s inglmete scniuefonoie.e individuals since a high percentage

Several exist, each with its own advantages Mwy sytm prdc documents using a formil
and disadvantages. V4fat is necesary is a setreesnain chm. Sceted2 t
of criteria to evaluate requirements reps enti o by usie thoe do-i
techniques for a partizular system owper-riextod bhe uspme i ron -
delpent. Three key elu-iwnts in th rust be easily mlerstood. 2n' nee for sowe

~'stion criteria axm th usr th training is inevitable; a very short training
-jer, and the application. sess-ion ,ist be adequate or system users will

set of eight criteria for evaluating a ntacp h eurmnstcnqe
t4. -Vqu' have been propo~sed (IYAVI88]: once the requirements doozmnt is

Vam the tch~dnique is properly usd th understocod by bnth user ard developer it must
resulting document should be hepu " drive both the system design and the testing
understandable to non-corputer-orientad prces 71. ruquiraments prcess must focus

cutmr " ses on what the syvtem is to do and avoid
&&rsighow, the system is to do it. 'This

hben the techniques is prqpely usd th line becoe blur-red if, for example, the
resulting document should be able to representation scheme is a progr design
serve effectively as the basis for d~esign langage. Ihis need to be the basis for a
and testing. design must not beome an e~m for allowing

the requrirements docmet to beoe a design
7he ec:.iquesluxd prvideautoateddocumment. therefore, the system functionality

Thed. for aiu ty should pietauneand mus be eviden in the design doow* without
icondsifrsten itcy.ripetnss this dcumnt a x .lnin the design. The

inonsiteny.statamant. that the rsquiriets docmet

The technique should enorg h should serve as a basis for design rust be
requrirements writer to think and write in interpreted to mean that this docmnt exposes;

termof xtenal rodct ehavornotthe functionality of the system to the design
inrsoeternal product bopo e avorsno team, not that it defines a particular design.

intrnl ~ ~ he support for testing cmsfrom the ability
7he echiqueshold hlp r~gaizetheto easily interpret the fury-tionality of the

Thoe tcnqesol.epognz h system into test cases. Again, the test cases
documet.are not to be ezekled in the requirements
7he echnqueshoud Ivvid a asisfordocument, but rather the requirements are to

Thetchnied shooulde genraon.eabai o be stated in a manner that facilitates the
autnatd potoypegenraton.dvlomnt of test caes

The techniqjue should provide a basis for
automated system test generation.

372 7th Annual National Conference on Ada Technology 1989

The prlmary shortcomings of using natural The last four criteria were added to
language for a roquirwwns docment are the specifically support software first. The
ambiguity of natural language and the software first rodel proposes a strong
Inability to formally determine propertles ,xmit:-nt to iterative development of the
such as Cmpleteners and ocnsistency of *,stem lequira=t. This translates Into the
documents written In raturnl language. need of a technique that suports early and
Therefore, the primary capabilities for a frequent chage to the document. Also
technque other than atural language rust necsary are version control and archiving of
include checks for arbiguity, incompleteness, previous versions to enable the rooonstruction
and inconsistency. Given the size of the of a previous iteration of the document if an
requirements docents of interest, these Imple-ented ctae is to be deleted. The
cheoks must be autoated. requirements document in softwae first will

evolve and this evolution mist be supported by
Underscoring the nod to focus on the technique used to develop the documant.

requirements and avoid design during
require--nts analysis, is t.'he criteria that Stepwise refinement is related to
the technique should encourage the iterative development. The stepwise
requirements writer to think and write in refinement process involves taking a
term of external product behavior. This roquiramt and refining that requirement by
v~ sls focuses the rexlrxunts proe on adding specificity and detail. This prow-
what the system will do and avoids the trap of does not change reqaiixments btt rather
defining how the Xtem will do it. The details the existing requirements. suport in
requireents writer rust also cos ider that this area includes tracing the evolved
the system operator is internal, not external, requirements, assuring that the refined
to the system. requirements over all aspects of the initial

requirement, and identifying redundant
Requirweents are frequently generated in elements in the set of refined requiramants.

a disorganized manner. The individuals
Involved in determining system requirements The organization and structuring of the
ray generate a lengthy list of complex requirements document noted earlier has
requirements. The technique must aid in specific implicatins for software first.
structuring this list into a ocherent Related requirements would include
document. Here specific information on requircmnts that adaress a particular hligh-
organizing the reqiirw*ts document is level function or capacity of the system.
provided with the criteria developed to Interdependent requirements have corelational
specifically su;ort software first, or Cmzual links between them. These links

must be identified by the technique and
Automated prototype generation and expoced, on request, to the user.

automated test case generation are two
capabilities that are gradually becoming Software first suorts the concept that
available in requixements techniques. These the system being developed includes the htrn
criteria would more aocmrately be stated as with whom the system will be interacting. The
automated support for generation of prototypes irplicatins of this concept include that
and test cases than automated generation per requirements relative to the user mist be
se. The benefit of a formal representative included in the reuire.ents document and that
sd.e is the potential to autmat. the the man rachine interface is an integral
translation of xvqire mnts stated usin the cronent of the system, not an after-the-fact
scheme into a prototype or test cases. The appendage. Assmiptions about the capabilities
need for prototypes during requirements of the human can be noted easily onc the
analysis, aa stated elsewhe in this report, requirements relative to the hm-an are in the
is to provide additional perspective on the requirements document. armated support for
reqairements. The need for test case extracting and itemizing these requirements is
generation is to assure coverage of all essential in deducing the capabilities the
requircvmnts by the testing process. human is assurmnd to have. These ass,-ed

capabilities can then be ccqau~od and
Several of the existing require-ents contrasted to the anticipated user

techniques were developed for a specific requirments. Discrepancies cwn then be
application dcmain. Some are applicable to addres.od as appropriate.
other dcr.ains. Part of the evaluation
criteria of requirements techniques for a Tools
particular system is establishing the
suitability of the tchnique for the -spcific Requirements analysis has been singled
application. The rost direct measure of this out as a key process in software first, worthy
suitability would be to establish that the of new and botter techniques for defining
technique had been successfully utilized by requirments. Therefore, existing :ools for
the user and the developer previously on a requirements analysis have been studiCd for
project in the same application domain. applicability.

7th Annual National Conference on Ada Technology 1989 373

Autouted tools for regimnts aalysis Several of the tools that implwrt the
may be categorized in a numbr of dif ferent r ethods for recirments definition arxi
ways. Scee tools have Than designed to requirsrats analysis have recently been
auta~t the generation and maintenance of evauated against the criteria defined in the
Aat was originally a amauial method and thes proceding section (IYhVI88): output that is

tools typically Woke Ue of a graphical wndarstXdable to non-.cinputr-oriantad Users;
notation for analysis. 7tis clasn of tools output that form. a basis for design and
produces diagrams, aids in problem testing; autcrmted checks for azrbiguity,
partitioning, maintains a hierarchy of incorpltenss and inconsistency; system view
inforimation , iout the system, and applies is in term. of external behavior; output
heuristics to uncoer prole with the should be organized; tool should suprt
specification. Mors ixportantly, such tools autonated generation of prototypes ami tact
enable the analyst to iqxlata informa~tion an cae; and the tool should support the
track the onunections between now and existing specific application. The tools are based on
representations of the system. For exasple, a either finite state machines, decision tables
nrAber of CASM (Compiter Aided Softwarea or decision tr, program design language,
rrgneering) tools enable the analyst to stutue analysis, or Petri nets.
generate data flow diagrams and a data
dict4onary and maintain thee in a database Finite state racdirme appear to provide
that can be analyzed for corractnegs, the superior representation agriinst the stated
OMsistency, and ccapletaems. In fact, the criteria, with the only rajor drawback being
true benefit of this, a" of mam autorated the Laont of training to understand the tools
roeqants tools, is in the "intelligent an their. irpuzs and oupts. Decision tables
processing" that the tool applies to the or decision tram are most apprcpriata for
prcblsa specification. deciln-intansive applications, and tools

based on this mdal do riot provide for
Another class of automated requiraments automated checking of recjulxmaats for

analYsis tools rakes use of a special notation arbiguity, lnoMPletxw--ss, or inconistency.
(in =ot cas this is a raqirennts further, these buols uo not provide suport
Aweification language) that is processed lin for prototype cir test case generation. The
an autonate~ rtanner. Requirements ar strength of program design language tools is

decrbad with a specification language that that they are intuitive, cke to their
omrbines keyword indicators with a rabu, sinilarity to natural lanquatye; the weakniess
language narrative. The spocificahtion is the lack of formalism. necssary to asrer
language is fed to a prcs that produce a wall stuictred documents to drive vell
requirements specification and, nore stxuco.-ed designs. Static analysis can be
irportantly, a set of diagnart 4c reports about prforred to detect structural errors, hit
the onsistem-y and organizcion of th this is ror. beneficial in the design 3*has
specification. than in roquir.ewts definition. Structured

analysis tools, even those extended to support
After the systen-leal raquirlzients have real-tire applications, are rore appropriate

been defined througjh user-developer for system. based on data flow and data
interaction and the tza of riremen!Ofts sttucture. This leads to a data-flw view of
analysis tools, the next stop in the 5fre the systar, not an external view. Static
first approach is to partition the structural and behavioral analysis can be
requilrcrents into sot6-r ar had~ perforeed, but the structure is data driven.
r1equrents. Petri nets are strong at representing

Thank to rcent strids insynchronus behavior, bixt appear to be hird to
Thankroosi teoo g rec n stidsfwr inMASter, particularly for the non-ccepiter-

engineering (e.g., the develqcent of Ada), oine sr
the size and cxmplexity of embaddod real-tire Tols based on th~e finite state radiine
systems have grown exp~losively. it is now rcxiel appa to be the mot supportive of
practical to irplamet mwi functions in rwxjuirenents definition proes detailed in
software that earlier would have been the previous section.
relegated to haxd.;are. This flexibility tas
led to the soft:6are first bias to6ard softuare
inplementation of a function whenever PII
possible. R=e the project bogins, the
designers do not)ori the functional sysvtem *24 proposed apirc to software first
division betweeni the hardware and the relies on prototyping to ao, lish several
software. Tools that supply the hierarchical goals. Tmee include requixrmts definition,
functional deoxxposition frarework can be used camnuncation betwoen user and develcper,
to help define exactly whiich functions sh~ould definition of the man-vaddine interface, early
be perforzei in hardware and whidi in availability of training devioes, and
software. detemning feasibilities of parts of the

374 7th Annual National Conference on Ada Technology 1989

system. Ths section discusses several
asecta of prototyping relative to softre o Osta caractristics

rst.o Project d .aractexistics
Motivation "In garx l, any a~ lcatin that create

iuirants are difficult to state dyni-Aic visual displays, interacts heavily
explicitly and co~letely at the outset of a with a man user, or dwands algorithms or
project. The user roy anW the need u be combinatorial processing that =.=t be
unclear about the details of the solution. develc'd in an evolutionary fashion is a
Uers and developers must deal with inherent cadidate fod plotyping" (tristic. .
com unication bonidareles. ubat one mns to CDCOM x .e display such d .ra stic,
say ray not be uhat thc other hers. $biting and arc therefore candidates for prototyping
until latx in the project to detect and even if they are not following a voftir
correct a a:jor ni vstaiding is ,enrsive first approach. ftotping is, hoever,
in ter. of oney and tire. The concept of crltical to softwart first.
protot pir enz ssas a variety of spocific hhen building a systm using new omcepts
tochiqes w.tich facilitate comr dcation and e .t li Bs (Si n n75) contends
urderstandlng betw= users and developers.

... ieven the best planing is not soTa e p rn-'e chine intarf of a system c scent as to get it right the first ti e.are paricularly oritlccil to to, suo~s of n unrmetqisto hrfri o
its development effort. 7e ame coTlex, and ragenent que on, taerefore, i s not
contain a wealth of detail. Prototylng is tay.ther to build a pilot htem and throwbenfice-Lfordetrmiingdetile inut ndit awy. You will do that. The only qL*Ocnbeneficial. for detemnr detailed fr and isi bether to plan in advanos to bdld a

output requirements and man-machine
interaction requirannts. The us of thrcuaey, or to prolse to deliver the
prototypes can help identify and discriminata throwsuy to custors . .

among which functions the use can effectively P ontends that a prototype can serve
control and utddi functions the system needs a the tenm syst P 7i move
to perform automatically. Prototypes of the as the from a lyst f one hs oves
man-machine interface can also be used for to arct a luequy if le has the tieealy training, to an emxpected and mreqid learning eqw

that can be recognized and minimized. The
Several characteristics of system prpooed softwae first system development

develcpn.ts influence the relative benefits aproach echoes this conclusion.
of using prototyping tadiqies: he rin er of this section describes

4plication am several inds of prototyping, and relates them
to the model of software first prebentel in

o Application colexity RTRUE 2.

VA V
I r-

C,

F7GuRE 2. * .tnaC SOFnfeee FnT SYSI DTVEnRoog 989M37

7th Annual National Conference on Ada Technology 1989 375

Paper Prototype camm t of the proposed soware first

paroach. Thia can be acoompl~ishd by usingPpr prowtoyes amQ i--ves on paper of nonfunctional prooye to provide the
u.hat the termi -al scr oen, reports, physical inital tini for p i usert.
interfam, and actual ystam will look Me.
Paper prototypes provide a useful and Tchniques for building nonfunctional
in SivO way to inprove communication protypes include the use of ptototyping
during rXquiwtu- .n definition. Thy am languages, 4th generation lang;uyg or
apropriate from the earliest stages of syst conventional languAmes. 7he code developed
dnfinition. They allow the Interface for nonfunctIonal prototypes my be mused in
requirmionts to be determined before any the tystca, although the primary purpoe of
analyzis or design is done. Ty reult in nonfuncionl pr t es is to help dcfine the
solid requirements for the man-adilno systen roquire ents, not to develop an initial
interfaces and in a roducod charm of iplarentation of the systre.

Miuyrtarding-induccil requira.wnts changes
later in the life cycle. Another comeJec 14brking Prototypes
of using paper prototypes is that
d=-entation of the .n-mac..n interfaces, Working prototypes have interface
Irputs, and outputs will be develqd very cspability and lited functionality. Working
early in the life cycle rather than after the prototypes am u.ually disposable. They are
system is built. usually built with a 4th generation langu g

or by exploratory progmtrq. They are used
The software first approach to to explore feasibility issue, such a n hether

requira-nts definition stresses a need for or not a time constraint c=n be met.
the developer and user to uarstand each
other and to agre on the syt.= definition. WorkinM prototypes ae onstructad from
7he paper prototype ipp~roach fosters this the high~ 1.vl design. Their applicability to
interaction by requiring the developer to the so rtWa first approach is in questions of
spend extra time with the user explaining the feasibility. They ray also be used to test
apar pro.otypes and listening to the user's design options. Working prototypes am

cr~ntz. cenerally meant to be used as a larning tool

N tional P and then discarded.

A nonnc lr i ft velio t Prototypes

that accepts all valid irnts and dL-plars a A developent protoqtp is a p ran that
ca=-pla of each of the outputs, but has no prvide- part of the esired funtionality.
fun-tionality behind the displays. For The functionality is then aupmnted until the
instance, the software ray accept a digitizd sys.tem is completed. This approach is also
Iroge from an external scoroa and display it know as incrammtal development with user
on the cen. hen the us requets an F involcrent. The software design must be
and filtering of the imag, haover, another available for the davelopent prototype to be
premtored 3ae is di-played because the built.
processing software to do the FFT and
filtering funutions has not yet been Daveloc.nt prototypes ray be used to
irpl-nted. establish r immnts and then dizcakd.

More ooronly, however, they are used toWithin a software first approach, provide a o ntinuous prototype for the ujer,
nonfunctional prototypes provide the m-c as the prototype is developed into the
advantaes as do paper prototypes: i-pr d complete systae. Such a contizwmly
communication and better requirements available , evolving prototype can provide a
definition. The eventual users of a system mhanism for user interaction throuout the
can use nonfunctioal prototypes to get a feel devlopment cycle, as sap*aslzed in the
for the systen being develcod. Xf an softwre first approach.
appropriate nan-mchine interface is not
obvious frc discussion or paper prototypes, Pr oxtying has also been used to test
the develcper can provide a few different various approaches to solving a problem. This
nonfunctional prototypes which e=ploy techWlqe is also known as exploratory
different ran-machine interfaces. Fo~odck progrm.,ing. A developer who is unsure as to
frca the users can thn help determ.ine the how best to design or implement a new
proper approach. More iqortantly, the users technology or deal with a new requirement ray
can determine uether or not the mam-aie turn to prototyping to acquire some experience
interface rps to their ooncetual mxrel of in the area before ccemitting to a particular
the task. to be accomplished. develcvint path. For software first, this

applies to exploring high risk requirements,
Training early in the life cycle with espocially those that affect the eventual

user feedback to tfhe developers is a key selection of hardware for the system.

376 7th Annual National Conference on Ada Technology 1989

P&Vtotyplog Tools tefits of Portability

The goal of prototyping is rD learn the Portability provides flexibility. It
most about a prcblem for the least cost. This allows the custamr to mM use of preferred
translates Into wanting mults without hardi'am ad operating system. It also
spending a lot of tim coding. This issue lums allows the upgrwa of haxd-wre a" software as
bun~ addrtissed by mcet devlcpralts in dictated by dinging needs. An envlxuuuit
techniques for rapid prototypinq. P.apid ulude could, for e x.opla, rmdt in the
prototypinM wxxuzuga the use of vary highb lity to proons the sae a=unt of data
level languages and the muse of code. faster.
Included in these categories are 4th
generation lawq"), prototying lqjas, C oaputar Nudare technology Ms and is
deonctration langages, ad object oriented e pected to cotir to laprova at a rapid
davalo rxnt wwixuwts such as SlltalJ and rate. This has several effects:
Lisp anvirwrants. The softrwx first s zst
developoent aproach raquiixe the we of such highr clock rates
tools to achirea its goals of irproved faster M -y
requirents definition, better cocrzunicatlon now arditectures (RISC, Ma C)
betwen users a developers, rom careful nw devices (optical disk., OArz,
onsideratlc of the ran-mihlnm interfac, xilitary unique devle)
and early training, thrvi the %re of
prototnpiui. In this cllite, the enviruimt dxh4n

as the tar"et at a project's inception my be
obsolete by the the the system is fielded.

TPJTAnIT7Y Portability prvvi6es the flexibility to adopt
ctKgoing tehnology advaxm. This flexibility

Portability is a key ingredient of allows for greater choice ("i coapetition)
sftware first. t is both a driver of the in seleting hardAuv platform.
pilosophy and a goal of the drevlcp*nt
approxoh. Th davelcprnt of Aa as the first Portability providks cost savi-g,
portable prograning language, along with the particularly in the raintem-nm Mue of the
recognition that software life-bis should not soft.e life cycle. Softre with high
be prwaturnly shortowd by tying thm to portability will have few If a changes %km
hardware lifetime, together make softwaire a now release of an operating system or %4=e a
first both possible aid appaling. he diz h e upgrade is adopted.
to have application software outlive its
Initial target hardwaire, or deveoping,Ano cls ofhrwa ay o.m
training, calibrating and rnaiing th avnllable with L uxved price perfo.mance.

sofl-%a on the host envirariant, transform P3orting the softwra to this new hat*.ha.-e will
software portability from a nice idel Into a allow the z--te='s pe-fo.m to grow with

requireaent. har~ara advanoes without incurrinig carple
redevelopment cts. New softwar teadnology

This section discusses portability in coapile.,X dcvel'opnt ad Mlintena'na
definitions, i-plications, -ugeston for tools, ard operating system will benefit

creasing it, and finally masuring it. portable systa. Taking Advanta of
ham. aid softwar technology advances

Definition exttid s-ytG' useful lives. All these
factorz. ctributa to cost savings.

Softwam portability is the eae with
udich correctly functioning software running Portablity saves tLr. The DO in ote
in an envir-xent can be rade to corectly locking for ways to mduca thi le:9th of the
function in another environient. An d-volcpnt cycle. Porting eisting %-stcm
envirorrent in this context mns the hdware to new hardware ard ncrvtally extending
ad ope-rating Sytem that the application the systc. capability Is usually quicker than
software runs on. bulding a now systam from scratch. ni s

revitalization approach obviates some
AlthoAgh software is often classified as dovelcpvnt efforts ard provides an interim

portable or nonportabla, in reality capability until new syst- .are fielded. In
portability is a rmasure of the mddle ground this way, portability can save tire and
between two extremes. The =allest a-omnt of copla t the developr t cycle.
effort to do a port is to recorpile the
software for the new target envo nt. The Chl es
oJr extram is to translate or rewrite the
entire application .hile still retaining the Portable software is rot created by
original design. If the softwure application accident. To deliver highly portable software
needs to be redesignd aid rewritten it Is the developer mSt consciously addrZs the
considered nnpo-rtable. Norportable soft6r followig:
must be redevelope.

7th Annual National Conference on Ada Technology 1989 377

larqjup pottability Another approach to increasing
sofwav defelcpers' knowlede u! machine portability is to parameterize rather than

IdepemsIuias hard code inortion. 7hIs is an acceptd
dcc aotaton of awiroraent deperrd rcies sottware enginering principle that directly

and asuwi.ions affects portability. An exa l. Is i
rodular and puweized deprdoncles theze Is a location in ouy that has

inforation that the system acoes froumuy
plwce in the code. Directly (hard) oodlq

Iaq.Wjao piles must be available for the &aUrs at each place it is Werenced
the targt machlne. t lanqag emantlcs works, but portability ".old be increased It
nee to be iunaalxc~ ly defied. The that adkuss wmr defined as a cortant in one
lWigqae plamrtation mit not requl place ad the constant used e €ywt*re also.
uncmon hmama e atures. For portable

pllca1' it is beneficial to use a Softunm portability Is affected by the
Wauwjuage hldh has a standar, such as Ada. natur of the function perfor by the

V or uniqe language extion docrae zo.far. Techniques to xprwa perfoo nc
portability, are often directly the cr site of portability

ro~m= tions. Diked *)%tons often Wae
Pram-rars neead roftw~are devloit uique hadwar interfaes for the devicas

experience to generate portable code. with ut.tii they work.
Prvjramuz typically go thrugh thme levels
of Ceitanoe. First, they write the zl o Another trade oft is developer
that it does Ubtat they want it to do. SaO~c, mprordutivity" verwus portability. If there
they wudertand how it Is that the oaxe t , is a softwa deadline, developers will sp ed
they write Instructs the racina to perform Io-- effort on portability in order to spend
appropriately. Third, they Mderstard the adlitonal tix to develop fun Utulity. TWis
differ*-Cos ao target enviroents a is because uost omtoms give functionlity
uvite coe that will do iVtit is desired ashlbe priority than portability.
In.-kportunt ot the envirome as possible.

For exaple, seemingly innocuous to Portability

statra=t can present portability problem: Soft6mre that verifies inputs and results
is easier to port. FRbust coding atds in

it (#(x) and 1(x)) then ... endit: deteinIg utw as&-lons ar false in a
new taxget environwaant. This Can Soya

This statement has several debagLn t Vm doing a po..
Int*rpretAtions:

Use available stwezdrl %,',= feasible.
If A(x) iz FAISE then 1(x) will not be Dfacto standards am also helpful. UZe a
executed well proa h rather than an equally
ither A(x) or 1(x) ray be executetd fit effective homa grow apprach.

It the first is FA= the other will not me oode should be easily udetstandable
be executed. and mintainable by a less exixrie ed pers.
A(x) and B(x) will alwuzr; be executed Lerstanidable oode is valuable %hon the

pruon %bo doe the porting is diffeent frr
In s4m applicati rs the am -s to thee the pers-on wo did the develoqent.

questions will effect the rtsuts and/or the
perf.-on-cC of the application. DEqriven is Use an aproac %hich will work on the
Irportant in writing portable code. broades;t class of v~cines. mbe "standard"

ray differ betwoen two enviramnts. In ordr
Depudencies and assumlons need to be to be portable a different subraitina reay have

dom=ntad. Documenting serves two purpor;=: to be called to perform the saw function.
to Adae the developer mn auara of the
depenencies in the code and to aid developers me design should be bjilt sud that it
In porting the code in the future. avoids depending on er- nt u.nique

featur. The design noea to modularize the
Assuming that evircormnt dapenderCies emrrorent dependencies. mhe designe should

Vill oo.ir in the coi e, there still a stept conmid.r u.ather the unique facilities can be
that can be taken to keep portability high. e-alatad if the software is ported to another
One approech that works well is to localize eurrirovrrnt.
the nonportable features in odales sepa r
from the rest of the functional code. M&e Prfo.maco Versus Portability
the software is being ported, att,tion can be
focused on the few zod les that contain the qxrIienood developers will trade off
dependecies rather than scanning and diawqng sone efficiency for portability
the code throughout the syste.. Eicapoulation conside-atiow, boca se they)am that it is
of hardwate interfacos into modules also has the cost effective approach in the clizate of
the same benefit, ever faster/arger/d-eaper hardware.

378 7th Annual National Conference on Ada Technology 1989

Portability can be ix, ed by usix only FIG= 3 depicta the hotr esl:
t o e IW 9n 31-g f CO nStrUCts a In sub o rutine calls or hiuit 3Ip eryo i oe cu v. T rhe i j,:j is

tilch are xsotad by all envirctants tall thooratically the bast that can be done.
the envixrats that the rystim is brmw SYstaw to the left of the ouve zhold be
to run on). Ti Is Xono. as ca i avolded because thW can obtain r dltlonal
inteareetlon or minbval orZ IrolI. 7his portability vithoLat uxcrlficing p -fonsao4.

rans that the so~lre has to run on the
poOrmt VXurint or eve a vuboet of the In reality this graph rdy Wv many
pxest C.irmcnt. porla 11 m-vo or oxntcar lines, w&r ect

line x pras ot hov r aey the c ustmer is
or e pr, sowvarl cn be vlling to sPeQi. kddmltonal f~1ir7 can bjy

rxd %vry portable. For md3 .sy t c. sA ,.-'ov.1t and shift the curve to the
ard/or tim critical syztaw high portability rigt.
Is difficult or xrssib'le. "se= parforrxsne
Is of groatnt Orionr and a larne rber at M~Al-tine ParZorwai0Q IS an Arta i.*1CM
calculations are required, it ry be portability difficulties are obvious,
ben~eficial to use rangje orstzints that IRadre spoods vary and whtat runs 5 gcorxds
translate exactly to omn u-erlyinq on A Cray 2 vill t kA longer on an IIK M I.
ha.-6au'e (16 or 32 bit) to allow the coeiler thA Iauletion In insensitive to or flexible
to ur.ilize ha%%Uir everflow de ,ction darip; on the tim it tae to run then it is more
qpezations" (GPM$t). MAe Murrut anuvradl portable. Timing quir) s also ocu,,
with btec3W vystms Is to 9t th =t difference in device speds can cause
capability and porfonmvice fro m the Mr-* prvble= withl savicl .%! ri1 sin intcrWtz
available. tA develoopers viii aoly evezy o r b e i n g interrupted a t
trick poasible to provide the r: capoble uneWXQCt4KVod/%i dmnt tixim. This can
s %tm with the haero they hava. The hapn if the nw target zrnue slower or faster
rsq ruae for the system Should spacify than the original swmtumm.

%km n this porthbility/parfoasroo qWctzum
the oistacer would like the systm to be. WA-ring Portability

Long term solutions to the Portability Is a funrtion of the
portability/performance tradooff are sofitexe, the original enviruat, and the
cornMtially being sought. On a roch is to target awixr nt. It is s bazi expresed
have military stadard copztors rather than a as the amount of of fort reqired to be able to
different architrcture for each syst. port the Software. This 'Isnt of effort'
knster aoach is for the ocpiler to deal mtric Is influenced by the)awledge,
with generating the Pst efficient cord. andoe, capability of the pecple
Crzpilex continue to irjrve but in pCst Wforng the port.
cases a-Ve Still not as good as a hmnn doing
this. M.a is especially susx e ible to th& Te mot of effort' mtric: can be used
since A.a Cavilers are only about 4 yam with the analogy apoach. T* first port of
old. the s tem can be estinted uslng poclg

0
R

A

L

T

Y

PERFORMANCE

FIGJRE 3. I EIL1Ty PVFRJUpRFU

7th Annual National Conference on Ada Technology 1989 379

omts for Simlar3 systma art pusrt'e. Ad is .th =a potbelnug ohv
l~tcr pc ts c= be basud on sInilax %,Yt bm da.C1oIW 6 to th trad~to
"n the port hiztry- of th-s vj;t= 1bkver, prcrs fo d opl . I atdat
this &,I=Xah carroot be used 01 the cLotr kpral ot sboigaraiy
in avluatirV the portability of the soft~lam ft%== for:tbl otabiSity bexoist &M teait

d~li*rad ratzri7. Gldelrm fr utiancfrq7 the

Seve.-al reports amt available %..Icd1 potbility of software exist; "t focus on
~ ~ ..d~ ~ I iSOlating the implementation-depandent

tkirqes aoid ta vriactoi oablde= por tions of the 57j5.(into a lixitad mrbar
tcio.1ja t avoid, (CU6 (rtmAXS) potble . 0.. of C2odds. one Vajoc benefit of t'ls(rJIS) (GM$, MT6x111=) portability, rrective of softwr

(mess)firzt, Is portix'7 sottwme to a on suport
ervirXu~nt for post 6Vploent ru-mort.

One rirm~j CbjcItiva to XtAtIv the full R M"

.4_kjo~j for- 5ft'.Mr first iz to p*.%Ida a (5m dPVrmm wwr JZ-L
er~c-wvk into which iividwil ela= of 31.)AaI uiqLndg,.SXK1
the &N d olan~t Process can fit. In ,M-l~jrA, Dq=Unf~int of Dfense, 3arWr
this 'sy, the aeleits, aldt)orAp*.Xz 993
dcvolop4d indeperdently, will be c'zt LU (=)WmtAret, c dalqnttt
with a til prxht yr &1 lPn (tat6 w.W Deignqstir"5 Adciadlg Yqroft
aW. thc-vfora, be rut0*11Y ccaVatibl*. Also, the nt X-eml ttwmVS~dI9So
LbY unin7 i-iividug1 elaxints of the sro tEngn~r 11th loku3 Noe**S
.ir. deve*Ipmat apro~ach, s of the rei9 1~C.KSF~ D~
benefits of sortwrs first will be achiev6d

~eveal esiets poprel ~(BYJW4) B. war, A(flication Prototyping,

fir-.. can be ilolanted without bdtrirtj to ~~
th2 zoft&rr first approach. F=r 0Oat 1=7)BdOlI.esftaaa t
prototypirq the ran maddne 1nts~rfaoa will be L-,'t A S~~~ n t
eneficil irxvapsctive of the dcvelcqwt IQ'I1t:tt Asovn, amtc %.19

a*...Oxh. anttitativfirst rocasDitatetiotheVol. 19
da~loptnnt Or a ran rahiprtype to xy 1973.

criy requirazants, to --L-ort early (13M7) Bo = Barr. "Lr~n Sftu
truai '~, ard to dotr4ai V'O: wlpoutvt, Crzputar, Vol. 20, N4o. 9,
in f&=t, be able to ol;era the dewe-lqod Scpehr 1967.

!~in thereq~u~ns deinito3 Dondh. Grady. Software EFgkwJiharg
th rWj = t dei it o with Ada, benjamin ozxdir gs Pblishing

soft6-am first but valuable ragardless of thepn,)inOPr, A 93
arepalopwait rethod. A shift toward fo.-li= (B=7) Booch Grady. Softwamre Omwits
in reqciwtnts definition is nacacsitad by1 with Ada, lienjamin Omifrs Publishing
aoftMAe first to decremse the azbiguity or maMnoPak h 97

reqiirncnsto entable use or tools for ~ ?el ak A 97
coosta c dwckJng, ard to er*=Mo th (LWJC87J D. itricklin, ID 11, (ROft~mv),

raintainability of the xauirwients doo-,l. Sft=Cit.,197
7hase benefits are being realized -by 197
deeopr today. 1[3=5) F. P. Brools Jr., 7he Mythical K3an-

Prototyping is accepted almost Moth, Addisoo44ilaY, 1975.
uniiversally within the software Ou=mnitY as a M 6)BokFeri."Nslvrult
valuable tool with multiple applicati'z. M - Essenc ands Acidents f Silve r e
sofu-.w' re st thpsplacations ilUe - Ence nd Aidentsol at, oftArel
avoiding ard reslving differeoc- betwoen 1987. ~ ~ r Vl 0,~ , ~i
User and devgloper aver interpretations orf97
req~jirwnts, establlz-hlng feasibility or Bms ro,,Cag dadJ alc"
hIgh-risk requitxrnnts; ant prototypimr the Jr., a) DaidS ftrai, 'Medw Softwaeaqhr
van rachine iterface. 7ma ra Jr.,in atnt Davidomf Mretn. loy, "roIed r
Interface prototype will be utilized aid will of the 6t NationalCofeenc Po'n AM
therefore need to be a rabast, functional Taof the Crth ~tal Cty, frMarc on9A8 a

protoype. ptotayping is essential toeheoy CytlCtVA ac 98
pofwar first but, obiviously, can be utilized JC~7 Catr igna ad David Preston.

aihot er*ence to th sotwr fis "Prr amrs Produce More With Ada," Defense
apprmch.Flectzrncs, June 1987.

380 7th Annual National Conference on Ada Technology 1989

101Vzs av is, Alan K. A oca1=1scxi at (HA)M81 M.M Mua an .. TrY
7W= IM for the Specicaticun at Btrna1 "oxVt/~fit for
Systam beavior," Cmiincatins at the ACH, Xnoroting 1ftranx Factors in the Software
vol. 31, NO. 9, Sptacer 1988. Litocycle", CACK, Vol. 31, no. 4, 1988.

(DEON16) Do Platolo, Gil and Roni Richards. (WXT117) E.R. rAtthw.., "Octrviations on thM
"The Bacik-13n at a 1Jlti-Thrvt Ompiilar," Portability at kLN r/0", AcH Ada latters, Vol.
Proosedings af the 4th National VII, no.5, 1987.
Conference on Ada Tedoology, March 19-20,

M4s. 1Rstivo, "A Tool set for Distributed Ada
[WAS1) Falk, H. "CASE Teals !vfrge to iIavxile Prvm ng t, Grumm~n 123ta System# WoofIxrj,Rea1-Tizm Systm," 0..-zter Dosgn, January NlY, 1998.

1, 188.(MOGASS) F.E. llc~arry, W.W. Agresti#(1T1S88] R. C. Felsingjex, Cbjoct Orientd "MotAsuring Ada far Software Davealpwt in the
Dwign, zad&r notes, 1988. software Engineering Laboratory (SD..)",

Proceedings of the 21st Annual Haw-Aii
(FLI7) Flaisher, ftbert 3. "Software-First Xtrnationl Coference on Systcm Scicnc.,
Syrtex FDslgn,- Compon76, Fdartiary 24-26, januaLry 1q88.-
1976. (37)Mrla md.II-PCO-ptr
(1mm) FrW-%-n, Peter amd Anthony Wassc=. - BuJilding7 the Hardware to Fit the Sottr',
Soft~ti. Deign Tachniques, IEM Coputer Electronics andI Pow'er, At t 1978.
Society Press, Lm Aneles, CA, 1983. W 3 Mrcn, akPrentio

(031U12) Golubjatnika, O1e. "Arhiectre Refinement ot Visual SpeCifiCations in
Hardware and software Isaue in Fielding th P~jSj-S, iPA C-Th84-121, June 1984.
Next Genetration Doo Prciemors," Prooodings
of the 2nd AM~ Standardiza~tion confernce, (HASA87) National haranautics and SPace
Dacber 1982. MJinistnz tion, Go&dar1 Space Flight. Center,

I'Ma RintirA Envirerwit. Iwies"I(GRXE88) L.J. Griest and T.E. crloa, prelimiAnary xeport, Juna 1987.
Prel lznxy
Transportability Guideline for Ada Rea1-tirao (WIEL8B) X.W. Nielsen and K. Shutlte,
Softw-ar, V'XJTI orporation, Wootdlidga, Cr "-Digning Largo neal Tine systaez with AMa"l,
06525, April 30, 1988. CAad, Vol. 30, no. 8, 1987.

(141L63 flollan, J.D., E.L. Hfutchins, T.P. (fl1S582) 11;ssan, Wallis, Wchnnn, and othexrs,
Mcadlezz, M. "AMdarope Guidelines for the Pottability of
Rosenstein, and L. Skit~an, Graphical Ada Pxrqraas", ACH Ada Letters, Vol. 1, no.3,
Interfaces far 1982.
Silaitln, Institute far cog-dtive Science
Peport 8603, (PAPP85) F. PAPPAS, Ada Portability
University at California, May, 198G. Guidelines, Sotedch I=e., Walthax, MA, March

1985, DrMC/llrIS #A1)-A.160 390.
(Iprms) xiT ResearchiInstitute, 1,E-stabllsh
and Evaluata Ada IRintire Featues at Interest (MMS71 R.S. Prsran, Software Elrninoering-
far Roal. Tine Sytes - Interin Report'-, A Practitioner's Approach, seccnd edition, Noew
Contract 1,M 903-87-D-0056, U.S. Mrvy anWaM, Yor1, NlY., Mkcraw-Hill, Inc., 1987.
March 1988.

(P=188] Ibocoen, G., H.M. Nachiappan, S.O.()MJC84) P. Yxuchten, E. Schonberg, andi J. Land tu, "A Grap~hic Design Assistant far AdaSchw~artz, "Software Prttyping Using the srrz and Infarration System,"l Proeedings, 6th
prograt-Iing L~qnguae" Sorr.war, Vol. 1, m10., Nlational Conference an Ada Technology, 1988.
ctober 1984.

(SCII851J . Schill, R. Snoaton, R. JacbJon,[MACD82] M~acDonald, Alan, "Visual "T1he Convezi-ion of Currnwids & Control Software
Pi-anoing" Datamition, Vol. 28, No. 11, to Adz: DExerms and Lessons Leoarned", Ada
October, 198,7. Letters, Vol. IV, Issue 4, 1985.

IMASIA87] -,ahhjan, L., M. Glnsben, R. (SnUL7J Sivicy, Karen E. "Enxerienceai
Plxochner, and R. Irsot Learned in Trasportingj Ada 5oftWare,"I
QiLfoyle, "Software, Methodology Catalog," PkowOdings af the Joint Ada
Technical Report M7-O39l-ADP-0036, U.S. Arril onference Fifth Ilational cofoem-ce on AdaCanicatios-Eectrtonics Oorrand, October, Technology and Washington Ada Syrpositm,, March1987. ~16-19, 1987

71h Annual National Conference on Ada Technology 1989 381

(TAFXSU) Tvtt, Darryl X., -Lab Spoting
Development of Aa Tasking Tools", Goverrvait
04tAr lews, April 15, 1988.

(TATESS) C. Tate and T. Dockar, HA Rapid
Prototyping Syst m lsed on Data Flow
Principles", ACM SIGSOFrI Softwar Engineering
Notes, Vol. 10, no. 2, April 1985.

jWIDZe4) R. Wiener and R. Sinco.oc, Softuare
FlJiori with Modula-2 and Ada, 1 w York,
NY., John Wiley & Sons, Inc., 1984.

(WILLB7] Williams, T. "Ral-Ti a Dmc-aeopnt
Tools Aid D*ad~d Control System sign," Ms. M. Elaine ?edchak is a Pasaxc
COmuztr Design, October 1, 1987. Computer Scientist with lIT Resarch

Institute, Utexe she is on the professional
(W00D86) Woodside, C.M., "The ChEDE staff of the Data & Analysis Otnter for
Nerformanoe E.stlmrtor for Strn-tural Designs Sott. em"r Ourrnt reweardi interests areof Mda Pr- rmns," 9th MinnncMrook Workshop on in the areas of software angi rinosoftwar PFormOo E uaton Augbst, 1986. rthodologies, tools and standards. HerfvCIt work includes developrent of a test

standard and a backgrow-d investigation for
BXoGRAFF the developmant of a software engineeringenvironment in utdih she analyzed the

information r~irunsmrts of D0-SID-2167 and
its DIrs. Ms. Fedchak Mxived her B. S.
degree in athatics from St. Iawxn
University in 1979.

Mr. El~rd J. Ga11agher, Jr. is currently
the Chief of System Software Technology
Division, Advanced Softaem Technology, C4
Center for Softwaxe Englnerlng, ubere he 15
responsible for research and davelopent
efforts covering software rouse and Ada Dr. David Preston is a Senior Softwareapplied to real-time system and the Engineer with liT Research Institute and anassociated area of Untime envyirments. In adjunct faculty remlxr of the aomputer Sciencehis Previous assignmnt with Project manaer Deparbmezt of the University of Mylad. HisPIJS/TIDS he was responsible for all the specific research interests are the use of Adasoftware for the PUI/.flnrS hybrid, a omplex for secure systems, real-tire application
position locatilon/omunication system. He izmsw, and rUntire enviaxo t evaluationhas also served as the chairman of the STAS tochriqms and criteria. lie is a merber ofWzan Reoces Am oordinatin Team and has IE, the = Qozarter Society, wd ACH. Hewritten and reviewed Ada and courpter holds a B. S. in Earth and Space Scieno fromresorces policy for the cxmand. He receivd Clarion State College, an M. S. in Mathematicshis s. s. in Electrical ginoering from fruo Chio University, and a lb. D. inCarnegie Mellon University, and an M. S. in Mathatics Uacation and an . .n nter
Management Sciene frm Fairleigh Dickinson. Sciene from the University of Maryland.

382 7th Annual National Conference on Ada Technology 1989

LE-SSODNS LEARNED IN DIVEIA)PING REQUI REMENTS

Garlan liealer

Lockheied IEngineering and Sciences Company
Spice Station Frecdom-SSE System Project

AbstrlLet Requirten~t. Speciricalign Lire CyXcle

Thtis paper describes lessons lcarned fromn The requircments specification phase Is thie
developing a rcquirements specification beginning of thle life-cycle whichi effects thle
document for a large complex Ada system. Thle entire life-cycle of thle system. The purpose of
requirements specification process is to often tile rctquircitints specification Is to ccnnin a
glossed over by thle engineers so they call dive comnplete description or thle systcms functions
dirctly into thle design of thle system. A without dlescribing how thle system is
properly completed requirements specification implemented, serve as thle basis for design
wvill drive thle entire Iife-eycle of thle system. accivities, and thle basis for system test
The purpose of this paper is to describe tile planning.tI Figure 1, Softwvare lingineering Lire-
davelopment architecture, methodology and Cycle, shows how thle softwarec requiremntls
methods uscd during thre requiremnts phase in thle softwvare engineering life-cycle
specification process of thle Space Station should be implemntetd. Thlle software
Freedom Software Support Environmnlt (SSE) requiremnrts specification affects thle entire
Project. The SSE3 requiremntts specification system life-cycle bccause thle design and testing
process is explained with its problems and with of the system are developed from thie
some suggestions for a CASE tool to handle the requirements specification. Tile software
rc(Iuiremnts analysis phase. requiremntns specification affects thle entire life-

cycle and a mistake in this area can mecan costly
mistakes in thle other phases of the life-cycle-.

Tes Tatin

SigureicatiSoPwarein EngneeinyLie-Ccl

Prliihr Anerto nnual ationasllCneec nAaTcn~.y18 8

a is reguirem enti sneciricatinn? specification. Using an objcct.oriented approach
for the system design can be awkward if

The requirements specification is a method structured analysis tcchniqucs were used when
used to describe what functions ih system will defining the requircments, since the criteria for
perform, a means for describing thc workings of grouping furctions are diffcrcnt. The transition
a1 system, and a way for thc customer to from one to the other may require significant
undcrstand the purpose of the system. The recasting of the DUD's. This is a laborious
requirements specification is also used as the process, which can be avoided by assuming an
system basis for the design and testing, object-oriented viewpoint during the analysis
According to Yadav, Bravoco, Chatfield, and phasc. 6

RajkunarS the requirements specification should
be described in the form of. a functional model What are the renuiremignt gpecificatlon
of the object system; a data dictionary defining documenl contents?
the various components of the functional model:
and set of performance and test specifications After the requirements analysis phase of
for the system. the life.cycle is complete a method of reporting

and writing the processes from that phase arc
What takes place in the requirements essential to the requirements life-cycle and

specification phase is the requirements analysis system development phase. The requirements
process and requirements specification specification document atddrcsses the findings
documentation production. The requirements from the requirements analysis. A way to
specification phase of the lif.ecycle needs to represent and describe the requirements
adopt a methodology for requirements analysis, analysis is the purpose for the requirements
and a process to produce the requirements specification document.
specification.

The requirements specification phase of
Vhlat Is requirement5 analsik? the life cycle will produce several requirements

specification documents. The requirements
The requirements analysis is the part of specification document identifies the purpose of

the requirements specification phase that deals the system and provides an operational scenario
with analysis of the requirements to ensure the of how the system will be used. 4 The
systems objectives are met through the requirements specification document contains
requirements, and that there are not any information for the system users, designers,
unnecessary, unwanted or ambiguous implcmenters, and testers and it should include
requirements. There are three basic questions the following information. 5

with respect to requirement analysis: What
should the requirements be (content); flow - Functional specification of what functions
should requirements be stated (content form); the system must perform,
flow should the requirements be derived • System context, Constraints, and
(content determining process).5 Assumptions,

Several structured techniques have been • Performance specification about the

developed to help an analyst model at the dynamic properties of the system,

requirement determination level; Structured Measurement and test conditions for a

Analysis and Design Technique, Data Flow organized testing process to verify that the

Diagram (DFD), Business Information Analysis system is behaving properly.

Technique, Integrated Definition Method, The requirements specification document
Interpretive Structured Modeling Software. It is should include context analysis, functional
not clear to educators and practicing specification, and design constraints. Also
professionals which techniques are better suited different types of requirements should be
for requirements analysis. 5 These techniques addressed in this document for system design
provide testing for conflicting requirements, and testing.
ambiguous specifications, incomplete
requirements, redundant requirements, The next questions arc: What methodology
protocol-deadlocks between subsystems, and best suits the requirements specification phase
various other redundancies in the system and how to produce the requirements

384 7th Annual National Conference on Ada Technology 1989

specification document containin- the The workstations .re configured with word
appropriate information. processors, graphics software, and CASE tools for

documcntation development. The IBm PSP- and
MAC I1 are configured with the Microsoft Word

hLMUAigJ~ln to the 'SS Proleet word processor and the Apollo with Interleaf as
its word processing tool for document

The SSE System consists of host and development. The graphics software uscd is
workstation computer hardware. systcns GEMDraw for the IBM PS, MIacDraw for the
software, communications networks, and SSlI MAC ii, and Intcrica for the Apollo. The CASE
software. Thesc components. when intcgrated tools available are PowcrTools on the MAC II,
and operated as a networked system, will reamwork on the Apollo, and Execlerator on the
provide the total life-cycle management of the IBM PS/2.
Space Station Freedom Program software. The
SSE consists of software, standards, hardware rhe LAN uses the File Transfer Protocol
specifications, methods, procedures, (i'P) for transferring developed files from the
documentation, and tra!ning capabilities. Apollo and the MAC II to the VAX, and uses

Kcrmit for files transferring from the IBM PSP2.
The contract for the SSE project provides The files are then transferred and stored from

the Space Station Freedom Program with n different systems and applications using
software environment to aid in producing flight interoperability filters. Information on tool
and ground software for the space station. The inicroperability filers is located in Rl."'IS
SSE provides the tools, rules, and procedures Symposium'$S proceedings under "Tool
along with an integrated software environment Interopcrability in SSE 01 2.0".7

to support the development of application
software. On the VAX the documents are controlled

using the Automated Product Control
The SSe project is task to deliver various Environment (APCF) which was developed and

types or documents throughout the projects life- supported by the subcontractor Planning
cycle. The SSE Preliminary Requirements and Research Corporation (PRC). The APCE provides
SSE Detailed Requirements specification an environment for storing, testing and
documents arc tie primary SSE requirements configuration management functions for the
documents being delivered to the National documents.
Aeronautical & Space Administration (NASA).
Knowing that requirements will change and may This process works because the developers
change ofian these documents will be updated use the workstations for word processing, DFD,
annually, after the baseline is approvcd by and data diction:try development of their
NASA. assigned sections of the documents. Then the

sections in a file are transferred to the VAX
The SSE contract requires the production of where the developer loads the sections into tie

approximately 90 documents during the initial APCE. Once in the APCE. the section is ready for
two year term of the project. This fact brought testing. A tester checks the format and content
about a great need for a controlled document of tie developed sections using tie APCE as a
development and production process to handle test tool. If something is incoircct, the developer
the many developers working on various is informed of the changes that need to be made
documents. through VAX electronic mail. This process

continues until thle entire document has passed
The SSE System set up in house for the .the testing process including final integration

document development process consists of three tests. To produce a hard copy of the document, a
different types of workstations, Apollo Series VAX host-based tool called SCRIBE is used to
3000, Macintosh 1I, and IBM PS/2 Model 60. print the document on a laser printer.
These workstations are connected to a DEC VAX
8820 using an ethernet Local Area Network
(LAN). The LAN also includes the connection of
the laser printers which produce hard copies
from the workstations.

7th Annual Wational Conference on Ada Technology 1989 385

S~qE M~thodology in Developing ~ describes the actions performed on the datant ecification flowing into and out of the processes. Thei-e m e nts developers decompose requirements, processes,
and DFDs iteratively to accomplish functionalTh meth odology used for developing a partitioning, functional decomposition and

requirements sp cification document for systems
using Ada begins with careful preparation of the testing of the system.

annotated outl;,e. A group of three and four The requirements associated with each
develop the inotated outline using a boiler
plate similar to the DID's (Data Item Description) rocess are grouped under that section. TheFunctional Requirements explain what function
described in DOD-STD-2167 for addressing the element will provide, the Detail Requirement

requiremcnts. The annotated outline identifies clarifies the functional requirement, the Single,
major sections appendices, system users, and Detailed, and Testable Requirements specify how
reference docu- ents. The systems requirements fDst, how many, and how frequently the

sections in the annotated outline briefly describe fastiow requentl te

what requiren' nts will be included in that functional requirement will perform. Figure 3,

section. The .;ections in the annotated outline Requirements Specification Document Structure,
shows the lower level document sections and theare analogous te a process of the system. types of the requirements which correspond to
the sections.

A book manager is in charge of assigning
the appropriat,- people for developing the

different processes of the system and is in Ints, a copet cosse and
charge of bringi.g the document together. The requirements, a complete, consistent and

accurate statement of requirements for a system
book manager d .legates each section to a group may be impossible. The reasons are: inability of
who will develo f the requirements. A cocntext users to foresee all levels of detail, complexity of

is the system; inconsistency between various user
DFDs for the s ction. The context diagrrm is viewpoints. 4 For the unknown areas TBD's (To
usually obtained through the concept document, Be Determined) will be substituted until
proposal, or acccrding to customer specifications. additional data for the areas can be defined.

A kick-off meeting is conducted with the The methodology is iterative in nature so
people (developer & ',sters) in involved in the that the final requirements specification
development of *he requirements specification document includes all primitive subprocesses
document. Durin the kick-off meeting the book and DFDs for each subprocess. This methodology
manager informs the developers of there allows for an easy transition to the system
assignments and passes out standard formats design process.
and procedures defined to guide the developers
during the requirements specification Once the document is initially completed
:levclopmcnt process. the customer and user community are allowed to

review the requirements through a Review Item
The developers begin collecting relevant Description (RID). The RID is a form that allows

requirements on the section from system users, the customer to voice concerns with
contractors, reference documents, and the requirements within the document. The RIDs

ustomer. All the relevant requirements are must then be incorporated into the document
ollected and merged into a file. The developers and again reviewed by the customer. When the

:alyze collected requirements to identify customer approves the document, the document
processes which are sections within the is then considered baselined.
document. The DFDs are developed for processes
and subprocesses which are analogous to In practicing the above methodology, the
sections and subsections of the document. developers and testers encountered several
Active entities should appear as processes, problems. The problems and recommendations
pasisive entities as data flows; every function are presented in the next section as lessons
must be performed by some entity.6 The learned in developing requirements specifica ion
introduction of each section of the document documents for a large Ada system.
contains the mini-::pec for the process it is
associated with in the DFD. The mini-spec

386 7th Annual Maletlonrl Conference on Ada Technology 1989

Prohlem€% Develnein' tenuirement, • Global terms were inconsistently defined in
,qpcjjjg.o the document. Create a global glossary for

dcfining the terms used in the requirements
The methodology explained above. though specification document, also the glossary

fairly rigorous, was not without problems. This needs to be controlled and malntaincd by the
section discusses the problems that were book manager independent of the
encountered during the requirements requirements spcclfication developers.
specification production process and provides
several recommendations to avoid future Decomposing of requirements and DI)Ds to a
problems. These problens are described below. testable level for starting the design process

based on Ada. Not all of these requirements
l)uring the specification process frequent will be available during (thc initial
changes occurred to the annotated outline requirements specification phtse. Inform the
while documcnt development was in progress customer or the missing areas and proceed as
This was caused by a lack of m.anag:,ement directed.
understanding of the requirements The traceability to each primitive
specification and production process. requirment t o e c e prim t
Predefined standards for requirements requirement to the reference document
specification documents similar to DOD.STD. requirements was not well supported by the
2167 should be used produce an annottcd ensironmnt, mtracailiy and reporting
outline. A CASE tool that accommodates a using manual methods is a painful process".frequently changing outline is required. According to Stanton 3 development managers.
Documentation bread board and streamlining project leaders, and engineers will spend overmethodology would also help. 401% of their time preparing compliancedocuments, and most of that time will be

" Developers' personal expertise was not always spent tracing requirements. A CASE tool that
utilized by the book managers assignments. automates the recording of traceability for
Making a list of the expertise you need and requirements that change during the
match the staff expertise to the section development, and after baselining of the
assignments would make this process easier. requiremcets specification document, isnecessary.

"look manager of the document needs to
organize informal meetings and forums for Reorganization of the document in the
participation by the customers, and user supporting environment was difficult. akecommunity with the developers ofr the sure y'our CASE. tool supports user friendly
comuit spew iat i dveopent, oflit document reorganization and that therequirements specification document. traceability pointers move with the

• Lack of training in the supported recquirements.
methodology caused inconsistency problems
within the document. Training for the * Deadlines were negiotiated by management
developers in the chosen methodology, and in and NASA at the start of the contract award
analysis techniques is required before date, not by she developers. This decision
starting development of the requirements hurt the consistency, accuracy, usefulness,
specification process. Enforce project and completeness of the document. lowevcr
standards for DFDs and provide a CASE tool to often the requirements development phase is
adhere to these standards and methods. constrained by a deadline and a solution gets

picked without taking the time to research
" DFDs and data dictionaries were inconsistent what the customer requires. 4 It seems like

due to lack of understanding of analysis "there is never enough money to do it right
techniques among the requirements the first time but there is enough to do it
specification document developers. The use right latter". It is best to plan on more than
of a master data dictionary for developers one iteration of the document before
would prevent duplicate naming conventions baselining the requirements.
and definitions.

7th Annual National Conference on Ada Technology 1989 387

* Requirements of the system are dynamically enforce standards and control dclivcrablcs, a
being changed by the customer during the central design database with roulti.uscr access
requircments specification process. Also note and control.2

that It is not uncommon for the customer
(often the Government) to want to change The following criteria is suggested for a
'The Requirement" during development t. As CASE tool to be used during the requirements
new versions of the parent documents are specification process.
released updates to the existing version of the
requirements specification need to be ('ae Tool Criteri2
provided through a CASE tool.

. Provides configuration management and
Many of the problems could be solved version control facilities.

using a requirements management tool. Actually • Provide for automatic checking in the
the biggest problem is Cstablishing the following areas: Static Structural-signals
requirements management capability at the transmitted through inappropriate ports, or
beginning -)f the program and making signals received by an entity but not sent by
requirements management part of the whole life any entity, two requirements conflict: t
cycle.2 A comprehensive CASE tool for specification Is ambiguous, incomplete, or
requirements management to support the redundant, and protocol-deadlocks between
methodology is necessary although presently subsystems. I Natural language does not
there are only tools to support documents and provide for automatic checking so a
DFD's independently. Requirements Specification Language must be

used.
. The ability to trace requiremcnts throughout

Reuuirementi An2lhsis CAS, Tool Criteria the system development life cycle would help
solve many of the significant problems facing

The manual processes in the rcquirecrents developers and managers such as: Planning,
analysis phase can be reduced wilt a CASE tool Development, Verification, Communication,
that avoids having to manually scan, interpret, Project Control, Change Control, and
and input documents, create and maintain links Documentation. 2

and pointers, control configuration management • Create a requirements history report and be
procedures, and transfer files to and from other able to rcp.)rt the status of all requirements
systems. 2 A CASE tool that automates the in compliance reports. 2

manual procedures can mean significant savings • Integrated text and graphics editors within
in the amount of time spent in the requirements the CASE tool
specification phase. # Integrates structure analysis and object-

oriented design techniques within the tool.
A CASE tool that integrates the capibilities . Allow creation of boilerplate requirements

of word processing, structured analysis, and tracing forms.
object-oriented design, that allows for automated • Has a central design database with muli-user
generation o1 the requirements specification access and control.2

document which includes traceability for the 6 Interactive entry and viewing of traceability
requirements, and DFD generation corresponding pointers for each individual requirement.
to the sections in the document. A CASE tool • Individual requirements within different
with those qualifications is what was required versions of a document and across d~ffcrent
during the requirements specification phase on versions of configurations.2

this project. • Integrated Automated document production

capability.
A CASE tool for requirements analysis does • Allow reconfiguration of the environment to

not just provide links and pointers, that is only enforce the adopted methodology and
the beginning. To fully support requirements standards of the project.
management, the environmn.nt must also have • Interface between a requirements
integrated text and giaphics editors, management system and a document
configuration management and version control management system or a document
facilities, boilerplate requirements tracing forms, generation system. 2

388 7th Annual National Conference on Ada Technology 1989

" Automatically generaw- systern level tests 4. George E. Suturall, 'Requirements
directly from the requirements)1 Engineering and Ada,". Proceedlings of the

" Integrate at planning tool into in crnvironment Sixth National Conference on Ada
for planning of the llfe-eycle phases Technology, (March 1914S)

S. S. Yadav. I. Bravoco. A. Chatfield, & T.
cncliflon Raj k uma r. "Comparison o f Analysis

Techniques for Information Requirement
Requiremenuts management Is a mIt to Deterinination', Communications or the ACM

streamline lte development and maintenane of Vol 31. 9 (Sept. 1989)
a large system. In requiremnts management
wc aire talking about systemn design analysis atnd G. Sidnecy C. Baili, "An Objcct.Oticnted
being able to assess lte Impact of an ensiiecring Specification Method (or Ada", Proceedings
change request (CR). of lte Fifth Washington Ada Sympo7.ium,

(June 198s)
Theo probkcnis pointed out above werc not
deficiencies In the methodology. but rather the 7. C. L. Carnmody & C.T. Shotton, "Toot
need for planning. Organization, devecloper Interoperability fin SSR 01 2.0", RICIS
training, and lte use of automated mnethods with Symposium '88 Houston, TX (Nov. 198S)
a CASE tool to impose constraints andi
standJ~rdlyation during lte development process. S. DOD.STD-2167, 'Dcfense Systemt Software
The solutions described above can be provided Developnmt. June 4. IM8
With the use Of CUtTC1nt methodologies and with
the usc of a CASE tool which integrates word
processing. structure anailysis, object-oriented
design tind is able to trace requirements Garian G. Healer
throughout lte system development life-cycle. Lockheed En gitneon n g

and Sciences Co.
1150 Gemnini A22

Ac kno w ed e men s H outi~ont TX\ 77058
B.S. Computer Sciene

I would like to thamnk Arnerash Sripathi for fromi Texas A &M
his help in collecting information and for co- University in 1985
writing the summary to this article. Also I
would like to thank Pat Schill for helping me WVork for Lockheed on NASA's Space
make this article into a professional looking Station Freedom Software Support
product. Environment MSE) project in lte modeling

and simulation area. Have been involved in
Ada work for the space station. Also have

Referncesworked on military applications for
Lockhieed Missiles and Spacee Co. Current

1. Alan M. Davis, "A Camparision of Techniques interests are requirements specification.
for lte Specification of External System
Behavior". Communications of the ACMI vol
31.9 (Sept 1988)

2. Dave Sharon, "Requirements Management
for Building Better Systems", Namte Corp.,
Vol 11, No. 3 (Summer 1988)

3. Tomi Stanton. "Reqluiremients Managemient
and the RTRACE Environment", Nastec Corp.,
Vol 11, No. 3 (Summer 1988)

7th Annual National Conference on Ada Technology 1989 389

TAIMM -L PROG DESCRIPTIzON LA11c1: &E FOR ADA

Ernst-Crick, Dohtrkat

Unversity of Essen I Department of M.Atheics
Co~puter Since ISof tware Engineering

SVhUtzenbahn 70, 0-4300 Essen I Wcst Ge rmAny

We de~scribe the program dencription Programs can betmo quite complex, and it
language TangrOML in Sk-MO detail, in helps to have a sound rrthodological
particular we show how TangrAM L I# approach to their carastruction. In the
integrated into an object oriented case of Ada I there seem to be two
approach to software design in Ada. competing approaches for managing this
TangrAML is based essentially an a complexity: the more traditional func-
blend of SETh's very high level tional approach, and the object oriented
diction and Ada's data and program one.
abstraction facilities. We indicAte The functional approach is an extension
how TangramL may be used for program of the well known top down design mothcvd
generation as well as for reusability. in which functions and functionalities

are the primary objects of consideration.
flooch argues that this approach is not
Adequate to the linguistic capabilities
of Ada, and suggests the object oriented
approach t Dol, Ch. 2). The latter
Approach is based on objects and their
behavior as wall an on program abstrac-
tion *which provides operations on ant
object whose representation and identity
is hidden from the user". (Wag, p. 257)3.
Wegner points out that the functional
approach - and correspondingly the func-
tional programming style - lends Itself
to support working with functions in the
mathemAtical sense (i.e. working without
side effects). The object orieiited
approach on the other hand might be
compared with using mathematical machines
(like finite state automata) in which not
only the input but sone internal state
which is hidden from the outside affects
the output. From a practical point or view,
Boochi suggests the following steps in an
object oriented development:
1. Identify the objects and their

attributes.
2. Identify the operations suffered by and

required or each object.
3. Establish the visibility of each object

in relation to other objects.
4. Establish the interface of each object.
5. Implement each object.

*Ada is a registered trademark of the
U.S. Government (Ada Joint program
office)

390 71h Annual National Conference on Ada Technology 1989

(Llo2o,p. 171.Step 3 estnblishea he outside SCTL's concepts of data types in coetpaol-
viewof eaehblbt,an4 step4 it insid view, son t Ada's makes it diffieult, though.
so that for the purpose of this d.- hn t" blueprint Ada pro-grams (or pwgaes)
both steps may be *erged into A -.rta.siep direetly in SLIL. Thus for cpitaliing

In on t descriptiv pinwer of out theory In
ntructing the views, the connectlian with the context of object oriented design with
step 2 is crucial - It has to be firmly Ada, it is desirable to co;bine it with
establshed what the operations on each Ada's data abstraction facilities.
object at .A order to implemtnt them. These remarks make it evident that
The cpratawns astociated with each object Tangran L uses an approach which is rather
should be described in sose formal manner different frm the one used in designing
before they are implemented. This formal ANNA (see 1 LK1)0 I I: ANNA i sa language
description my serve as an ex tension to Ada; it works by anntating

- -. (as a blueprint, so toAda constructs. In this sense, ANA is
speak), but under favorable circumstances quite close to Ada, since imprtant Ada

may be used, too# as a ! ;4 r ' ;- concepts (scope and visibility, elabora-
of the Iplementation itself. If tion, generic instantiation) may be

the description is of a sufficient high applied to ANNA's annotations. We will see
and formal level, and the transformations that this Is not the case with Tangraml •
can be shown to be correctness preserving, Both ANNA and Aiphodel (see EllI 1) are
it may oven be used to f : ; the languages with the goal of supporting the
iplementation. Since a description is design of Ad* programs. Asphodel seems to

supposed to contain the algorithmic con- be based on VOM and may be used in an
tent of a package, it may be used, too, annotational way, too. It# min emphasis
for : % . . of the package's seems to be on the formal verification of
code. specifications, and it uses models of

The practicality of such a formalism for objects, which seem to be similar to.
describing Ada packages hinges an conven- abstract data types. It remains to be
ient meana of expressing the contents of seen what differences and similarities
such packagea (i.e. the objects implemen- there are between TangramL and Aajhodel.
ted, and the operations an and for these This paper is organited as follows:
objects). The description should be Section I deals with the intent of the
(otherwise much of its effect is lost), proposed language. Here the dual purpose
., d (thus giving a basis ol blueprinting programs and supporting

for verification and transformation), and reusability are discussed, and we briefly
; r jrz!mi . (in this way disgress by discussing some of SCTLTs

suppo rting the object oriented paradiga), constructs. Section 2 contains the lan-
In this report we propose a program guage description proper. Hfere we discuss

description longuage (called Tangram L) in some detail the language's descriptive
blending the very high level diction of mechanismin the context of the overall
SETL with thu data and program abstraction organiration of a TangraoL module. We
facilities of Ada. Thus we advocate using finally offer a brief sketch of the
finite set theory as an adequate way of Tangram system as a system planned to
describing the functionality of the opera- support reusability.
tions under consideration. The SETL expe-
rience has shown that set theory is a very Acknowledgement: Most of the work de-
adequate notational tool for describing scribed here was done while the author
the functionality of an algorithm without was on the faculty of the University of
cluttering the description with implemen- llildesheim. The author wants to thank
tation details (ee e.g. E Xru I , ESDDS I. Ms. S. Karmrodt for her skillful typing.
This has the obvious advantage for the
programmer/designer that he may concen-
trate on algorithmic - rather than imple-
mentation - details. A SETL specifiction
is executable, but SETL's advantages of
notational convenience have to be paid for
by a usually very poor performance. This
disadvantage is obviated by a combination
of tools to transform SETL programs
- the RAPTS-system transforming high

level SETL to low level SETL (see
CPail),

- the translation of SETL to Ada, con-
verting executable specifications to
production efficient programs (see
[DoGu] .

7th Annual National Confeience on Ada Technology 1989 391

1. ~ ~ ~ ~ ~ ~ h bh oetifa rAOr ~ are nesity of the underlying
.n langua" require# stating the relation

Aproa deription language serves of entities in rho paekage under consd-
traditionally the purpt-e of supr3rting sration t. other paekagos. This is dope
the jnrwti ln of programs, and helping to ensure that entities like variableg,
with mnagement task# like version and e tnstntse types and routines are
vonfiguratln entrol (see e.g. I Win, exported from rho proper paekalf, And
Tic I I. Tan~rE focussea on the first of to specify what entities are made avail-
theose APedts, neglo:ts the send oneo able by the prostnt no. So this fature
Aa -Ake# an atte:t to suppot runabil- should be Inorparted.
ity instead. We will first diosus# its The treatment of data tyNs And dot#
intent of aiding the design of programs struetures may serve to illustrate the
(or program port#) ,then we Are goinq to b lance which has to be foused on in
discuss its potential role in supring designing such A desription language.
reusability. Finally we want to briefly The data tt ruturing faclities must it

digress to SCTL in order to give an idea exercise too much generosity by not
of the power of very high level construct# retric-ting tht user too much (inca t eo
for program descriptions. blueprint aimed at might be too sketchy

to be usefull0 on the other hand it must

1.1 Aid In inn ronrav not forre the decription of too many

The object oriented approach to pgra details (since in this case flexibility
deign With o da, a skethd o prra O mIght be lost). Adding A sevond dimension,
design with da, a# sketched oera- It should be possible to operate on dif-
tionally in the Introduction, my be ferent levels of sapecifity. Consider
characterized by A cobination of d~tA records as an example: It should be
and progran abstraction. Following Wegner# possible to operate with e ponents of a

-!7-!makas private types and record without being forced to name then
operations on these types available to the (but using names should be fino, too), and
user, while ; ... , goats beyond it should be possible to completely
that by providing operations on objects specify a record, or to specify only the
whose representation and identity is required components, which in turn should
hidden from the user (I Weg, p. 2571). be allowed to contain typo variables.
Data abstractinn is closely r-lated to Using suitable transformational tech-
abstract data types, program abstraction niques, it should be possible to generate
to generic packages dnd their instan- compilable Ada packages from Tangram L
tiations, descriptions. Thir goal in somewhat simi-

Booch's operationali:ation of the lar to the one pursued e.g. by the ESPRIT
object oriented approach requires each project SED (see e.g. I Kel 1) using the
object's implementation, after its views prototyping language SETL. With this
have been established. This requires the language used for specifications, one
designer focussing again on the operations starts with a very high level prototype
associated with each object. A program (which Is very close to the formal speci-
description language will be of substan- fication, hence easy to verify), and
tial help in the design process if the gradually transforms this program into
connection between the objects and their a functionally equivalent SETL program
operations is made tight in the following which is semantically on a much lower
sense level. The transformations are correctness
- the operations (i.e. functions/proce- preserving, hence the resulting program
dures) are outlined on a functional is still correct. When further transfor-
level, holding the balance between mations within SETL are no longer prof-
going into too much detail, and super- itable, one obtains a production efficient
ficially stating the mere intent of version of the program in Ada by a correct-
an operation, ness preserving source-to-source trans-

- the application of data abstraction formation across the language boundary.
becomes visible, thus the use of ab- This transformational approach is quite
stract data types and their operations attractive, and we are just gaining some
are indicated, experience with it (now that the tools are

constructed). It does not fit, however,
- the internals of this conn2ction become into the object oriented paradigm to pro-
visible (comparable to the construction gram construction. Let us point out some
of a finite state machine in uhich the of the differences between the transfor-
hidden state and the state transitions mational, and the descriptive approach:
which are hidden as well, are never-
theless specified).

392 7th Annual National Conference on Ada Technology 1989

a) trnsformations sart from An exe- It is difficult to see that these require-
cutable prototyse, descrptions are ments will ever receive a satisfacto,
nut executable, solution: there are so.-ne approaches to the

problem r reusability which focus on theb) dacsription# are oriented towards problem of retrieving ¢oznpents (e.g.pUIkagea transformations 4tar1t frr (PrFr I with the ;,.
whole programs (although trAnformA- n p
tions may be used tkehnlcally efn o.,K" I wt-hn a c ng

~tiL rgr~:i~ee~. s ~ ~ ' t"chniquaa). N~oApocpartial programs like e.g. ST known to this author deals in a snatisfac-
modules), tory way with the problem of describing

c deseriptions use Ada's data struc- the meaning of a pgram fragment.
turing faclities for ropresenting There are reasons to believe that
data (although not exclusively), reusability of software will moat success-
transformations start from the roper- fully be undertaken not on the level of
t;ire of finite set theory (i.e. set#, the sourc codo of a program fragment, but
maps, vertorgs), and selcct concrete rather un the level of the conczept that
data representations only in the very the prtgra4m fragment is supposed to
last step, when it cones to producing *xpresas. Cheatham notes: "The problen i#
an Ada program, that programs in ap,' high level languages

dl transformations are oriented towards are the result of a mapping r A=e

!unetional behavior thence tend to whneptu l or abstract specfi tion of

follow a ore traditional functional whi i d to be acceplnhd anto very

approah)cifi daa representtions and go-

towards desribing obects and their r ithms which provide an . meann
behavior, for arcomplishing the tjitk at hand"

h Che, p. 589)). llencer one should be able
Consequently, a translation of Tangrani to describe the concepts for an Ada pack-
descriptions into compilable Ada packages age, say, in L suitable form, when it
will pursue other goals than the trans- comes to address the question of reusabil-
lation of SETL programs into Ada. This is ity of the package. Tt iz conceptual
essentially due to the fact that the description can be done at two different
translation SETL- Ada makes only sense if points in time: at - V .- v, when
one assumes that the prototype is the the mapping of objects and their opera-
complete solution to the given problem tions to implementations is considered,
(albeit one that lacks the desirable per- and at .-e i j j ;7 , when it comes to
formance) while the translation Tangram L putting the package into a software

Ada works from the more modest assump- depository for further use.
tion that a blueprint describes part of Using both the * ;rr and the i
the solution to a given problem. I . approach TangramL descriptions

may support the process of characterizing
1.2 Support Reusing Prooram software components. At construction time,

TangramL may help in supporting reuabil- the TangramL description of the package
ity. Reusability of software is currently may be used as an approximation to a for-

quite an active area of research in soft- mal description of the package's content.
ware engineering, and one of the main At cataloging time the process of trans-
problems here is to being able to catch forming a TangramL description into

the meaning of a program# or program compilable Ada code, which has been
pat, ein oer o pretriev program bsketched above, is reversed. Given an Adapart, in order to retrieve programs bypaagoe*X aTnrmdscitn
their functionality. The meaning of a which faithflly serves as its specifi-
program is difficult to characterize c ithslrequires of ous special

formally, and no practical way of de- cation. This requires os course special
scribing it has yet been devised. ,;- skills (resembling the skills of a
ciing itehas ytn devtised.r that ilibrarian who has to classify books for

t here means in particulac that it inclusion in a library - the analogy
oust be possible with a reasonable amount between searching for a book in a library
of effort to do the following things: and searching for a piece of software in a

- Describe the content of a piece of software depository has been emphasized in
software in an understandable way tPr~rA}. Both the a priori and the a
(i.e. so that not only experts in posteriori description are used then to
e.g. $-calculus are able to understand characterize the package's content when it
the description), comes to search for a package with a

- Given the description of a desired specified functionality.
functionality, retrieve from a depos- We will return to this aspect in
itory of program fragments a piece Section 3.
which either has exactly the desired
functionality, or which comes closest
to it.

7th Annual National Conference on Ada Technology 1989 393

1.3 y~YnbLvlCn~ut o Its salient features are
Progam Dlcriptios -the explicit construction and us* of

it Is obvious that programs written In a sets (a(tnd netted sets, too# e.g.
formalism close to formal, specifications Coll ee, and of set-theoretic con-
are easy to understand, and that they structs like the element- or the subset-
offer less obstacle# to verification, than relation,
programs written In a formalism close to - the use of assertions (if the expressiona machine. Very high level construct$ ma after assert evaluates to falseI thebe used for such formalisms. These con- program aborts),
structs are sometimes supported by or
taken from an appropriate mathematical - the use of quantifiers (Y
theory such as Norn clause logic t-RLG - the Omission of explicit variable
see Elow),J-calculus (-LXSP, see (All)# declarations.
array theory (steal. see (Cjo), and set
theory ('SMh, see CSMOS). The deacrip- It is easy to see that this program istiveo power of set theory for formulating correct. This Is so sInce It Is nothing
algorithms has been described and con- but a direct translation of the mathemat-vincingly demonstrated in 11(ru). ;k will ieal problem specification, where the
focus on the latter one. Set theoretic relevant definitions have been expended
constructs such as set, maps and vectors/ in a macro-like fashion.
topless may be used for representing dett~ :n eaertccosrcst

th:tgte wt h9aila oto describe blueprints for Ada packages willstructures offers a rather natulal way of introduce somet special preblems, as farexpressing algorithms close to their for- as data structures are concerned, We willk1l specif ications (which may be formulated use sets as usual in mathematics using
mathematically using the same apparatus _____________________

anyway). Consequently, we use In Tangraft p"oram A)t lie;
these constructs for a convenient formu- retad (v, 0);
lation of the algorithms we want toI
represent. This means in particular that I Ow to see uhether we read in the correct
the process of data abstraction, i.e. the stuff
formulation of abstract data typas (ADns) I
in supported directly by these construct#. assert is-set fyI;We will see how program abstraction is air ssie n 'eg eg
supported by this approech: the functiLonal AsotIste and (edge C t2));"C
description of routines provides opera- ans deaZi

tion on he bjecs uder onsderaion S Compute the set of all complete subsets
without revealing their representation in I
any detail. Complete :- (a: aev(V. ~ ya (V)
Let usn disgress briefly and give an (X' y) C 4 YXC4

example of the expressive power of met I
theory as realized in SMT. This should S the Cliques are the seximal sets in complete
give an idea of what we have in mind when S
it comes to concisely expressing algo- Cliques :6 (a: a C Complete I (not 3 b c com-rithm.. We want to compute the maximal plete I a c: b and a z)xcliques in an undirected graph Cm P VYE. print(Cliquesl;

Definition. A gutsia A c: V~ in 4dto end program A, C) fques;
complete iff xc A,y c4- (x) t {fylt 9
1,y aW deze A _a dito voti a t clique tg 171 Fi. 1 SZTL program for computing

0 *P4V and .~ a £=W aopzage M. if. all cliques in a graph
A c N f-Tliga A w B, rrided 8 is P'-erpZ~taJ.

If we want to compute all cliques in 0 value semantics: the following code
in SETL* we may translate the mathematical A :a U1 1..0);
description into code as followst the s :u A;
vertices are assumed to be given as a set A less :- 10;
v, the edges an a set a each elementr of
which in a set of two elements. The sets will not result in removing 10 from B. This
wands are read in; the program prints works fine as long as no indirection is
the set of all cliques and is given in involved, but there are some difficulties
Fig. 1. as soon as the sets in question contain

pointers. We will return to this problem
in due course.

394 71h Annual National Conference on Ada Technology 1I8

2. Lanauav* Description we provide high level descriptions Ueuing
This section will describe Tangraf in construct# from finite set theory. TheSe

greaer etal. @ wll frsthav a ook descriptions are local to each routine#
greaer etal. W wil frst ai~ a 00k inl particular the name: of the objects

At the overall organization of a TangrastL and entities used Oae local.
module, then we will discuss the lan-
"agoes type model. Roughly, a TangrmL 2.2 TangramLls ZZoO Model
module consists of a prelude section, and
of its main chapter. These sections will This section is devoted to a brief dis-
be discussed toqether -4th the functional cussion of the type system which is being
descriptions for th1 Itines ot the ack- used for TangramL. Since we want to
&aes to be bluoprin Finally, we will1 blueprint applications using Tangramg, we
have to consider wha 'V.ngrOOt module do not want to be too specific about the
really sweg typa of certain variables; this advocates

using abstract data types# and type
2.1 Oreanization of aTngra.f eodtul templates much in the spirit of 59%h. On

A Tagrag mdul ~s rqaiae ino athe other hand, we want to address enti-
A eUdeaf andul s s~orn ih wet calth ties like components of a record, sayi

P -Soluk . The relude estbihesl the here we hive to be rather specific. Thusofe outiie*tsb hidde objet we have to have at our disposal Ada'svisibility o uleanhidnbjcs types as well so SETh's.
to the modulo, #Ad the TYC-siction This yields a curiouis blend. Suppose
Itypes, variable ccnwants, routines) that A is a set of access variables each
Indicates what ic exported fi!z4' this having a numeric component p. Suppose
module, hence, what tnt,~tits 4ira made further that wa take an arbitrary element
viil by it EIn A and increment x.p by I. Note that

Amodule destv-11ton will have to work we did not touch the set A, and that the
with three difftirent kinds of entities: old value of A is the same as the new
with objects that are being made available value of this set (since the addresses
from other modules, with objects that are did not change at all). But sompthing has
being made available by the module it',elf, changed, and we have to account for the
but which the module chooses not to 'Veveel strange effects in the type system to be
to the outside (hidden objects), and constructed.
finally with abstract data types. ADTs in what follows, we refer to the grammar
pla at pca oehresnete r for Ada as given in CAJPO].We need a
no quitob"jects but rather templates. reference point for the description of
As mentioned in the Introduction, Ada Ada's types, and here we choose the

packages may be compared under the object grammar above, but start with the axiom
oriented approach to state machines, which J atn.This yields a context free
have some input and output, but which work language which we dnote by TYm. In
with an Invisible Internal state, and in building up Tangraml.'s type system, we fix
which the reaction to an input is deter- an at most countable sat A of type varia-
mined by the input as well as by the bles such thab' the variables 6 and p are
internal state. Thus data are hidden as no members of A, G : - (6 ,) j A is the base
internal states of a package. On the other set we will be working with. Here 6 stands
hand, the blueprint for a package must for the discrete types in Ads, and p for
account somehow for the internal state, the real ones. An interpretation connecte
since otherwise pure functional descrip- this to TYRf as follows:
tions would result. Thus the Prelude of a
Tangram L module contains a provision for Deifinition. A': interpretation of 0 it. a
describing such an internal state. ""P 0~ f" (4, p) into P (TYK)~ ouch that ech

The names introduced i~ the Prelude L~ird in OM 6 erivea from anmaintp-ei
are visible throughout the module descrip- nii" and each ward in Afp) dorives J-
tion, and in addition operations using rea~tpe-dfinitioz. A selection a for an
AM~ are being madia visible. For example, illtrprtatiVII g% iS 4 rtiarl mp o frmn (6,P) to
if a module uses the ADM set, and this TYP ouch that 610~c 0(t) holda fr att t c
AD? provides an operation called insert, d.Ymxin c.
then mentioning s'mt as an AD? in the Prelude Interpretations describe intuitively
will make this operation visible (as what happens when enumerative and real
insertSset).tpsaeeaoae; hyaentral

The TVCR-section contains the functional tyessare elaboated theyow arne noteceally
descriptions proper. Syntactically, types, nreessar inoel whated olwgien sneletin
variables, constants and routines are aretason cl ol r eay giecnsatr-
being made visible. For routines, we use prem t etions , we nc payrecnltucy
Ada's syntax for their header lines (making fo t eetos ic lil
names and signatures of the routines known Of t) - (GMt)0 is a ac10ction for 0
to the environment, hence establishing
visibility). For tie routines involved,

7th Annual National Conference on Ads Technology 1969 395

holds. Thus we will do without int-rpra- holds. we denote by : (II) the sat of all
tations. We now describe type constructorn selections on H. Then. (ACCtI(is dOfined
over certain ets. through the one-to-one correspondence
Let If be a set of types.

Definition. r,7: R~fill¢ (aecessf J): acess 100,11

!! ; , ! where o i r till.
This captures Most of Ada's typo vysten

Rcoi€1:m d,Y;, l'). (we did not take care of variant records,
or of task types). But in the same way we
may incorporate SET's type system here,

AAfII:,, Ua~i,, ",k; a) and this is what we are about to do now.
For this, let lI be a sat of types, then

S ' - " .r;:. .. .'': -"we define in a similar way

$Up(III:" (l{tp,'e :; 1 11-1,
Alplll,9 . Cl: i l,:;) ,(I, (I1

Selections on these sets are defined in
t~ote that the set el| is essentially a rather canonical way: 4 is a selection

the base set I of all sequences over !I, on Sct(ll with respect to a set , of
but should not be identified with the selections on H iff
latter set - otherwise it would be impos-
sible to iteratively building up records. , (Iz,..., ; 1

Using th" three constructors Re, Maand holds for suitably chosen selections
AU, one builds up larger and larger sets. hnalocosn see in

Now let 34' be the least fixed point for 41s...,k' ',. Analogously, we define

these constructs containing 0 (hence in selections on Top till relative to a set

particular the relations of selections en I! by t (tape,-cg
101 (9)o ,.'..,k(9k}]

RMMt ') cM',A-.{ M$) cM*,Ace[M1=4, Denoting again the set of all selec-
tions on Ilrelative to by i: (H,),

hold, thus 1' is closed with respect to we define

these type constructors).
For each of the constructors mentioned

above, we are able to extend the interpro- i.e. as the set of all maps from
tations and selections given for the base
set. Because of the remark above, we will li, . to l)1, 13.
define only selections. These selections Now lot M" be the least fixed point
will map each of the sets constructed to containing 91 with respect to the con-
f77 as follows: If the type constructor is structors Sel, Tip, and i p, and denote
Rec, then 0 is a selection on Rec(if) if by - (AV) the set of selections on 97
given (record, h) Rp¢c(li, thern exist based on (i') as the set of basis
selections 41, .- - k (with k :- length (I;, selections. This is the type system we are
h w 14i ... 12h) , and maps ,I ... #,, from it to working with. Thus a type in Tangramt may
the sot of all identifiers such that formally be considered as a member of

(MV). The salient features of this type
4(record, V2 - record system are that

11h - it incorporates Ada's as well as SETL's
types, hence it is possible to move
freely between the type systems of the
two languages (keep in mind that we
have excluded variant records as well

Pk;:U:):4:hk); as tasks, so the inclusion with respect

end record to Ada's types is to be taken with a
grain of salt),

holds. Similarly, if the type selector is it allows formulating types that may
Ma, then 0 is a selection on A[Il) iff have one or more types variables as
given (array, i,o)c Au(/i), there exist components.
selections ,...,ok on {M)+ (with k :-
lengthli)) and a selection i on H such that

O1array, i,o - array(to(i1),...,,;:(i;:)ofxfL)

396 7th Annual National Conference on Ada Technology 1989

Equality may be formulated in this type The triarts Section
system in such a way that e.g. two sots
containing pointere may still be consid- Apart from ADTs this subsection lists All

ered equal even If a value pointed At those items which are imported from other
has changed in one et (provided t modult-s. This applies equally to constants,
werehqa lbeforeth change. Tis d o- variables, types, and routines. SyntactL-were equal before the change). This do- cl"w itfrttepcaowt t

scription is rather formal, however, and caly, we list first the pasgage with its
willbe escibedin nott,.4 paer.name, and tlhe all entities as well as

will be described in another paper. their properties which are imported from
2.3 The Prolude Section it. This is intended to clarify the

visibility of each object (which in Ada

This section serves a dual purpose by proper is so-ftimes blurred by overusing
making visible all oblects whih are use clauses). Name clashe. which may occur
required In the TCYR- section. This applies later will have to be resolved by quali-
to those entities that are defined oter- fication, but this is not important hero.
nally (i.e. in other angram L modules) The Syntax follows norm?. Tangram con-
as well as to entities which are entirely ventions with the additional provision
private to the module under consideration. that roles are introduced into the do-
In addition the ATs acted upon in the scription. A role is an informal
TVCRsection are det with here. Conse- characterization (by just one identifier)
quently, this so:tion is subdivided into of an entity using the key word AetAs,
three parts, which syntactically are as in e.g.
described as fellows: From OVER-USE: -- Import from that package

prelude Type t ... Act i queue-buffer;
lrports -- which entitles are irported?][ence the type t should be defined in the
IsAOT -- which ADTs are required? package OVER-USE. The explanation following
Ilidden -- wnich Internally defined AttAs does not have any formal, i.e. syntac-

entities are visihie? tical or semantical signifiance but may
end prelude; be thought of as an informal reminder of

the role the type is intended to play.
The object oriented approach demands These roles are maintained in a separate

making the visibility of objects explicit, dictionary which is associated with the
and this is one of the purposes of the package description.
Prelude section: whenever an object in the Roles are not only associated with
package under consideration needs to see types but may also be attached to con-
an object from another module, this is stants, variables and routines as well.
the place to specify it. It may be some-
what surprising to see that hidden objects The IsADT Section
are made public, but the analogy with Ilere we make *no ADTs visible. This is
finite state machines with objects may done by the keyword IsAOT acting as an
help here: although states and state opener to this subsection, and a list of
transitions of a finite automaton are not opener hi su oad tolistotvisi le o a ouside obsrve, i isidentifiers which are supposed to denote
visible to an outside observer, it is abstract data types. When the name of annevertheless nocessary to deal with them abstract data type is listed here, it isand to explicitly manipulate them. In the assumed that a package description with
same sense it may be necessary to acknowl- this name exists. The names exported by
edge that there are specific hidden such a package are then available in a
objects in a package which need to be sua paa ae the al in amaniulaed epliitly Anexamle di- qualified way. We will deal with these
manipulated explicitly. An example indi- provider packages for ADTs later, but an
cating this may be helpful here: suppose example may be helpful here: Suppose that
that a package manipulating a text con-
cordance has to be designed (see [Sol] , a package description says
Ch. 7). Then inserting and counting words IsADT Set, -- (9
from a text in this concordance requires and that the Set package makes the fol-
partial knowledge of the concordance's lowing entities available:
structure.

Before describing these three components Empty, -- the erpty set
in greater detail, tt should be mentioned Intersection, Union, InsertElement,
that all names used in this section are DeleteElement,
visible throughout the package description QueryElement, InitlalizeErpty -- usual
which follows. -- operations on sets

Then the specification (* makes in
addition to Set the objects SetSEmpty,
SetSIntersection etc. available.

7th Annual National Conference on Ada Technology 1989 397

AD?. may be parametrized by a type or some modifications. These modifications
by another A (e.g. Que (a I denoting address the handling of records.
queues with elements of type a). These If we say e.g. that
ADTs are made available here, tooi the t tau Is record
parameter then may serve as a forward type ttsro
reference to the 0MCR-section where the indt r red;
corresponding type is explained in greater
detail. If ohe for more) of these pars- then it is implied that among the compo-
meters Is instantiated to a type already nents of the record type representing taeu
introduckd (a known type), then another at implemantation time there will be a
lWo abs',u-.k ADT is defined. This new component of type integer, and a component
ADT Inherits all operations from its of type real , respectively. If V is a
parent AYDD. How this is indicated syn- variable of type tau, then v.1 denotes
tactically may be seen from the example the component of type integer, and v.02
displayed in Fig. 2. denotes the component of type real, reap.

Instantiating this record template will
Te Hidden Section take care of consistent naming. In this
In termA of the entities already visible way we hope to at least partially bypass
which are either imported or come from Ada's restrictions with respect to

AMOs it is usually necessary to make some records as generic parameters.
internal objects available. Since pack- This section contains, too, those type
ages may be assumed to work on some hidden definitions which have to be filled in
internal state, an explanation of a pack- because of forward references in the
age's internal working should to some IsADT section.
extent be based on the knowledge of that The declaration of variables and of
state. This is what happens here. The constants follows rather the same pattern
analogy to the private part of a package as the corresponding declarations in Ada
specification of an Ada package comes to do. Here it should be noted that variables
mind. The private part reveals the imple- &ay be parametrized implicitly according
mentation of a data structure as far as to type variables that occur as compo-
necessary for type checking. The objects nents of their types, and that defining
declared here as hidden reveal in a a constant implies no type variables
similar way their internal structure only being involved in the corresponding
to the extent which is required by the entities.
context (i.e. to make names visible). This section contains the signatures
Hence both parts are somewhat similar of the routines implemented by and ex-
indeed, although the similarity cooes ported from the package. Hence we state
from different motivations, in this section the routines together with

their respective kind (i.e. function or
2.4 The TNCR-Section procedure), the names, modes and types of
After having outlined what entities are their parameters an well as the type of
imported from the package under consid- the value returned, if we are dealing with

eration - hereby establishing passive a function. This header line is formulated

visibility - it becomes nesessary to in much the same way as in Ada, and it
establish active visibility. This serves serves as an opener to the routine's
the dual purpose of completely estab- functional description, in which a high

lishing the visibility for each object, level outline of the algorithmic content
and of outlining the interface together is given. Thin outline is presented in a

with a functional description for each manner resemb:ing SCTL's diction of
object. exprssing a).orithms.

This section tells the world outside 1will aiscuss details below, but
which types are exported, where the before doing this, we want to present an
ec'mioa of the types involved follows example which based on Booch's text
the outline given above. Hence a blend of concordance problem (see Eboll, Ch. 7 for
Ada's and SETL's types may be made avail- details). For the sake of brevity we focus
able by a package. This implies in partic- on one particular routine - the procedure
ular that a TangramL type may contain add. The Tangrag description is given in
type variables. Substituting all type Fig. 2.
variables for types proper evidently Thus we import two types from other
correspond to instantiating a generic packages (for which we assume that there
type, but it is possible as well that are package descriptions available), and
only a partial substitution is done when make the abstract data types set and queue
it comes to use the package within the available. These ADTs are parametrized
Tangram L system. This would correspond to (the types of the elements serve as para-
a partial instatiation and does not have meters), they are instantiated to the ADTs
a formal counterpart in Ada. Synta ticaiZy queuel, and setl, respectively. Thiz implies
we follow here much of Ada's syntax with the availability of the operations on

306 7th Annual National Conference on Ada Technology 1919

these types as discussed above. The pack- p'ocedure add(the-word: in WORS.word;
age has a hidden anonymous type and the number: In LINE.NuMaERS.num-
another hidden object, via., a set x with bar);
elements taken from that type. All this is functional
declared in the prelude section. The proce- if exists k In x such-that k.I1 w the-word
.ure add takes a word and a line number then InsertSqueuel(k.#2, the-number);
and adds either the line number to a queue else insertSsetl(x, (the.word, initializes
of line numbers, or it adds the word qveuel(the-number));
together with an initialized queue to the
set x. If the set is full, an exception is when is-fullSseti a: raise overflow;
raised. fl;

Exceptions have to be made visible in end functional;
much the same way as e.g. types or routines, end description CONCORDANCE;
This section is the proper place for
doing that. In the same way as ANNA we Fig. 2 TangramL description for Booch's
distinguish three ways of describing an CONCORDANCE problem
exception. The first way the defzuZ way:
it is just stated that an exception is
raised. If the conditions are explicitly 2.5 Functional Descriptions
stated under which conditions an exception Prelude and header lines in a package
is raised, then we have a Lk description description are quite oriented towards
of that exception. If finally the packpge's Ad: (since this is the target language
internal state 3s described immediately anyway). The functional description,
before the exception is raised, we con- however, should be concise and of a very
sider this a .a'n description (see high level., Hence it is difficult to use
cLuO, P. 9f). Ada here, since such operations as iter-

The package description may serve as ating over a set and the like are evidently
a very high level draft of the package - not available as built-in operations in
it should be evident from the example Ada. On the other hand, set theory
above that this may be useful during the provides a very natural way of expressing
very first steps of the design of a pack- algorithms. This is so because e.g. sets,
age. Alternatively, the description may maps and relations are easily used to
serve to concisely describe the algorith- describe the combinatorial structure
mic content of a package for reusing it. underlying all algorithms. Consequently,
The functional description is essential it is our hypothesis that finite set
here, and we will discuss it in a moment. theory is an adequate vehicle for the
The example also shows that it should not program development process. This is
be too difficult to generate executable demonstrated by the SETL programming lan-
Ada code from the package description, guage. SETL, however, does not fit directly
given the experiences with generating on top of Ada as a program description
efficient Ada code for the version of language because it is quite easy to loose
finite set theory represented in SETL (see the link between a SETL structure, and the
[DoGuJ). corresponding Ada structure which is

intended to represent it - and vice versa.
Package description CONCORDANCE Is Thus there should be a descriptive level
prelude between Ada as the language to Zwte¢mnt
Imports an algorithm and SETL (or set theory) as
package WORDS: the language to d bcAthe the algorithm.
type word is string; This descriptive level is provided by

package LINE-NUMBERS: Tangram&, or, to be morespecific, by the
type number Is positive: functional descriptions outlining what

IsADT set(g), queue(h); -- AOTs parametrized we have called alr ithmc c3:tont above,
Hidden we borrow from SETL those constructs
instantiate queuel as queue (h a; LINE.NUMBERS. which deal with sets, maps and tuples.

number); The discussion of the type structure
instantiate seti as set (g n> record WORDS.word; above shows that Ada structures may be

queue 1; end record); contained in these set theoretic entities
(so that we may have a set of records,

-- This "ak or a map from pointer variables to arrays).
queue(h), and set(g), rasp., As far as notation is concerned, we use
available in an appropriate way the familiar mathematical notation for

x: setl; sets and tuples. Hence
end prelude; (e(x-l, ... , x-k):x-1cc-l, ... , x-kcc-k I

tnx.l tn, xk))

7th Annual National Conference on Ada Technology 1989 399

denotes the set of all objects e(x-1, ... , which only states that A must be true).
x-k) such that x-i is taken from c-i, sIMAk, The select-statement allows to non-
with the property that the predicate deterministically select an entity from a
P(x., ... , x.k) holds. TangramL provides compound object like a set, map or tuple.
the usual operations on sets (union, For example
intersection, set difference, power set, select xct such-thaty yct: x~y
inserting and deleting elements, testing
membership, subset relation etc.), and selects the maximal member of t, where t
on tuples (slicing, concatenation, may be a set or a tuple. In analogy to the
indexing, to name just a few) in the achieve- statement we think of the select as
same way as mathematical set theory does. imperative in nature, i.e. an algorithm
Maps are the usual associative structures has to be found which takes care of the
and may be used to retrieve image values, selection. This fits to the intent of

The question may arise here why TangramL TangramL as a program description lan-
provides set theoretic constructs, but guage allowing the formulation algorithms
allows sets as abstract data types to be on a very high level without going into
formulated. To see why this makes sense, too elaborate details.
we have to point out which role is played
by the different kinds of sets. When 2.6 Provider-Packages
formulated as ADTs, sets are used as These packages are intended to define
implementation structures, so these sets
will have to be represented explicitly in abstract data types, thus they pro ui a

service (rather than c,%oww a servicethe coputer's memory. When used as de- like an actor- package). in a provider
mathematical entities which not neces package the imports clause in the prelude
arily have to be constructed explicitly, section is empty, since an A'T is per-

sr ae to be cructed expicty ceived as an independent, basic and thus
but rather may be ~erew out, i.e. axiomatic mathematical entity. Thus ADTs
which may be substituted after a suitably must not depend on other entities. On the
chosen transformational process by simpler ot nd, ites not e tis per-
implementationother hand, it does not violate this per-

It is possible in Tangram L to iterate ception of ADTs as axiomatic entities

implicitly over a compound structure with t at the hidden clause in the prelude is not

the existential and the universal quanti- empty, and the IMIT clause may be present,

and too, since an ADT may be incorporated byfier, respectively: existential ndanother one. The TCVR-section lists the
universal quantification both yield nme o The D? to et w it ts pae
Boolean values, the former one producing name of the am together with its para-

additionally the existing value if it mters. This name is qualified as an d
returns TRUE. by using A0T instead of type, which would

In a similar way we make the usual be used for characterizing type names in
statements of a procedural language non-provider packages. The functional de-
available. This applies to scriptions and all other constructs

remain unchanged. Fig. 3 displays the
- conditional statements package description for a provider package

(if ... then ... elsif ... then ... else ... f) which makes the ADn set(a) available. For
- case statements the sake of simplicity we display only the

definition of the operator * for inter-
- iterative statements (simple loops, secting sets. Note the use of the asser-

for-, while- and until- loops). These tion that every element of the sets
constructs may be left using a quit- involved is of the right type: TangramL
statement, iteration may skip a value provides a type checking function (which
using a continue-statement. is of an assertive nature).

We want to emphasize the following state- As indicated above, mentioning an
ments which may help arguing about de- abstract data type in the prelude of a
scriptions. The assert-statement takes a package description makes all abstract
Boolean value as an argument (e.g., operations on the data type available.
assert xzO) and may consequently be used
to conveniently formulate proconditions.
An achieve-statement also takes a Boolean
value as an argument and may serve as a
postcondition, e.g.

achieve vicil ... It-), such-that t(l)<t(i+1)

makes sure that the (dynamic)tuple t is
sorted. The achieve- statement is imperative
in nature: saying achieve A means that an
algorithm has to be devised that makes the
condition A true (in contrast to assert A

400 7th Annual National Conference on Ada Technology 1989

package description Set The Ad& code for the package is stored
prelude in the node labelled Code; we store here
end prelude; not the textual respresentation itself

but rather the corresponding abstract
A0T set(a); syntax tree - this makes manipulations on
function "*"(x: In set(a); y: in set(a)) the code easier. The next node contains

return set(a); role descriptions, i.e. pointers into the
functional code where entities are arnotated using

assert forall w in x such-that typt.of(w) • a; AtAs. The node labelled C¢w.inta indi-
assert foral1 v in y such-that type-of(w) a; cates which restrictions are imposed on
achieve z a (b in x such-that b in y); the package (e.g. which operating system,
return z; which implementation restrictions, what

end functi01; storage capacity is required internally
end package description; as well as externally etc.) Those restric-

tions are formulated in plain English and
Fig. 3 A Tangrat provider Package given in tabular form. The next main slot

Exceptied in occupied by a list of
exceptions, which in turn are categorized

3) The Tangram System__ according to wEk, strong and defdui.
The Tanura System annotations, as described above. Syntactic

This section provides a brief overview aspects are stored in the next node, and
over the Tangram system. As the name here we focus on
indicates, this system is intended to - the signatures of procedures and func-
maintain a set of packages as building tions, i.e. the list of formal parame-
blocks from which programs may be com- ters together with Qach parameter's
posed. The system is not yet fully modes,
implemented.

A particular package is represented - the dependency graph for the package:
by its TangramL deacription: this de- this graph indicaten on which other
scription is intended to adequately packages the package under consideration
express the packages's intent. This is depends. These dependencies are cate-
not the only aspect of a package which gorized according to packages provided
is stored in the Tangram system. Tangram by the Ada system under which the pack-
collects different views of a package, age is intended to run, and user
and Fig. 4 indicates which views are defined packages which are maintained
relevant here. Starting counterlockwise by Tangram.
from the Code node, we will briefly The next slot is occupied by a pointer to
discuss each componant now. the TangramL description as discussed in

the present paper. Finally we find a node
labelled AOTA; here we maintain infor-
mations about the abstract data types
which are used by the package under

C" Wkso consideration. This information is pre-
Csented in textual form for enabling the

user to determine what the algebraic
characteristics of the ADT are; an
animated representation similar to that
presented in the Balsa-Il system (see
[Bro 3) but using animation techniques
is under construction.

Tangram L programs may obviously not be
no lused for generating executable code on any

areal machine. The Tangram L compiler is
rather used for

- consistency checking: it is checked
that importing and exporting objects -
hence making objects visible - is done
properly and consistently.

- filling in slots: most of the slots in
a node for a package in the Tangram
system may be generated automatically.
If only a Tangram L description for a
package is available, then these slots

Y4. It An overve- he Tqrm system may be filled from the knowledge avail-
able through this description.

7th Annual National Conference on Ads Technology 19M9 401

in addition, TangramL descriptions will supporting reusability.
serve as an input to-the transformational
engine that derives Ada programs from a We have pointed out that from a
description. This will have to be done in Tangram L description an Ada program
a very similar way as in [DoGu 2, al- may be generated - at least in principle.
though some sort of knowledge base for rurther research will show how and to what
representing ADTs and the algorithms extent the practical experiences gained
manipulating them will have to be added. with translating SETL to Ada may be capi-

talized upon.
Within the research related to Tan-

gram, we concentrate first on the de-
scription of individual packages, since Ernst-E. Doberkat:
we feel that this information is centralto reusability. We have not decided yet Currently a full professor for software
how to integrate these descriptions into engineering in the Department of Mathe-h syto ich supprths decritins indi- matics at the University of Essen, fromasystem which supports retrieving in5thog 18dhara o-h
vidual packages. These are at least the 19m5 through 19 0 Chairman of the
following alternatives to consider: Computer Science Department at the

University of Hildesheim, 191 - 1984

- the facatcd l r a4d# c due to Prieto- Associate Professor of Mathematics and
Diaz and Freeman C PrFr 3 which seems to Computer Science, Clarkson College of
be a fairly practical approach, although Technology, Potsdam, N.Y.
it appears to be rather awkward to add
new categories to this scheme (in par- Research interests program transfer
ticular to the weighted graph of mations, reusability of software,
concepts), prototyping, semantics of programming

- a scheme using conceptual clustering, languages, analysis of algorithms

as e.g. Maarek and Kaiser C MaKa]
propose. This is a very promising
approach, although it appears to have
been tried out only according to a
syntactic categorization, rather than
on semantic categories.

- an approach oriented towards ADTs
coupled with an expert system (quite
comparable to the SEZOD system devel-
oped at GMD Karlsruhe in conjunction
with IBM Germany, see Zim 3) - here
it appears that one would need a
domain to argue about which is somewhat
more general than ADTs.

- an approach using normal forms, as pro-
posed by Luqi and Ketabchi C Luq .

A combination of conceptual clustering,
normal forms and hypertext techniques (for
linking the individual nodes to each other
in a sophisticated way, see e.g. (Con 3)
seems to be the most promising approach
and will be pursuod further.

4. Conclusion

We have discussed the construction of a
program description language, and have
seen how this language may fit into the
object oriented approach to software
development with Ada. The approach to
constructing this language centered around
the paradigm of developing programs using
a very high level language based on set
theory (much like SETL). Finally we have
indicated how the Tangram t descriptions
fit into an attempt to overall describing
the functionality of an Ada package. It
will remain to be seen how this approach
may be utilized in an integrated system

402 7th Annual National Conference on Ada Technology 1989

References

(AJPOI The Programming Language Afa CLHKO3 Luckham, D.C., V. Henke, F.W.,
Reference Manual. Leotur Notde in Krieg-Brickner, I., Owe, O.:
Comp&uter So.noe, ol. 155, Springer- AM - A Language for Anne-
Verlag, Berlin, 1913 tating Ada Programs. Loatsre gowe

(All I Allen, J.t Anatomy of LISP. ing cper- Soierto, Vol. 260,

McGraw-Hill Book Company, Mew Springer-Verlag, Berlin, 1917

York, 1978 (Luq3 Luqi and Ketabchi, N: A Com-
puter-Aided Prototyping System.

with Ada. Denjamin/Cumings, IEEE Softar, March 1988, 66 - 72

Menlo Park, 1986 (MaKal Haarek, Y.S., Kaiser, G.E.:
Using conceptual clustering for

(B21 Booch, G. Software Components classifying reusable Ada code.
with Ada - Structures, Tools, and Pro. ACK SIGAda I.tam2ic. il
Subsystems, Benjamin/Cmmings, Confoenoop ACK Ada Letutr,
Menlo Park, 1937 Dec. 1917, 203 - 215

Mro] Brown, N.H.: Exploring Algorithms (Pail Paige, R.t Programming with
Using Balsa-l|. IEEE Caputvr, May Invariants, I= Soft'are, Feb.
1933, 14 - 36 1916, 56 - 69

(Che] Cheatham, T.E.t Reusability [PrFr Priatf-Diazt Rot Freemn# P.:
Through Program Transformations. Clasifying Software for
IEEE 7rans. Softu. Lng., vol. SE-10, Reusability S9 Software, n.
1984, 589 - 594 1987, 6 - 16

[Con I Conklin, J. t A Survey of Hypertext. (SDDS] Schwartz, J., Dewar, R., De-
Technical Report STP-356-86, binsky, 1., Schonberg, Z.: Pro-
Rev. 2, Software Technology Pro- graw-aing with Sets - An Intro-
gram, MCC, Austin, Texas, Dec. 1987 duction to SZTL. Springer-Ver-

(DoGu3 Doberkat, E.-E., Gutenbeil, U.: lag, New York, 1916
SETL to Ada - Tree Transformations (TIC 3 Tichy, W.F.: Tools for Software
Applied. Infolrmaton and Softuar'e Tech- Configuration Management. In
nology 29, 10 (1917), 548 - 557 (Win], I - 20

(Hill Hill, A.: The Formal Specification [Weg 3 Wegner, P.. On the Unification
and Verification of Reusable of Data and Program Abstractions
Software Components Using Ada with in Ada. roo. 10th Ann. ACM S". on
Asphodel, Ada fleer 9, June 1981, n. of Proir. long., 1933,
113 - 123 256 - 264

[JGM] Jenkins, N.A., Glasgow, 3.1., (Win] Winkler, J.F.H. (Ed.): Inter-
McCrosky, C.D.: Programming Styles national Workshop on Software
in Nial. IEEV Softare, Jan. 1936, Version and Configuration
46 - 55 Control. B.G. Teubner, Stutt-

[Eel] Keller, J.P. et al (Eds.): TheSED gart, 1908
Approach to Program Construction. (Eim 3 Zimbel, R.: SESMOD - En Exper-
Fortcoming Report in the Springer tensystem zur Aunwahl von wieder-
ESPRIT series, 1989 vervendbaren Programa-Modulen.

(Row] Kowalski, R.A.: Logic as a Coin- Technical Report, Forschungs-
puter Language. K.L. Clark, S.-A. zentrum Informatik, Karlsruhe,
Tlrnlund (Eds.): Logio Prograrmpig, September 1988
Academic Press, London, 1982,
3 - 18

[Eru3 Kruchten, Ph., Schonberg, E.,
Schwartz, J.: Software Prototyping
Using the SETL Programming Lan-
guage. IEEE Software, Oct. 1984,
66 - 75

CLev3 Levy, H.M.: Capability-Based Com-
puter Systems. Digital Press,
Bedford, 1984

7th Annual National Conference on Ada Technology 1989 403

AdaL, An Automated Code Reuse system

George C. Harrison

Norfolk State University. Norfolk Virginia

Under a United States Army grant we are grant from the United States Army (A O
developing a prototype software package Proposal # 25510-EL-H) by way of the Army
to produce an automated Ada code reuse Research Office and AIRHICS.
system supported by the language LIL to
aid the Ada programr/designer in choos-
ing the appropriate Ada generic or ordi- REUSE INMEGIATION
nary package from a data base of reusable
code and to automatically instantiate For projects using Ada the fostering
that code if it is generic. Our goal is aid utilization of reusable packages
to have reusable code chosen effectively should be of a primary concern and should
WITHOUT actually examining Ad& specifica- be a common practices however, if it in
tions. By examining the semantics in the not easy to find information about the
LIL files the programer may choose the location, kinds and utility of the source
appropriate LIL file that corresponds to code available then they probably should
the specifications and smuntics needed not have been written. Yet another
in his or her Ada source. problem arises when there is a concern

about the correctness and the ap-
plicability of the code to the overall
design.

INTRODUCTION
We have also found some frustrations

The notion of reusing software, espe- in searching for the right piece of code
cially source code, has become an estab- for our applications. By scrutinizing a
lished practice in the United States. generic package we should of course find
The tools to aid in this practice have the formal parameters, the necessary
not been in wide use although the visible data types, the operations, and
development of such methodologies are the exceptions. Even if the code is well
attracting the attention of many re- documented it is often unclear what the
searchers. investigators differ in their formal parameters to the generic package
approaches to developing such tools, but rqresent and what the limitations to the
there is a common thread of agreement semantics in the package body are.
that efficient software should exist to
aid the development, evaluation, testing,
storage, and integration of source code
libraries.2.5 As an extreme example look at this

generic complex operations package:
Our investigations are concentrating

on the integration of reusable software ---
into ongoing projects.3 we have been generic
most interested in the reuse of Ada type BASE in private;
source code and have used Ada as the with function PLUS(91, 32 in BASE)
primary development tool for our user in- return BASE;
terfaces to the integration of the stored with function MINUS(BI, 52 : in BASE)
source code. This was done out of the return BASE;
demand to *prove" that Ada can be used with function TIHES(B1, B2 : in BASE)
effectively as reusable components, out return BASE;
of the goals of the supporting research with function DIVIDE(D1, B2 : in BASE)
contract, and a bit out of our zeal to return BASE;
defend Ada's qualities.

Our work has been sponsored primarily
through a sizable research and equipment

404 7th Annual Natonal Confemnce on Ada Technology 19M

package CMXOPERATIONS I# dinary complox numbern or the data type
of 4 by 4 matrices over the integers.

type CMX is
record We my not know that the implemonta-

REA : BASE; tion might make assumptions about the
IMA : BASE; BASE data type thAt could either caUse

end record; run-tine errors or erroneous rexults.
For example somcwhere in the implenenta-

tunction "-"(7 : in CMX) return CMX; tLion there might be an assumption that
function CONJUGATE(Z in CMX1 the data type has a 'MULTIPLY' inverse
return CMX; and identity: MULTIPLY(t0l, INVERS1.301) *

function CMX TYPE(R : in BASE) identity, that MINUSt MULTIPLY(BI,112),
return CMX; MUlTXPLY(B2,BI) I P the 'ADD' identLity.
function REA,_PART(7. : in CMX) or that there is a precedence ut
return BASE; operators.

function IMA.PART(Z: in CMX)
return BASE; Ada has no rel way of quarding

function "."(7Zl 72 : in CMX) against bad assumptlons or against sup-
return CMX; positions about the axiomatic necesities

function "*"(, : in CMX; of the data types, oporators, etc. it an
F : in BASE) return CMX; ins"tantiatron. Thus, we are concerned

function ","(F : in BASE; that there might he misinterpretations of
7, : in CMX) return CMX; the Actions of an implementation in a

function "-'(1, 72 : in CMX) reuse library.
return CMX;

function "-'1(. : in CMX; Our initial answer to this problem was
F : in BASE) return CMX; to try to use a form of .L, (Library In-

function "-"(F : in BASE; tarconnection Language) that provides And
Z : in CMX) roturn CMX; extends many Ada semantic ideas:

(unction "'(7,1, 72 : in CMX) Theories, Vxewq, Generics, etc.l,3 Al-
return CMX; though we are still in the process of
function "'(z : in CMX; refining the syntax of our form of I,1L we

F : in BASE) return CMX; have developed a prototype of a softwarn
function "O"(F : in BASE; tool, AdaL, that is primarily a user in-

Z : in CMX) return CMX; terface to using I.,IL to support the
function "l"(I., Z2 : in CMX) reusable qualities of source code.
return CMX;

function "("(Z : in CMX;
F : in BASE) return CMX; T11e LIL SPECIFICATIONS

function "/"(F : in BASE;
Z : in CMX) return CMX; Normally, any implementation of Adal,

function "'$'(Z : in CMX; would have provided a hierarchical rol-
I : in INTEGER) leetiun of data theories that could be

return CMX; both modified and added to as the need
arises. For example to "insure" a cor-

7,ERO DIVIDE : exception; rect use of the generic complex opera-
-- raised when divisor is zero element tionn package above AdaL. might provide
-- in "t" functions and raised when Z the following LIt structures:
-- is zero element and I is negative
-- in the "''" function "

procedure GET(Z : out CMX); theory TRIVIALSET is
procedure PVT(Z : in CMX); type ELT;

end TRIVIAL-SET;
end CMX OPERATIONS;

---------------------------- as-----------

A mathematician might receive a lot of generic
enjoyment manipulating this package by type ELT is TRIVIAL SET;
repeatedly instantiating BASE with ar- theory BINARYOPERATION is
bitrary data types and instantiatin PLUS, function BI OP (El, E2 : ELT
MINUS, TIMES and DIVIDE by any four bi- return ELT;
nary operators. Normally of course such end BINARY-OPERATION;
a package would only allow some implemen-
tation of floating point numbers, but the
package above might be used to work on
lattice points or some mathematical ap-
plications where BASE night represent or-

7th Annual National Conference on Ada Technology 1989 405

generic ax ioms
type N4 in TRIVIAL_.StTs (right..distributive..'/. ::n
function "0 in DINARYOPERATION: 1(81R * R2)*R3 a

theory NWID is (Rl0R31 4- 411243)
function 00 (Ml. M2 : N) return M; (left_distributive_'/* ::a

lassoc, iIU (Rl*(R2 * R3)a
end NO01O010 WOWR2 4 MOWR3))I

0401R) W Rlinv);
(R1 - R2 a RI 4 P(142) 1;

generic and RING;
type N is NWOMD

theory GROUP is
function 00 N1 M 2 : M return MI

(Assoc, mv, id:I): The programmer now would be in a posi-
end GROUP: tion to write a LIL generic abstraction

for GENCRXC._COMPLZXOPZRATIONS:

generic
type a is GROUP; generic

theory ADILIAU GROUP is type COMPONENT is RINGI
function *0 (01, G2 0)return G: function "'in IINARVOPERATION;

(assoc, Comm, mny, Id:I) function -is 9INARYO0PZWATION;
end ABILIAN-GROUP: function Is BINARYOPRATIOO:

function ""is BINARYVOPZRATIOW:

package GENERICCOMPLEX(OPRATIONS In
generic

type ELT in ?RIVIAL-SBT: type COMPLEX in record
theory 3INGLE.VARIABLE -FUNCTION is REAL :COMPONENT:

function FFN (E1l ELT) return ELT; IMA41NARY : COKMONNTs
end 31 NGLEJARIABLEJUNCION; end record;

*eeee~u~eOO~OOSO~OOS~ea~eO~eSOSfunction "-"(Z : in COMPLEX)
return COM4PLEX:

generic function CONJUOATE(Z :in COMPLEX)
type R is A59LIANOGROUP; return COMPLEX;
function a is function COMPLEX..TYPE(R :in COMPON EST

SINOLEJ.ARIABLE FUNCTION; return COMPLEX
function -"in BINARYOPZRATION; function REAL _PARVZ : in COMPLEX)
function is DINARYOPtRATION; return COMPONENT

theory RING is function IMACINARYPART(Z : in COMPLEX)
generic return COM4PONENT:

type R is GROUP; function 1"Zi 2 :in COMPLEX)
view Aplus return COMPLEX;

RING a) ABELIAN GROUP (R)) is function "*(z in COMPLEX:
op. 0 F" :~ 4 F In COMPONENT) return COM4PLEX:

end Aplus; function '*(F in COMPONENT;
Z : in COMPLEX) return COMPLEX;

-- because of the traditional view of function "-"(Zl Z : in COMPLEX)
-using + instead of * as the return COMPLEX:
-operator in the underlying abelian function "-(Z :in COMPLEX;
-group in a ring we use this generic F :in COMPONENT) return COMPLEX:
-view to change its notation before function 0-*(F :in COMPONENT;
-using I as the multiplicative RING Z:in COMPLEX) return COMPLEX:
-operator function "I"(ZI, Z2 :in COMPLEX)

return COMPLEX:
function +CR1., R2 :R) return R; function "6"(Z :in COMPLEX;

(assoc, cog.., inv id:O); F :in COMPONENT) return COMPLEX:
function am RI R) return R; function **(F :in COMPONENT;
function -"IR1., R2 :R) return R; Z :in COMPLEX) return COMPLEX;
function CRI. R2 :P.) return R; function "/"(ZI, Z2 :in COMPLEX)

(assoc): return COMPLEX:
function "/"(Z :in COMPLEX;

var RI, R2. R3 : ;F in COMPONENT) return COMPLEX;
function "/"(F :in COMPONENT;

Z :in COMPLEX) return COMPLEX:

406 7th Annual Natlonal Confcrsnce on Aft Technology IMS

function "00(2 : in COMPLEX; -function QUOTIENT(S), 52
I : in INTEGER) return CON LEXI in S7) return $7 in

begin
procedure GET(Z : outL 'OtLEK); east 52 Is
procedure PUTCZ : In 4OWLtX; when 0 a) raise NUNERICJAPORS

when 1 v) return 21;
exception when 2 a)

DIVISION3Y.UR91O; reunW0ITGEfI4 Pod 7)j
when 3 a)

var C : COMPLEX; return 37fINTEE(8005 smod 711
I : INTEGER; when 4 z)

return 37tINTSGER(SO)2 mod 7)s
axioms when 5 !a)

(C /(0,01 a DIVISIONSYU290); return S?(INTEGER(SI)13 mod 7);
(C a(0,0) and) A1 INTEGER 0 it) when 6 a)

POWS (C1#1) a DIVISIONUBYZERO); return S?(INTZEWD6514 Mod 7);
(precedence end case;

0: PCOIPONENT; end QUOTIENTI
1: OCOWPONENT, /0OONENT:
2: *COMIPONENT, -COWPONENT;); end DATATYPC;

trnd GENERICCOKPLtXOPERATIONS;---------------------

*...ea.~aeaee,...e~e.se.S~~eeaeeThe use of views allows us to justify
how a given LIL entity satisfiles a given

if the programmer has the following LIL theory; these also form the fundamn-
Ada specification and body, we will be tal communication links between LIL en-
able to make a *correct* instantiation: tities and Ada compilation units:

packae DAATYE In-- with Ads DATATYPC
type 57 In new INTEGER rang* 0 .. 6; view RING-SASE : RING E) 57;

types (R 0) 57)j
function SUN(51, 22 % In 57) return 27; ops ('*" a) ADD
function DIrfFRENCE(Sl, 52 : in 57) (a 0) SUUTICT(0, I

return 57; n) SU3TM CT 1;
function PROOIICT(Sle 52 : in 57) 0 M) ULTIPLY 1;

return S7; end RINGASC;
function QUOTI ENT (S1, 52 t in 57)

return S7; -- with Ada DATA TYPE
view PL. : BINARY IOPERATION u) 5011;

end DATATYPE; types I ELT *; 37)s
opt I SlP W) 5SUM)1

package body DATA-TYPE in end PL.;

function 5014(51. 52 : in 57) return 57 -- with Ada DATATYPE
in view MI DINARYOPERATION a) 0IFFERENCEZ

begin types IELT a) 57):
return 57(('INTECER(Si) 1 IRTEGER(22)) ops I SlP *) DIFFERENCE 1

mod 7); end MI;
end SUM;

-- with Ada DATA TYPE
function DIFFERENCZ(SI, 52 : in 57) view TI 5INARYOiERATIOH 0) PRODUCT;

return 57 is types IT 0L a) 7)3
begin ape 51-lOP 0) PRODUCT)

return 571((NTEGER(Sl) - INTEGER(32)) end TI;
mod 7);

end DIFFERENCE; -- with Ada DATA_YPE
view DI : INARYOPERATION 0) QUOTIENT;

function PRODUCT(3i, 52 in 87) types IELT 0) 37);
return 57 is ape (1lOP 0) QUOTIENT;

beg in end DI;
return 37(INTECER(SI) INTEGER(S2)

mod 7);aaaaauaaaaaa~aaaa~a~i
end ?RODUCT;

Note that 37 is actually more than an
ordinary ring: it's a finite field.

7th Annual Nationa Conference on Ada Technolog 196 407

'View packages' allow a named associa- T9TO
tion between LIL and Ada packages:

AdaL is a software tool mritten in~ VAX
**e6eeO*~6seO#e~8.Oe~e~.~Ss.B..a Ada using Digital Equipment Corporation'*

Run Time LibrAry (ATL) of Screen Manage-
view package OCNtRICCOWPL9XOPERATIOWS Pent Guidelines (5MG) to facilitate the

'~CXOPKRATIONS user Interface. fundamentally, It's a
types I COMtPON4ENT s-P BASE);subsystem to Viii that allows the user to
op. (** * PLUS ~gwork with the reusable library, interface

I a) MINUS with VAX Ada comands, ae. We have only
a) TIMES 1; utilized the Viii v4.7 SM routines that

'I"" *' DIVIDE 1; are compatible witi Y5.0 SM routine* to
end GENCRICOPLEXOPERATIONS; maintain compatih1Ity with wost current

VAXIVMS systems. We have attemptod com-
9#*~e~sG~~qoO~ae~eQ~~eeeS~eessS patibility with all VTIOO, VT200, ae.

terminals.
The use of the 'make' lioting allows

us to oake a 'correct' and automated Ad" currently, AslaL, has the following
instantiation. Thus, using the above qualities:
views

On a 24 by 60 screen there is a com-
make COMPLEXOPERATIONS Is new manil line interface that can he used to

GtNERICCOMPLEXOPERATIONS enter one of the 19 commands or other
COMPONENT a) RINGRSAME data required by AdAL. There *re five

""a)p PL, pop-down menus that allow the user to
al Mt, choose any of the 19 commands.

*0a) Tit
/a) DI); end; Th*_Canit

*ggOBOO~eaaee~sO~aeS~~asO~aS~eS H opens an Ada file and displays it on
he *(een 20 lines at a time. The user

automatically produces the following Ada can scroll through the file by using the
instantiation: cursor keys and the NEXT SCREEN and PREY

SCREEN keys. by moving the cursor to an
-------------------------- I------ identifier and pressing the RETURN or EN-

TER keys the user can choose to use that
-- with LIL make COMP'LEX OPERATIONS Identifier as a name or keyword to find
package CO"PL.XOPLRATTO7NS Is new other Ada or LI tfiles or to create a

CMXOPLNATIONS keyword associated with that file. The
BASE 0) S7# default path name to Ada files Is always
PLUS v) SUN, (.ADA -CODE) and to LIL tiles in always
MINUS a) DIFFERENCE, t.LIItCO0ZI. These default* can be
TIMEB v) PRODUCE, overwritten so that searching and storing
DIVIDE v) QUOTIENT)I can be accomplishedl in other locations.

-------------------------------- E in the same as F1 except that the file
being viewed will be a LIL file.

This may seem to be a lot of work for
one simple instantiation; however, there F) is the same as F1 except that any file
are three itens to remember: A. Theories can be viewed. The default path is the
only have to be built once; the more current path to ADAL.
theories implemented the fewer have to be
constructed for new software. a. Al- !jcopies one or mort files. ThI* is em-
though careful LIL paGkages have to be sentially the same as the VMS "COPY' com-
constructed to match the specifications mand.
AND the semantics of the corresponding
Ada packages, they and their correspond- 75deletes a file. This is assent ly
ing view links to Ada become as permanent the same as the VMS "DELETE" commanta.
as the Ada reusable code. C. The work
in building views and the corresponding 76 renames a file. This is essentially
'make' to use the Ada source 'correctly' the same as the VMS "RENAME" command.
should be well worth the effort in system
integration. F7 quits AdaL.

406 7th Annual National Confstsnc on Ada TechnIog 139

31 lists all Ads files in (.ADA CODE) (not implemented: 01, 02, 03, 04 which
with a specified keyword associate with will pretty print, linking, compile, and
them. list unit closures and dependencies.)

i list$ all LIL file$ in4 tLt CODE)
with a specified keyword associatea with Denfjnndnioy
the.

Of course this tool in very dependent
Ja lists all LIL and Ada files with a on VAX/VMS routines and somewhat on the
coon specified keyword. conventions of the VAX Ada compiler. We

have plans to cut most o~f theme depn-
dencon and plan on Implementing AdaL on

fCreates keywords to a specified Ada MS-DOS and UNIX based machines.
tile; the default path is I ADA CODE)I.
This "permanently" fixes all keyw:ords
created through an F1 command. FUTURE EFFoRTS

S2 Is the same an el but for LIL files. Besides the plans mentioned Above
there Is still a large amount of work in-

l ~eywords created through Fl. F2 and F3 volved in inserting this tool In a prac-
are temporarily stored In a file that tical environment. This will mean
keeps a list of keywords chosen along developing a more straight forward L411
with the associated file names. C3 will syntax along with more automation of the
allow the user to edit this file. processes. We have done some testing on

the "standard' stack, queue, string,
.CA fixes all common keyword relationships search. etc. packages with some success.
among Ada and LIt files. We feel the real test will come in using

Adat on a "reasonably large* project.
(Not Implemented: C5, C6 and C? which our future plans also Include the writing
will disassociate keywords that were of a Lit syntax checker and some sort of
fixed.) natural language approach to the search-

ing process.4

Ilbu ilds (edits)a Ada fie The 1. J1. A. Goguen, "Reusing and
default V14S editor is EVE (EDIT/TPU), and Interconnecting SoftwAre Components,"
the default path is 1.A0ACODZI. These IEE Comouter, Vol. 19# No. 21 pp.16-
defaults can be altered. The edit com- 26, February 1966.
mands are entered with unit names instead
of file names along with a choice of type 2. G. Grwean, "Early Noun* Practice Live.
of Ada compilation unit: generic package, Up to its Promise." IteE Softwae
generic function, package, etc. New Vol. 5. No. 6. pp.67-91. November
files are then created for editing with 1966.
the basic structures already built into
the buffer. 3. G. C. Harrison, "An Automated Method

of peferencing Ada Reusable Code Using
12 builds a LIt file. The structure is LII.." Proceedings of the Joint Ad&
approximately the same as 81. Unit names Conference rifth National Conference
and a choice of type of LIt unit are used on Ada Technology and Washington Ada
instead oft file names. Symposium. pp.1-7, March 1967.

53 builds an instantiation of a generic 4. D.-D. Liu, -A Knowledge-structure of a
unit in I.ADA CODE) using the associa- Reusing Software Component in LIL."
tions of the appropriate LIt and Ada Proceedings of the sixth National
files. The instantiation can then be Conference on Ada Technology. pp.337-
placed in any directory for inclusion in 380, March 1988.
an Ada unit.

5. W. Tracz, "Add Reusability Efforts: A
*$.*a~aa44..+4a4.44$+++4++44+Survey of the State of the Practice."

HI displays the keyboard help screen. The Proceedings of the Joint Ada,
actions of special keys and combinations Conference Fifth National Conference
of keys are described, on Ada Technology and-Washington Ada

symposium. pp35-44, March 1987.
I2 displays the commands described here
and above.

7th Annual National Conference on Ada Technology 1989 409

About the Author

George C. tarrison is a Professor of
Computer Scitnc* in the Department of
Hathsmtics asl, Computer Science at Nor-
folk State University. He took his Ph.D.
in mathematictc from the University of
Virginia in 1973 and his H.S. in computer
science from Old Dominion University in
198E. Ilia rtcvnt research intersts in-
clude program verification and
reusabi l ity theory.

Department of Mathematics
and Computer Science

Norfolk State University
2401 Corprew Avenue
Norfolk, VA 23504

410 7th Annual National Conference on Ada Technology 1989

REUSABLE SUBSYSTEMS FROM A

HIGII PERFORMANCE ADA COMMUNICATION SYSTEM

Thomas L. Chen & Walter Sobkiw
ECI Division, E-Systems, Inc.

St. Petersburg, Florida

A IST'RACT URKKNT SO!,UTIONS

The reus or functionally equivalent software is There are two current solutions where software
limited by performance and reliability requirements. reuse has betn successful. The first solution uses an
The reusability can be improved when ',he software existing data communication software system,
system is designed for each class of applications augmented by custom protocols, that satisfies the
following requirements established for a reusable performance and reliability require.ments on the
architecture. The reusable system is made up of hardware and is acceptable to the functional
functional objets and binding objects that follow a applications.
set of program paradigm. The functional objects and
binding objects in a class of applications are mixed The first solution is most desirable as long as the
and recombined to achieve the best performance and hardware required to deliver the required
reliability according to the hardware and operating performance is not limited by:
system used to drive the application. • Space

INTRQDUCTION * Cost

The data communication industry, more than any 0 Reliability
other industry, is obsessed with standards and a Weight
conventions. It can therefore bd expected that there
is a high degree of reuse of existing software in this * Power consumption
industry. There is indeed a very high degree of reuse
in this industry. This Is evident by the popularity of * Processingspeed
SNA and DecNet. However, there is a continuous
stream of communication software being developed
from scratch. This is especially bothersome because The second solution uses existing subroutines or
most existing network software facilitates the small software packages to support reusability for a
installation orcustom protocols where it Is required. new functional application. This solution offers very

little saving because the majority of the software cost
The need for custom communication software is is in the design, integration, and system test. Mostof
justified by the performance and reliability provided the costis not in coding and unit test.
by existing software - on the hardware dictated by
the application • which does not meet the
requiremert of the intended application. The
reusability of existing software is then limited by the Another possibility is the reuse of software
performance and reliability when it is installed on a subsystems from existing software systems to build
given set of hardware. This paper presents an high performance software for specific applicatioss.
approach that manages reusability and portability Approaches for using sotware subsystems as opposedfor high performance data communication software, to whole software systems or small software units to

support reusability have not been extensively
studied. The advantages, disadvantages, and
problems associated with this third approach are not
well known.

7th Annual National Conference on Ada Technology 1989 411

CURNKK T AP!'kOACI S TO INCRKFASK It Is Interesting to note that these successful

§Or-WARK" KRUSK reusable software methods were developed before
structure programming, structure system analysis,

The current design methodologies, whether they and object oriented design were introduced into the
are structured or object oriented design, sppromch the software community.
sfware reuse Issue on the following two principles:

Figure I shows how the hardware community has
1. Identify common functions through implemen- developed the capability to mix different subsystems

tation independent functional decomposition into an appropriate system that can support.nultiple
orobjectidentification. applications. This has been supported with the

definition of standard hardware "Binding" objects
2. Encapsulate the implementation of the that permit the linking or various functional objects

common function, discussed by Cox and Hiunt to other functional objects. An analogy between the
I }. hardware and software community Is shown In

There has been a fair amount or success with this Tables I and I.

approach. However, 15 years after the introduction
of structured system analysis, the software reuse
problem is still a subject of significant study.

FUNCTIONAL
IYESSONS FIOM SUCC.KSSI.'UI. rIKUSAHI.. OBJEsCT

SOFTWARtK EP'FORTS

There are many successful systems where parts of
the system are rearranged, or augmented with new BUS INTERFACE
software, to form different applications. Most notable I&
are: U !BINDING

OBJECTS
1. UNIX PIPE fortextfileapplications MARD CAGE (VME BUS)

2. Transaction processing systems like CICS EI
These reusable software systems have the BUS INTERFACE

following common characteristics:

0 The software is only reusable in a Compatible
class of applications. The different appli.
cations in the same class can be as diverse as FUNCTIONAL
an air cargo system or a bank debit system. OBJECTS

0 A d-flned Binding Architecture that spells out
the different subsystems comprising the
system and derines how each piece should fits. Figure 1. Hardware Reusability

* Binding Objects that tie all pieces together but
do not directly add to the functional require-
ments of the application.

* Functional objects that are directly related to
the functional requirements of the application.

* All the functional objects and binding objects
are constructed to a compatible Program
Paradigm for the unique reusable system.

* Portable Language.

412 7th Annual National Conference on Ada Technology 1989

Tuable I lists the hardware equivalents of the HKUSAHnIM 1 h PKRVOIMANCK
reusablt systam characteristics. Tablell lists the COMMUNICATION SOITWARE I)I'lGN
different parts of the reusable software system API'KOQ JI
according to the required characteristics.

The novel reusable software design approach
Table 1. Hardware Equivalent artition Example described in this paper is based on observation* of

- -4 - C - limited reusability in both the software and hard.(,pph s At4wt Mj4~ 04t POW" Iware community and on two considerations which are
not advocated in current software engineering

aM yolN Ikakl V"' VM No* practice.

l. ,4,*, *l4wA 14 The first consideration Is acknowledging that the
*44 . ' " total software solution includes extensive amounts of
r ~ software executable code used to support the binding
Wt of the functional application software to each other.

to the hardware, and to the operating system
services. In his novel design process, there is a
conkious effort to separate the purely functional

Table It. Reusable Software System Partition pieces of software from all other software that is
Mm.t Kiot IW.ft w aalw, c. dependent on the hardware and operating system

AWwtkot; A k hi.tu, r 0W (Point NA44tm 1au environment.

UNIXt .t eltnk Ttm Of.po.. toa C. Thesecondconsideration lsthatthe bindingeffort
fil.ga.mir w h t ..tert l6 ,hf . and the selection or the hardware is not a one time
.a34U'4. 60."tt , event in the life cycle of a software project. This is

especially true in the high performance embedded
-. system. This point was expanded upon in a

o" IW Tr,,u,,. M'l4 Ttao .4 1 A . .I discussion about fault tolerance and performance by
Ior-a l'ra" I".- "*. 1 .f,.. r.1tal, Chen and Sobkiw 161. Thus, if an effective

." "",fan g,.. KaiM .eh)ds. tllt
d sit" CUJ IsAt Aw"ic i mechanism could he developed to isolate unique

tkws OM10""binding objects software" from "functional objects
11"604 U te sortwart," then not only will the potential for
4"1 treusability increase, but also during the course or
u?)M software developmentmodification, the effort may be
- -ol reduced as functions are bound in diterent ways to

*~ ~ u,,,support various stages of development. The
functional design or the application and the
elaboration of the binding effort, as well as the

We can also draw the following observations from selection of the hardware, can be carried out as two
these successful softwar, systems about software independent activities if the two interfacing
reuse: activities are properly defined.

" Easy rearrangement of existing functions to
produce new applications is a key for software Figure 2 shows that there is an area of software
reuse. activity that eventually translates to unique code.

* A narrowly defined class ofapplication is often That software effectively allows the application to
enough to support the additional cost of soft- become integrated with the operating system and
ware reuse. hardware services. This is shown conceptually in

Figure 3.
* Exact match of function is not necessary for

reuse.

* Easy addition of new functions isessential.

7th Annual National Conference on Ada Technology 1989 413

FUUWH)f OBJECT

NSgummaSMTS

0"1GTOOL

O8MCT , I4AAREAT

OPIPATWG (PmOcSSMa. SSE
SYSTEMS

% SIOSAGGI)

Figure 2. The Software ActivityA mni "e pewgbaftwrer hl .Ivrl~i4kd 5y t~a'

"~1Im #Wsth.oloolt TMA2 vwftwrv 6hj the
fuiinIlmol oftwari, "itl4ui i OIW1rv, id
hordware ri~nrce *

In structured system analysis the functional Figure 3. SystemLayers
design is bound to the operating system and ThetihIlnoi artrenotunikethe iranwctkmlouport
hardware after an implementation independent syIlIets:,pfvIcdbyUNIVAC wlllM.ih~tuddrt inb4
analysis. The same can h'e said of the 0OD trucilocitntedctivlti chiivaultTotcrant
techniques In which the unique hardware archi. communction,
tecture is bound with the resulting 001) based
design. These design approaches were driven by two
asumptions.

The first assumption was that the software design The second assumption was that the software

starts with an Implementation independent analysis designer does not need to understand the hardware

which defines functions and data flows. Then, the being used in the system. In order to achieve

software functions are allocated to hardware performance, unique hardware and operating system

resources. Each group of functions in a hardware control structures re used in the the final solution.

resource can be allocated into software processes and These structures control parallelism, manage

these processes can be designated as a collection of storage, address data integrity and other key uystem

procedures by structured system analysis or other characteristics. Karp 181 and Burger (5) elaborate on

techniques. This one time procedure is seldom this point. This discussion on the explicit control of

successful. The allocation of processes in the data parallel activities and storage management can be

sflow diagramshae eitherone oaccording to the target defined as a binding effort to mate the application toflow diagrams are either done aorigttetret the chosen hardware.
system at the very beginning or are not used at all

when the final software processes are allocated to the Figure 3 illustrates how the software in a system
hardware. This practice is partly confirmed by Post can be seen as a layered collection ofelements. At the
[4). Chen and Steimle (9) illustrate the drastic heartof this collection is the operating system which
differences in the software dgsign that performs the mates all the software to the hardware. Next come
same application function but delivers different the languages, linkers, IPCs, and system con-
performance characteristics. A major portion of the figuration files that not only translate application
software design is unaccounted for in the solution. program source code to executable code, but also
The unaccounted f'- crftware in the design is the define the profile of the application and bind the
software that effentively links the hardware application to the services and facilities provided by
resources and operating system resources to the the operating system. The application gains the
applications software. services of the CPU and 1/0 by manipulating these

services. The next layer is the binding objects layer.
The outer layer of this collection of elements is the
functional objectit. The functional objects must follow
the interface rules to the inner layer while satisfying
the functional requirements of the application.

414 7th Annual National Conference on Ada Technology 1989

This picture is hot new and there is an existing Table Ill. lRcusAble high Performance
model for this concept in the form of transaction Communiclotion System
services. The transaction services or IBM, UNISYS, cuwo 1440 14w r*f%" r'"41 t'..nui&i
and other computer vendors allow multiple
applications to be developed without recreating the- - - - - -

software that links the primary mission applications It';%q kVI~X tile, hfti4. .16"U s

software to the hardware and operating system J-1o tfTo Ojb.f4 1040%t* 0#I4"f.
service. This shell can be extremely large in terms tO.41ft AJ4 14 0. Ok~(*I%-
of the total software effort depending on the system "K*1e, " P"M.sgu
characteristics. Iftwf At* A4 W04

~I- "AA

Examples include the transaction processing
paradigm provided by Sperry TI'S 1100 and CICS BINIIING ARCIIITFCTURP
supported by IBM. The binding objects are tronsac.
tion processing support software items provided by Within UNIX a high performance application
the vendor. The transaction programs are discrte with asynchronous inputs Is made up of UNIX
programs provided by the user that satisfy the processes and dtvice drivers. These UNIX processes
functional requirements of the applivation. In tht and device drivers can be distributed into various
case of S.erry, these programs must be coded hardware.
according to a style defined by TPS 1100 and follow The UNIX processes ore furthtr divided Into input
thentefae rues te CCS 1upporTe bym rquir processes and principle processes. Each input process

ment ar tre fo th CIS sppored y 11M.Is dtdicated to an input. Suficient, input processesThe Issue is thtat if a software ic is to achieve are created to that there it always at free input
reusability then that software IC should be purely process available when the devict driver receives an
functional in nature and not contain any "Slut" to input from any device. The UNIX processes corn.
bind It to hardware or optrating system services. In municatt to the device driver through ile 1)0. The
other words, the software IC should be separtble from UNIX processes synchronize with each other through
the architecture of each application. In addition, the shared memory, 1PC, disk liles, and interprocessor
success of a software "ic" is based on its firm, fied IPC. The UNIX processes are distributed across
accepted Interface definitions which effectively sevtral loofely coupled processors.
tronsiate to the architecture ofthat softwarelIC. The Each UNIX process must be programmed
binding objects in Figure 3 must present a standard, acrigtapormprdgmwchs ptbt
objl efiewllacpeditraesote.uclta to the binding objects and the binding architecture.

objects.Each UNIX process In this application is made of the
The step taken to design this system iII a following components:

pragmnatic one. First, the architecture of the system HnigbtuIs laid out to contain all the chatracteristics of a Bnigojcs
successful reusable system. Table Ill lists the archi- 0Mi rga
tecture components of the reusable high performance 0Mi rga
communication system according to the requiredThsitesowaehttesllpcdus
characteristics. Structured analysis, as well as object thisithe oftrm tha tNIXpoessalprcdue
oriented programming technique, is used to build the tgte ofr NXpoes
functional objects and the binding objects as 0 System Accesz Pack ages (SAI's)
illustrated by Chen and Sutton (3).

This is a procedure interface to procedures in a
different process.

Functional objects:

TIhese are the software packages that, directly
relate to some application functional require.
ments.

7th Annual National Conference on Ada Technology 1989 415

HINI)ING 0OIkCTS Throug~h standardizaton, each or component or
this model is reusable in different applications.

Binding! objets are those software items that tic There are 'jowtvcrmony protocols. Thertort, each

all pies or tht application together but do not xppho ,_ that wants W incorporate reusable code

directly support applicateon unctionl requirements. * st ninan drimp ntionofthprotocols.

A high pdroormncn communication softwbrt

Main program system cn be made up of the following two groups or

The main prolram is the one single pr that UNIX prrcsds:

ties all the packages together when thesubsystem is used as a process. This programDtarnprt
is individually developed fr ech proes. 0 Frontend network prcets

" System Acces Packages (SAls) * Back-end network procts

The system access point is d). ined as

software package which Is Independently 0 Monitoring and recording proces
developed to connect functional objects in T
different UNIX proesses. Instead oh inter. a Network m nagemntproe
facing directly, through IPC or shared
memory, the functional objents Interface withthe system &"to& point(s).

This concept is similar to the remote procedurecall elaborated on by Wilber and Blacorisse [2). The Data transport subystrus have the following
A SAP contains thre main parts: characteristics:

I . Server interface package - A pckagt They Implement parts or all or the ISO 7 layer
specification. functions above level 2 protocol. Ile two lower

level protocols are implemented as UNIX

2. Client interface package - A package device drivers.
specification.

0 They transport data from one connection to
3. Body objects - Several body objects are another connection. The sub.system usually

required for each SAP. There is one consists or a protocol part and a set of tables
packale body for each interface, describing each connection.

F.UNrTIONAI. OIHJ.CTS * They can easily be replicated and distributed
over many computer processors.

Functional objects are those software items that
are directly related to the functional requirements of The Management subsystems have the following
the application. The functional requirements or a characteristics:
data communication system can be partitioned into * Theycommunicatewithall7layersofthelso
the following functions according to the 10 7 layer model.
model. The Data transportation functions are:

* Application * They either provide a centralized control for
the whole communication system, or provide a

" Presentation centralized repository for the whole

* Session communication system.

" Transport e They can be distributed over many processors

* Network only in a hierarchical manner.

" Link In the implementation af a customized communi-

* Physical cation system, these subsystems are combined, or
split into a number of processes, and distributed on

The Management functions are: the selected hardware (computers) according to the

* Monitor and record operating system characteristics and the application
traffic flow to obtain the best performance for the

* Network management hardware chosen to host the communication system.

416 7th Annual National Conference on Ada Technology 1989

PO~RAOLhI. 1ANGU&C-K Each transaction program is made up of one or
more transections. The transaction program accepts

Ads is mandated by the contract for this data asynchronous Input only In one predetermined
communication system. Its packoge features enable location In the program. Each transaction Is driven
an elegant implementation of tach SAPI, shown in by one unique input. The transacion processes the
Figure 4. Ada package sptcification provides a nice Input, updates related data best Information, stores
Ads facade for each SAPI that can be Independently intermediate results or generates output, then loops
compiled. The features provided by Ada are severolly bock and waits for the next Input. The programminK
hampered because each Ad# linked output Is style can be illustrated by the fo~lawing example
implemented as a single UNIX process. The very where a -free style program Is transformed to a
large load module generated by Ada is also an istue of transaction program:
concern.__ _ _ _ _ _ _ _ _ _ _ _

1. Read A *.asynchronous Input

2. Heat! H ..asynchronous input

E) ~3. C=:A+llI........ Function requires two

ED Wrte Casynchronous Inputs

SYSTEM ACCESS PACKAG5S (SAP,)

A transaction program to accomplish the same
Figure 4. System Access Pasckage (SAlt) requirement looks like the following. The sequence

Th A ntrc3 h usiua plcto i h in ech column Is a transaction.
euprtilng system and hardl'arv toviraitnn

PROGRAM P'ARAIIGNI 1. Head Aor H I.lonicposition wait for

All the functional objects must be constructed inputs
according to compatiblt programn paradignis for this 2. If A Else
cim or reusable system. This programming style is
developed in the traditional transaction processing 3. ItBion queue 3. ifAisonthtqueut
system shown in Figure 5.

then then

Wettftlout gt Bget A --
Synchronous Synchronous
input input

I 3
- -C:=A+B C:=A+Bl

Read X464 R*14al &
FSAPSAP 5 S"I SAP~ write C write C

ru"41Zt rudoa Vgtcaft~ rfwcuo Else Else

put Aon queue put 11on queue

S" SAP SAP Ws exit or loop exitorloop

Figure 5. Compatible Program Paradigm Loop Synchronous inputs are inputs that the trans-
action can get on demnand. These inputs are stored in

___________________________________ shared memory or in local disk.

7th Annual Nati onal Conference on Ada Technology 1989 417

CONCLUIONQ 3. T. #. Chen and M. Sutton, "Object Oriented
Detsignm Is It Enough For L~arge Ada System",

Our attempt ta build a high performance Proct.d.ngs or 1986 ACM Computer Science
communication system Incorporating reusability WAS Confe.vnit, pg 529.534.
marginally successful. We demonstrated that when
major functions are rearranged, a specific level of 4. J. Post, "Application Or A Structures:
performance can be achieved. Wt showed that Methodology To HeMi Time Industrial Software
Functional objects art reusable and portable; that Development", Software Engineering Journal,
Binding object are reusable but not easily portable November 1986, pg 222.234.
to different operating systems; and the use or an
enumeration type makes the addition of a new S. A. It. Karp, "Programming For Parallelism".
function difficult. Computer, Vol.2"0. No.53, May 1987, pg 43-55.

The ECI approach to reusability was attempted on 6. W. SobkIw and T1. L. Chen, "Design For Fault
a high performance comm system with approxi. Tolerance And Petrformance In A DOi).STD.2167
mately 100K lines of Ada code. Although the Ada Project", Plroceedings of the Sixth National
program did not specifically identify reusability Conference onAdsaTechnology, pg 424.
requirements, we did Include an effort to Identify 7..P.Wly AarllAchttueoesO
characteristics which supported rtusability. 7 .1.Wty APrle rhtcueCmsO

Age At Last", Spectrum, Vol. 24, No. 6, June 1987,
The desin required several physical allocation PC 46450.

changes In the development cycle to achieve the best
performance and reliability goals. These changes 8. T. M. Blurger and K. W. Nelson, "An Assessment
Were accomplished with no changes in Functional of The Overhead Associated With Tasking Facilities
objects. This provided confidetnce that the function and Task Paradigms; In Ads", SigAda, Vol. VII, No. 1,
aspects could be ported to difftrtnt %tystem hardware pg 48.
platforms to combine with now Binding objects to
carry out the sane application. This approach to 9. T. L. Chen and C. L. Steimle, "Two Design
reusability accommodates the dilfferent, architecture Approaches Using The Ada Language", IEEE
requirements to achieve the best performance and Southeastcon 87, Vol. 1, pg 72.
reliabi lity in diffiulIt hardware pla tforms.

In summary, this novel approach to reusability is HIOCKAI')IY
based on acknowledging that systems consist of func-
tional and architecture dependent code. Given this
assumption, the design procens includes separating Thomas L.C. Chen is a member of the Technical Staff
functional code from architecture code early in the in the Software Systems Departmert, E.S~sttms,
effo~rt and dtfining a binding metchanismn that uses ECI Division. lit Is the principle software designerof
existing services, the SAP and the mainline. Survivable Communications Systems, has over 25

years experience In the development of
Wt recognize that our paradigmn steeds extensive communications methodology. lit holds asM.E. from

refinement and expansion to provide the level of Taipei Institute of Technology.
reusability needed in current Ada applications. ECI
expects to continue Its research into the applications Walter Sobkiw is a senior principal engineer with
of reusability in three existing programns, and will E-Systems. ECI Division. Ile is currently a member
attempt to expand Its present data base to other of the Advanced Technology Ttam and is responsible
systems through several mnechantismns now under for dcfining system development methodologies and
active research. new business pursuits, lie holds a BSEE from D)rexel

University.

RE FE KKNC I.S

1. Brad Cox and Bill Hunt, "Objects, Icons, And
Software-ICS",' Byte, August 1986, pg 161.

2. Steve Wilber and Ben Bacarisse, "Building
Distributed System With Remote Procedure Call",la rI
Software Engineering Journal, September 1987,
pg 148.

418 7th Annual National Conierence on Ada Technology 1989

Constructing Domain-Specific Ada Reuse Libraries

James J. Solderitsch, Kurt C. Wallnau, John A. Thalhamer

Unisys Defense Systems
Paoli Research Center

PO Box 517
Paoli, PA 19301-0517

Abstract that we have produced the required tools and capabil-
ties. we are creating a proof-of concept Ada component

High.lmpact rouse Is achieved by focusing on specific rbrary hosted on the framework.
Application Domains. A Software Component Reuse
Ubrary System must support domain modeling as well as Our approach to meeting these goals was first to exam-
repository management features. The RLF project ine alternate approaches to knowledge representation In
addresses both of these areas. Repository management the literature as well as In Artificial Intelligence (Al)
capabilities including retrieval, classification, Insertion projects conducted at Unisys. We identified two comple.
and qualification of components are all provided. Domain mentary technologies from this search and developed
modeling is achieved through knowledge representation Ada designs and Implementations that provide a powerful
components that were developed in Ada using an Ada technological base on which to host librarian applications.
perspective. The domain model provides an effective AdaKNET (Ada Knowledge NETwork) and AdaTAU
and powerful Interface to the library. An evolutior-ary (where TAU Is an a3cronym denoting the phrase
approach has enabled the production of a family of Think-Ask-Update) resulted from this analysis.
librarian applications of varying functionality and point-of.
view. Ada features, such as generics and exception AdaKNET enablos the creation of structured inheritance
handing, and Ada design principles, such as data networks (sometimes called semantic networks) which
abstraction, are used to construct systems that are used to model the structural component taxonomles
Incorporate traditional Al functionality while providing that evolve whenever lcng-lived and large scale software
enhanced system main a nability and evolvability. development lakes place In particular application do-

mains. AdaTAU provides a rule-base formalism used to
conduct Inferencing over particular knowledge networks.

1. Introduction. In particular AdaTAU provides expert assistance for the
novice library user In browsing, searching and Installing

This paper describes the accomplishments and oxpod- software components In the repository.
ences of the Reusability Ubrary Framework (RLF)
project' being performed at the Paoli Research Center. Both of these components may be Integrated into hybrid
The RLF project, as part of the STARS (Software knowledge representation systems and to demonstrate
Technology for Adaptable and Reliabie Systems) this we developed a knowledge-based Ada unit test as-
Foundations program, was proposed, designed and Is sistant called Gadfly. This system uses a coordinated
being Implemented to meet several goals. knowledge base about Ada units and testing methodolo-

gies to generate unit test plans. These plans are based
Our primary focus is the development of framework tech- on a parsed representation of Individual Ada components
nology to support the creation of software reuse libraries and a rule-base-guided dialogue with the user. Such a
(or repositories) that provide for an Intelligently-guldod dialogue is designed to probe for relevant assumptions
search through a library of software components. and regarding the construction and Intended use of the unit.
more generally, a knowledge-based approach to the Gadfly's design allows It to function as either a stand-
management of software artifacts that apply to a particu- alone test plan assistant, or as a testingquality assur-
lar application domain. To achieve this primary goal, we ance module as part of a complete librarian applicction.
developed reusable, stand-alone Ada subsystems to pro-
vide the necessary knowledge-based technology. These The Interconnection of these components and their Inte-
components form the underlying structure upon which Ii. gration Into librarian systems of varying strength and
brarlan applications are constructed. As a demonstration functionality Is Illustrated in Figure 1. At the top of this di-

agram, the qualifying librarian denotes our final delivered
Theworkdev00b4d-ht-in w2asun d by STARSvFo an4teonse ct,,l system which Includes Gadfly as an important modulenumber N00014-8U.C-2052. adffigeted by the Naval Research

Labotloty. used to validate library components that are offered for

7th Annual National Conference on Ada Technology 1989 419

aently violating some assumptions and therefore Introduc-
Libraiar Ing errors. The purpose of the Reusability Ubrary

Framework Is to provide the user with intelligent assis-
tance In Inserting, retrieving and using Ada code modules
located In a softwaro parts library.

Gal L a In order for rouse technology to succeed and permit the
y rlarge scale productivity increases that were forsoon backsin the early days of software engineering (Mctr6J, such

technotogy must go beyond the basic notions of subrou-
tine libraries, directory-based repositories and simple

Hybrid Knowledge software catalogs. A domain model approach to reuse U-
Ropresentalion Systems brades has the potential to provide for significant produc-

tivity boosts. This assertion is supported by the t!owing
evidence.

Collections of modules that have been extensively re-
used such as the well-known Fortran mathematics and
statistics librares were organized around particular,

Figure 1. RLF Component Configuration clearly understood domains. Moreover the reusability of
a particular component is itself a relative property of its

Inclusion In the library. This system should be viewed as place within an application domain. The design of a reus-

a demonstrable prototype of the representational and able component has been compared to a kind of market
anaeral pertatye providean enteailitof analysis to determine Important properties and featuresmanagerial power that we provide, and the Integrablrity of of a component, along with performance requirements

the subsystems that we have developed. Leading up to

this Inclusive prototype, we have developed Intelligent Ii- tMccaMI. A repository must provide explcit support to

brarian systems of smaller size and functionality aimed at application developers working in specific application
areas. Each such applications area will require a special-exploiting various aspects ot our underlying technologIes. izdsto palteshtartemlvsigyru-

These systems all support the basic search, retrieval and ized sot of capabilities that are themselves highly reus-

insertion of software components In library settings based able [e~azej. Domain.specificity also enlarges the granu-
on domain.specific knowledge stored in knowledge larily of reuse, supporting system composition in terms ofbases encoded by AdaKNETand AdaTAU. subsystems tailored according to the requirements of

new or modified applications.

Section 2 presents a discussion of the power and useful-
ness of constructing libraries based on a domain model The representational capabilities required of a domain-
with our prototype domain of Ada benchmar.s providing oriented reuse system go beyond those provided by a
Illustrations. Major components of the project shown in project database, but are less than those required of a
Figure 1 are described more fully in sections 3 and 4 of complete CASE (Computer-Aided Software Engineering)
this paper. The knowledge base components and Gadfly environment. Future CASE environments must be con-
are themselves the subject of a paper delivered at the structed to support large scale reuse efforts and so do-
AIDA - 88 conference (waiesa and the interested reader Is main modelling must be Integrated into futukre CASE sys-
encouraged to consult this paper to expand upon the rel- tems. Thus a reuse library system must support system
atively high level view of the knowledge base compo- develc-mnent and not merely component retrievals.
nents and Gadfly that is given here. We close the paper Reserchers have already pointed out the Importance of
with a section describing some of our Ada experiences domain-specific knowiedge in the software development
and lessons-learned and a final section that summarizes process [Berasl. A modem library system must also
project results and presents some of the conclusions that support alternative technologies for system development;
we have reached as a result of working on ths project. for example, a constructive approach through component

composition and a generative approach through compo-
nent specifications [simosel.2. DomaIn-Specific Libraries - An Example
To date, there Is no widely accepted -Dewey-decimal"

A major goal of Ada developers Is to reduce code devel- classification system for software libraries. There are
opment time by the use of reusable code. One difficulty certainly no standard hierarchical systems, and no stan-
In code reuse has always been locating and selecting ap- dard indexing schemes supporting retrieval from such
propriate existing code. Another has been in making use storage hierarchies. The RLF approach supports the ex-
of code which may have been written for a quite different perimenlation with many different classification schemes,
purpose, with different assumptions and needs. each tailored according to particular application domains.
Modifications must be made with care, without Inadvert- The RLF also supports tailored search and retrieval ca-

420 7th Annual National Conference on Ada Technology 1989

pabilities depending on the domain as wall as a users represented in the Reusab~y Library Framework as
skill level and personal preferences. By contrast, other A#IaTAU rues.
published approaches to library management are funda-
mentally weaker. Figure 2 ilustratos a small fraomont of the Ada bench.

mark taxonomy that is being developed as part of this
Other projects have chosen to focus on eithor a hiorarchi. proOct. This fragment modo!s the arch;tectural docorn.
cal approach or a data base approach. Hierarchies pro- position of benchmark programs as we as the set of Ada
vkde a rigid classification scheme which enab:v compo, features that ate of Interest to benchmark ctealors, An
nent retrievals based on searches of the hierarchy. The Individual benchmark component ts categorized accord.
database approach requires the user to construct data. Ing to this classifying framework, Such on indcidual in.
base queries which may or may not produce a compo- hedts properties (attributes) from all of the cilegorios of
nent of the kind being sought. Recent protocts have which it is a member.
begun to experiment with lEmted hybrid systems that
combine the two approaches (Prit7| (Uurs7l. In any The figure shows that the code calgory is broken down
case, these approaches are imited by their support for a into timer and benchmark program subcategories.
single. fixed taxonomic model, and their prosontaton of a Benchmark programs measure Ada features. This refo.

sinjle user interface supporting only one category of I- tionship is in(icatod by the labeled arrow between the

brary user. two categories. Any number of features can be maa-
sured by a benchmark and so the benchmark program

The RIP framework provides support for both dynamic category shows an unlimited range for the number of
TdexpLFefrimetal plassirvs suos aos bo! hs myt~mic measured features. The figure also shows that bench-
and experimental classification systems as well as muti. marks programs are broken down along suite member.
pie classes of users. By using knowledge.base compo- ship as wll as feature measurement. in particular. an
nents, the RLF Is abe to support a separate, declarative ACEC feature benchmark must be equipped with a par-
domain model with powerful and adaptive taxonomic ticutar timer module in order that the benchmark be exe-
power along with tallorable search, retrieval and compo- cutod proporly. Furthermore. timer programs are them-
sitional capabilities. The domain model exists indepen. selves delineated according to the Ada run-time system
dently of the repository of components and expands upon being utlized.
the services provided by competing EIbrary organizations.

As can be seen. the web of relationships and dependon.
The RLF framework enables the dfnition and use of tax- cies can become complex even In a narrow portion of a
onomies for classifying Ad co e and code.ralatdo narrow domain. The RLF framov.jrk not only supports
information. This framework uses AdaKNET to pro do a the capturing of this information, but through Integrated
structure into which specific Ada components can n rule bases it permits an expert's viow of the taxonomy be
Inserted. The framework supports multiple orthogonal given to even novice users. For example, the user can
taxonomies thus code can be classied by function, by be aided in browsing the domain modal as wall as in con-
structure, and by any other relevant ca racteristics. The figuring an appication (in this caso assembling meaning.
current pran ect will create a subset of a completo lbrary ful benchmark programs). Exactly the right timer is re-
instance, concentratin on the domain of Ada bench- trieved that matches the selected ACEC loature bench.
marks, mark which measures the desired feature within the do-

In addition to the generic framework, the Ubrary must sired Ada run-timo platfor.

have content. In order to demonstrate the feasibility of
the framework, the RLF project will populate it with
benchmark routines drawn from several sources. These 3. Knowledge Re-,esentation Systems
sources include the Ada Compiler Evaluation Capability
(ACEC) suite developed by Softech. the Performance Underlying knowledge representation systems are critical
Issues Working Group (PIWG) suite developed by the to the building of domaln.speciric libraries, Thus. such
ACM Special Interest Group on Ada (SIGAda). and the systems are the underpinnings of the RLF project.
Hughes Aircraft Company Ada Benchmark Suite. AdaKNET and AdaTAU are derived from Unisys systems

that were developed in Prolog and which have succes-
Organizing code modules into appropriate taxonomies sively boon applied to various problem domains. These
facilitates their retrieval and use. However, rouse is systeons were themselves designed from well-accepted
aided substantially if the user Is also proVded less formal knowledge reprosentation and processing methodologies
Information about the domain or the code. This kind of as dove!opcd In the Al literature. However, our approach
Information can Include guidance about the most appro. was not to capture the style or approach of traditional Al
priate code. Indications of other needed modules, etc. It systems implemented in Lisp or Pro!og. or to create large
represents the kinds of rules of thumb that experts in a Ada systems that emulate significant portions of Lisp
particular area develop, to provide shortcuts and improve andlor Prolog, but rather to analyze the objects and op-
efficiency. This compilation of expert knowledge will be erations provided by proven Al subsystems and to rede-

7th Annual National Conference on Ada Technology 1989 421

copnn benchar
\ixogrrns/ fatfeatures

Fgure 2. Benchmerk Domain Taxonomy Fragment

sign (engineer) and Implement them from an Ado per- AdaKNET
spectiva. In particular, we examined candidate systemswith an eye toward exploiting the strengths of the Ad Figure 3 shows a skeletal description of the design of the

language when achieving actual Implementations. We AdaKNET system. AdKNET Is based on a proprietary
tried to view various knowledge representation schemes system developed at the Paoci Research Center called
in terms of the services they provide and the underlying KNET [Fe:3]. KNET Is itself derived from a well.known
structures used to enable these servces. In short, we knowledge representation system called KL-ONE
took an abstract data type point~of-view. [ed] KNET has been successfully applied to the area

of (computer) system configuration. AdaKNET (and
This approach naturally led to a convenient and Important KNET) supports the management of two basic relation-
separation of the procedural and declarative knowledge ships between objects and classes of objects: specia~za-
that together permit knowledge-based processing to tion and aggregation. Specialization captures the sort of
occur. The content of domaln-specific knowledge bases knowledge that one thing, or category of things, is a spe-
Is defined through the use of specification languages. cial case (or kind) of another thing. For example, the cat-
Knowledge-base processing occurs via the execution of egory of Ada subprograms Includes both procedures and
operations defined In the knowledge.base components. functions, while the category of Ad compilation units in-
Furthermore, using an Ada perspective led to a layered cludes both packages and subprograms. Aggregationimplementation plan that resulted in increasing levels of captures the fact that one thing or category of things is
functionality and semantic checking being built upon partially defined by its constituents or Its properties
lower, and more prmitive layers. The following subsec- (sometimes called attributes). For example, an Ad
tions briefly discuss the individual subsystems and their package specification is defined by its name, the types ithybridization. Gadfly is discussed as one particular ex- exports, and the operations it exports. Also, an Ada soft-
ample of hybridization. We also illustrate the spycfim- ware system is defined in terms of Its subsystems which
thon languages with e t tuple of examples. are defined by the constituent packages of the sub-

systems.

422 7th Annual National Conference on Ada Technology 1989

the information can be reused In multiple applications.
For example, the Ada unit model defined to serve the
Gadfly application is usable as is within any of the librad-

,, ET KEMAL" an applications. The Information itself is available In
ASCII text files of SNDL (Semantic Network Description
Language) specifications. A SNDL example describing a

1ICTWO EOIAL ~small part of the Ada unit model Is shown In Figure 4.
Some background on the use of specification languages

BJECTS Wwithin AdaKNET and AdaTAU i given later in this sec-
11rCLAYOS tion.

bcd~le AdaTAU

8 rLi ke AdaKNiT, AdaTAU is based on a Unisys-propd-
etary system written In Prolog called TAU (for Think. Act,
Update). TAU was Initially developed as a stand-alone
rule-based system supporting dihlnosls and mainte-
nance of faulty computer equipmerit. In its latest form,

*n spn Awioab"Ry TAU has been Incorporated Into the KSTAMP system
tMuul where it functions as a diagnostic assistant fof
the repair of Postal Service mail processing equipment.

F,ure 3. AdaKNET Layered Abstractions KSTAMP is also an example of a hybridized system that
combines two different knowledge representation sys-
tems (KNET and TAU).

AdaKNErs representational power comes from its mod-
eling of these two relationships, and their coordination AdaTAU processes two kinds of information: rules and
through the use of inheritance. Inheritance i. the capabil- facts. A rule Is a statement that If certain fads are "true',
ity that a subcategory of a category automatlical y inherits then other facts should be established as true. A simple
all of the attributes of the parent category (called super rule can be expressed as:
categories). The attributes of a subcategory may refine
those of a parent category, but may never contradict if (parameter)-.. is typo integer) then
them. However, a subcategory can admit entirely new (test.case,.s ot-type is
atlributes not defined for the parent. This Inheritance Is integertest.case set).
not local (one level only) but completely transitive whore
attribuies of far-away parents are available at any node. This example shows a single necessary fact (called an
AdaKNET rigorously enforces the sort of specialization antecedent) and a single resulting fact (called a conse-
semantics required by such a system, where violations quent). In AdaTAU, there may be multiple antecedents
give rise to Ada exceptions, and consequents. A more complex kind of rule asserts

particular consequent facts depending on an answer
We have experimented with various forms of inheritance given by the user to a posed question.
and recently have Implemented a form of multiple Inherit-
ance where a subcategory of two or more super catego- Facts are simple statements which are collected into fact
ries is equipped with the attributes of all super categories, bases. All established facts are placed Into a fact base
Multiple inheritance permits smaller and clearer specifica- which is accessible for the purpose of checking the appli-
tions of relationships that commonly occur in a software cability of rules (and therefcre the addition of new facts).
component library. For example, a particular benchmark The state of an AdaTAU Inference session is described
program cat simultanrnusly be a kind of feature bench- by the current collection of rules as well as the current
mark as well as a ,nber of a particular benchmark collection of known facts. In its simplest form, AdaTAU
suite. Through multiple Inheritance, each of these bench- processes an Initial collection of rules, along with an Ini-
mark categories bestows a set of attributes that must be tial collection of facts (perhaps empty) to the point where
filled by particular values. The knowledge representation no new facts can be added because no rules are left
model provided by AdaKNET is a natural extension of a whose antecedents are In the fact base. Typically, after
library framework taxonomic model where subject areas a rule is applied (or 'fired'), it is marked so that it is no
are broken down through extensive specializations, and longer considered for firing. The end result of an
where sub-categories within a specialization are disti:t- AdaTAU execution is the final collection of facts which an
gulshed by different feature sets (attributes). application that invokes AdaTAU can process in an appli-

cation-specific way.
By modelig information independently from the applica-

,Ions which are written to make use of this knowledge,

7th Annual National Conference on Ada Technology 1989 423

concopt Software Component (Thing) is
local rolos

Co~ponent 11amo (l..11 Of TCXt;
Doscriptioan (1. .1) of Softwar Cctonont Decription;
Location (l.-l) of Componont Location:
Auxiliay rquiredee-poncnt3 (0.. Infinity) of

softwro Co~ponzrnt;
Subunits (0..infinity) of SofwoSubcoponnt;

and local;
and concept;

concept Ada Compiler Ronchmark (SoftwaoeCcc-ponent) is
local roles

Measured Features (1.. 1) of Adajoeaturos;
and local:

end concept:

concept ACEC Danchmark (Ad*-C=.pilor-3anch:ark) is
local roles

Control M43osurement Cor~ponent (l1_1) of Softwaro Comnot
Instrumnit Package (1. .1) of Software Componant;

-- This package is used for timing thei control and the
-- feature.

end local:
end concept;

Figure 4. SNDL Fragment

Figure 5 describes layers within AdaTAUS Including the file. A RBDL fragment Is given In Figure 6. In addition, a
provision of a distrlbuted version of AdaTAU based RBDL specification file must declare a fact bass schema
upon a simpler centralized scheme (indicated by the definition to restrict the sorts of fadts that can be Installed
inncr two layers). Currently the centralized form of Into a fact base. In this way, AdaTAU provides a typing
AdaTAU supports two rule types. M~ules (Inference mechanism on facts analogous to Adas own typing
Rules) fire automatically when their antecedents are de- mechanism.
termined to be present in the fadt base. GRules
(Question ROSeS) are rules which do siot directly add facts
to the fact base but rather schedule the posing of q isriutd daA
tions to the user. The antecedents of a ORule must be idbt A&U
true before the question Is scheduled, The answer given
by the user determines which collection of facts is added. stld

The distributed form of AdaTAU supports the use of mul.!-l o
tiple collections of rules, collected Into inference bases, 5i
and both loca fact bases (to record Information estab. TAU Cog~ptaton
Ished during a local inference session) and global fact
bases (to record Information that Is transferable from one A&AInference session to another). M~ules (Focus Rules) are Fnwr~
provided to support distributed AdaTAU. FRules enable bW
the suspension of one local Inference session In favor, I
another one. Distributed AdATAU allows the partitioning
of Inferencing cLpability into localized distributed Infer- ops A
ence bases. An application-specific partitioning scheme O~~n
Supports cooperative focusing to the most appropriate In- ~ tWdCnak
ferpnce base (where appropriateness can be judged from
the contents of the global and local fact bases).

TAU-slyI. AIeienc

The actual expression of rules and facts Is accomplished
by a RBDL (Rule Base Definition Language) specification Figure 5. AdaTAU Layered Abstractions

424 7th Annual National Conference on Ada Technology 1969

fact base schema Ada Compiler..nenchmork.Facts is

access mode : one of (retrieve, insert);
benchark.purpose : one of (feature, composite, suite, now);
suite choice : one of (ACEC, PlWG, help);
sute-member : one of (ACEC, PIWG, help, unknown, none);

end AdaCompiler OenchmarkFacts;

question Ask.Bench. rk Purpose is

text : (What purpose do you have in mind for the benchmarks?);
type : oneof;
responses :

"test specific features of a language" ,>
(benchmark purpose, feature);

"test a mix of teatures of a language" N>
(benchmark..urpos, composite);

"choose a compi er based on overall performance" a>
(benchmark~jurpose, suite);

end question;

qrule Doetrminu Benchmark.Purpose is

antecedent : (access mode, retrieve);
question : Ask,_enchFarkPurpose;
weight : 1;
justification : ([Ielp the user choose the next level according to

his needs);

end qrule;

Figure 6. RBDL Fragment
Forming Hybrid Systems - Gadfly model Is defined for Ada subprograms, and a subset ot

Ada type semantics Is Included for th model (for exam-

In designing AdaKNET and AdaTAU, we were convinced pie, In our demonstrable prototype of Gadfly, semantics
that although these systems are useful separately, they coveing Integer and file parameters are Included).
would be most useful within the software reuse library Another part of the Gadfly/SNDL specification Includes a
framework when they are combined and integrated with testing model to break down testing strategies based on
each other. We discovered that the forming of such hy- Ada types and testing methodologies. A third form of
bdd systems is not an easy task. One of the issues we knowledge is recorded In multiple GadflyIRBDL specifica-
faced Is the degree of coupling that should be imposed tion files. These files contain test case heuristics drawn
on the two systems-whether the subsystems should be from "common sense" testing, general Ada semantics
tightly or loosely coupled with one another. Another Is and parlicular properties of individual data types.
the degree to which application-specific Information can
be migrated to the knowledge bases maintained by In our Gadfly prototype, we provide for a black box test-
AdaKNET and AdaTAU, and kept out of the actual Ada ing strategy broken down along the parameter modes of
code that provides the application. Ada, as well as the supported Ada data types. We com-

plement the SNDL portion of the knowledge base with
Our work on Gadfly, the Ada unit test assistant, resulted RBDL specifications of the sorts of questions to ask the
In a tightly coupled arrangement. Certain nodes In the user regarding design and usage assumptions about the
semantic network are eoulpped with Inference bases as unit under test. These rule bases are located at testing
provided by AdaTAU, Including a local fact base. The category nodes within the SNDL-specified semantic net-
Gadfly application itself controls how these inference work.
bases are consulted and provides a communicationmeass o that con t an proves an d iationd When Gadfly is executed, the source code for an Adamechanism so that facts can be transferred into and out specification is parsed to yield an instantiated form of the

Ada unit model. Gadfly then automatically walks the user
Gadfly provides a stand-alone Ada unit test assistant. over the semantic network corresponding to this individu-
Briefly, through SNDL specifications, a generic Ada unit al Ada unit and generates particular facts pertinent to the

7th Annual National Conference on Ada Technology 1989 425

testing of this Ada unit. The test-mlted facts deduced in the development of a number of special purpose lan-
by Gadfy e based on the responses the user gives to guam pm"]
the questions being posed as well as the particular test-
Ing model contained within Gadfly. Finally, another net- Using SSAGS, we developed syntax for both forms of
work walk is conducted during which stored local facts knowledge representation required for the RLF and cor-
am convened to test case recommendations, responding semantics for expressions written In these

languages. SNDL and RBDL are different because they
The integration of AdaKNET and AdaTAU as accom, support different sorts of Information. However the trans-
plished in Gadfly was our first experience In performing lation pdndple that lead to the generation of Ada code
this hybridization and our approach to integration remains from these languages am the same for both languages.
very experimental. For example, Gadfly was completed From a SNDURBDL "spec, the SNDUIRBOL translator
before the Implementation of distributed AdaTAU was it- generates Ada code to Initialize the persistent (currently
self complete. In particular, Gadfly does not make use of Ada file based) forms of the data contained in the specifi-
focus rules to control transfers from Inference base to In- cations themselves. To actually initialize the machine
ference bse, but rather accomplishes such tranatfrs readable data structures, the generated programs need
within the Gadfly application itself. The librarian applica- merely be compiled and run.
ions take advantage of the carefully arranged focus

switches provided In distributed AdaTAU. However, like AdKNET and AdaTAU themselves contain reverse
Gadfly, particular Inference bases are located at particu- translators that enable the current state of Individual or
lar nodes within the semantic network. hybrid knowledge bases to be saved as ASCII text files of

SNDL and RBDL specifications. Thus, if any changes to
Know/edge-Dg Dee"rptknr La&guege. knowledge bases ar made Interactively, a snapshot of

these knowledge bases can be taken. SNDL and RBDL
Our approach to defining knowledge-base processing specifications are themselves highly portable and are our
components was to view them as abstract data types, preferred means of porting knowledge bases to new
and layers of such types. In defining these packages we computing environments.
concentrated on the necessary operations to support ap
plications that required knowledge-based processing, Futte Extenions
and provided the underlying objects and object manage-
ment to support such client applications. There are many possible extensions to make to

AdaKNET. One feature of KNET, the Prolog progenitor
The RLF project was conceived and executed in the con- of AdaKNET, that Is currently not provided In AdaKNET is
text of available technology that supports the creation the notion of constraints whereby attributes of a subcate-
and use of spelU purpose high level languages. Such gory can be automatically delimited when subcategories,
languages permit the needs of specific application do. or Individuals of the subcategory, are created. Without
mains to be expressed In terminology appropriate to such some automatic way of performing such limitations (or
domains. In our case, we needed a way to specify the constraining actions) the AdaKNET user is forced to do
contents of knowledge bases In language that was clear them by hand. More generally, experimentation with pro-
and condse. Furthermore, such descriptions must be viding Interfaces to AdaKNET that support the integration
processed into a form that leads to Installation Into the of AdaKNET with other knowledge representation sys-
data structures managed by AdaKNET and AdaTAU. tems would be desirable.
The abstract data type (ADI) approach to the design of
knowledge representation systems led to a large collec- AdaTAU Is particularly well-suited to providing *expert*
tion of ADTs with complex interactiors. Knowledge-Base navigational guidance through a complex domain model
specification languages hide the procedural complexity of such as those definable with AdaKNET. Because the
the ADTs and permit easy-to-understand instantlation of rule abstractions are simple (and AdaTAU rule bases are
knowledge bases. Implemented via Ada generics), modiricatlons to AdaTAU

to support new kinds of rules or Inference strategies are
The use of such specification languages hinges on the relatively easy to accomplish. We have already exped-
availability of support for their design and implementa- mented with different sorts of partitioning and focusing
tion. Special purpose, blittle" languages are a nice idea, schemes in building Gadfly and librarian applications.
but unless they are economical to develop and apply, Other possible extensions to AdaTAU Include supporting
they most probably will not be adopted. At Unisys, a tool non-monotonic reasoning where rules can Identify facts
exists that not only supports language definition but the to be removed from the fact base as well as added to the
tool is written in Ada and generates Ada code to accom- fact base. Careful truth maintenance must be provided
plish specification translations. SSAGS [Payta2] (Syntax so that fact bases remain consistent, and rules can be
and Semantics Analysis and Generation System) has "unfired" due to the removal of antecedent facts. As Is
been in use since 198? (fully operational in an almost the case for AdaKNET, it is possible to experiment with
total Ada configuration since 1986) and has been applied different kinds of application interfaces to AdaTAU

426 7th Annual National Conference on Ada Technology 1989

whereby application-specific actions can be Invoked should be required where the olferor of a new component
under the control of AdaTAU. The results returned from Is queried regarding explicit and Implicit assumptions
these actions can then be fed Into the general Inference about the design, testing and Intended usage of the com-
process. ponent. Such a dialogue session will ensure that a pro-

spective user of the component has sufficient information
We plan to continue with our hybridization experiments, to choose among several candidate components for a
To support this research, an Integrated Knowledge-Base particular application.
Description Language (KBDL) Is planned which will sup-
port proven hybridization schemes as they are devel- Browsing Librarian
oped. We also intend to continue our development of
Gadfly, both in support of librarian applications as well as Our first sample librarian application Is simply called
a separate application. Our primary methodology will be Ubrary_Browser Its design was adapted from the de-
to concentrate on knowledge engineering extensions. sign of an early browser-editor application which was
Planned knowledge base enhancements Include support used to test the functioning of AdaKNET.
for additional Ada units such as packages as well as Ubrary...Browser relies on a user-guided approach to
other Ada data types. Improved and enlarged RBDL navigating within the library (SNDL-provided) knowledge
specifications to support more sophisticated testing meth- base. This method of user-controlled navigation might be
odologies and parameter relationships (such as aliasing) the preferred method In a small library or for a user who
are also under consideration. has consulted the library frequently (or a domain expert

4. Librarian Applications who participated in its construction).

The Reusability Ubrary Framework project is focused on From a particular library category, the user can navigate

producing a whole family of librarian applications culml- to any other category or subcategory by typing its name.

nating In a qualifier ibrarian that includes Gadfly as a The attributes of a particular category can be examined

testing agent/iquality assurance module, and which sup- as a group or Individually. A history list of all recently ex-

ports full repository management services over a soft- amined categories Is provided so that the user has a

ware library focused on a particular appication domain. sense of where he or she has been browsing In the If-

There Is nothing inherent In the approach taken In con brary. It is possible to generate a ist of all subcategories
Teretis the ing that pnctsit from being co- of a given category so that a sense of the depth andstrucing heRLF thtprecludes tfomengapplied breadth of the classification scheme can be obtained.
over a larger, less focused collection of software compo-

nents. Although a general purpose rouse library could be Once the user has navigated to a location where particu-
built based on the RLF components with very good re- lar components have been Identified, the file system loca-
suit$, we believe that the benefits realized from the reuse tion of these software components can be obtained along
of software components will be greatest in the near term, with particular values of attributes that the software com-
where software repositories are organized around narrow ponent must have based on its membership .ithin a par-
domains. ticular component category. In early librarian versions,

Not only will an RLF-based repository store individual the actual location of the component is provided, rather
modues nd ontin kowldgeabot thir onsrucion than the component Itself. The component can then bemodules and contain knowledge about their construction Inspected with a system editor.

and quality, it will also possess knowledge concerning

how components from the library have been successfully This first version also provides for Insertion and deletion
combined Into subsystems that solve particular problems of both knowledge and software components by the ex-
within the application domain. Knowledge about failures port user. Such privileges were naturally present In the
of components when used In Inappropriate contexts can AdaKNET browser-editor where all aspects of managtng
also be maintained. In short, a domain-focused library the semantic network were under scrutiny. In a produc-
should contain all necessary Information so that new per- tion-quanity nibrakan, such modification privileges might
sonnel coming to work In the application domain have ac- t li iraria such modif i stmaghtcessto he ollctie wsdomo pst ystm dsigers well be restricted to a single user (a library administrator)
cess to the collectiv wisdom o past system designers orat least a small group of users (a library review board).

The sophistication of this drivc your-own librarian Is limit-
New system construction within such a library-based en- ed by the extent of the knowledge engineering that has
vironment can be focused on the use of components been done for the domain and the Individual components
found within the repository, with new module design and housed within the library. Search and retrieval perfor-
construction being pursued only as a last resort. When mance Is based on the navigational savvy of the library
new parts are constructed, they should be designed with user as well as the general browsing capabilities over the
a clear understanding of their storage and reuse In a re- domain model that are provided by the AdaKNET
pository setting. Relationships to currently Installed mod- BrowserEditor. This method of Interface is more appro-
ules must be established when the new part is checked priate to particular situations and Is not intended for gen-
Into the system. In addition, a quality analysis session eral use.

7th Annual National Conference on Ada Technology 1989 427

Classifier Librarian Advisor Librarians

The classifier Ibradn utilizes the knowledge base struc- The success of a structure-guided tour of the domain
ture itself to load the user through a dialogue aimed at Io- knowledge base depends on the richness of the compo-
cating software compononts that might be of interest. nent taxonomy as well as on the fact tha* a direct path
When located at .particular category, there are two exists from a given point to an eventual stopping point.
sources of adcitional Information that can automaticalty In a largo, complex knowledge base such a path-based
be inspected - the subcategodas which exist at the cur- search approach is likely to be weak and unwieldy.
rent category. and the attributes that distinguish one sub- Additionally, only one segment of the user community Is
category from the next. likely to be well-served by a parlicukir taxonomical orga-

nization (at best perhaps the "average" user). Different
After the user has browsed to a point in the knowedge user classes will come to the repository with varying
base and Is unable to determine where to go next, or per- amounts of domain knowledge and navigational skills.
haps starting at the very highest lavol of the knowledge For the repository to be useful to a largo community of
base, choices are offered to the user based on the avail, users, it's management must support the needs of differ.
able branch points that exist from the current node. If the ent segments of the community.
user is able to make a choice based on a name in the GIst
of possible subcategories, the user chooses one and While there can be only one taxonomy In effect at any
Ihen the classifier librarian cr:o again presents a list of one time, different levels of support can be provided
possible subcategories representing where to go next. based upon the class and skill level of the user. Explicit
This process continues until the user is led to the botlm domain oxpets* fill the needs of these dissimilar user
level of the domain network at which point no possible profiles. Domain expertise, in the form of navigational
subcategories exist, or else the user can opt out of the support and guidance, can be supplied through various
automatic descent at which point the browsing mode do- advising rule bases Implemented with AdaTAU. Uke
scribod previously Is automatically re-enabled. Gadfly, these rule bases are distributed throughout the

static domain model represented through AdaKNET. But
Otte reason to end this simple mode of descent is that unlike Gadfly, the services of distributed AdaTAU provide
the names of the possible subcategories do not them- the capability of making long distance jumps within the
selves present sufficiont Information to make a choice. In domain taxonomy.
this case, the user can elect to have the system display
the differences between any two categories that were Advising functionality can play a number of different roles
enumerated In a previous fist of choices. The user, hav- In the effective use of a domain specific repository.
Ing examined the differences, can go directly to a catego- Primarily, advising rule bases provide navigational guid-
ry, or else the guided mode can be resumed so that a fur- ance over a complex network and encode heuristics re-
ther descent Is conducted In a controlled manner. garding effective retrieval and composition of compo-

nents In the library. Rule bases can support different
Another reason to abort the guided search would be if the project (development, management, CA, ...) as well as
list of subcategories to consider did not Include any that domain knowledge (novice through expert). Such di-
were likely to contain a software component with the right verse classes of users clearly have different alms and
properties. In this case the user can elect to go to anoth- needs In using the library, and usage advice should be
er category to conduct the search from there, or perhaps given accordingly.
return several levels back the descent path so that an al-
tomate choice can be made and a new descent path fol- Another role is to connect software components to one
lowed. another that are not directly connected (or are only Indi-

rectly connected through several levels within the taxono-
Finally, the user may iocate the proper subcategory be- my). In the benchmark domain, for example, benchmark
fore the end of the descent path Is reached. This would programs are useful only when compiled with related
occur if the user actually found a category that was ex- timer routines. Taxonomically, these timer components
pected to contain software components with the desired might be quite unrelated to the benchmark programs
characteristics. Such a category may Indeed have sub- which are categorized by the feature they test, or the
categories with special properties but these specializa- benchmark suite they are located In. Of course, one of
tions may not be desired. Or, the user may actually In- the attributes of a subcategory ought to be the category
tend to create a new subcategory which is to contain which contains such related pieces of software. But
some some new software components. Once again, do- using such conceptual Information might be difficult for
main model modifications (caused by changes to subcat- the novice or casual library user. In such cases, rules
egodes and their attributes) or even simple scIlware can advise the user of the required relations, and even
component additions or deletions may be strictly con- provide the navigational mechanism from one category
trolled by access privileges so that library Integrity can be (or component In a category) to another.
assured.

428 7th Annual National Conference on Ada Technology 1989

Advising can also ho!p with the task of system configura- Gadfly can also be an option to be Invoked by a borrower
tion from componunts Installed in the reposltory. of a component from the library. In this form, Gadfly
Successful subpcystems that have been built out of Ebrary seeks to probe the borrower for assumptions regarding
components can be represented by special purpose rules the Intended performance and error handIng characteris-
that connect together those components and provide a tics of the modulo being sought. If the borrowoes expec-
navigational path that can be used to recreate the con* tations don't match the module under consideration, an
struction of the subsystem. Other system configuration aeernate module can be suggested. At the very least,
data can be Included In the knowledge base to provide the desirod characteristics of the part ore compared
factual dosign and usage information and to point out po- against the characteristics establshed during the Gadfly
tential trouble spots. session conducted when the part was installed into the iI-

An Important class of rules can be established for trou- brary. The user is not loft in the dark about the suitability

ble-free management of the repository. Ubrary manage- of the part If this Information is captured In the knowledgo

ment can be a troublesome task especially for a large base Itsolf.
and dynamic application domain. Rules can provide Gadfly lust scratches the surface of the problem of quality
guidance for safe Insertions of now components into the asura c este sracof t prom owtrepoitoy, s wll s cverae aalyis o tat hen assurance for software IUbraries. Just as domain knowi-repstory, as wll as coverage analss so that when edge can be captured to support effctive ctalogng and
parts are offered for Installation, the library is first exam- edgecan be capture tosporectiv ain g in
fied for related parts and for necessary relationships, retrieval of software components, domain knowledge is
Using the benchmark domain as an example, a now fe. the key to providing effective quaoty assurance for library
ture benchmark should not be Installed without an associ patrons, as well as for software component authors.
ated timer routine. By allowing library management only Future Directions
under rule-based guidance, the library admin;at.ator
could In fact be less than a domain expert. There are many opportunities for growth of the RLF
Qualitier Librarian project, and the library framework In particular. Our near

term plan focuses on exploring several other application

The quality of parts placed in a library is critical to the domains and strengthening the GadflylOuality Assurance
success of part reuse. A library framework must provide capabilities of the prototype. We can be3t critique our

quality assurance for the parts currently within the library, knowledge collection and representational abilities by try-
as well as for parts offered for Inclusion within the library. Ing to build relatively large models over several different
Ouality assurance encompasses more than enforcing a application areas with different characteristics. Some ex-
testing methodology. Nonetheless, a good place to begin amples of such applications areas are real-time, embed-
to provide quality measures Is to assure a prospective dod systems (such as missile guidance software), data
borrower that the part meets some minimal standards management systems (such as those required to support
and that certain kinds of tests have been conducted on military logistics planning and control), and user-interface

the part. models such as the X Window System.

Gadfly is a knowledge-based testing assistant, built on Our foremost longer-term desire is to replace the underly-
AdaKNET and AdaTAU, and so an obvious first step Is to ing primitive use of the Ada file 1/O services with an oWl-
incorporate Gadfly into the RLF framework. Gadfly's dent and powerful data base management system.
knowledge bases wore Initially prepared to support sim- There is simply too much, and too wide a variety of, data
pie black box Ada unit testing concentrating on the pa- to be processed effectively with raw 110 operations on
rameter profiles of a unit under test. For an application- large numbers of Ada files. Using a DBMS (or preferably
specific domain library, knowledge about the domain it- an Object Management System (OMS)), we can Install
self needs to be added so that such knowledge guides both the knowledge base constituents (nodes and at-
the test analysis and generation process. Gadfly's em- tributes In a semantic network, and facts and rules from
phasis on module parameter profiles must also be modi- rule bases) and the software components themselves in
fled to accomodate its use with general software compo- a unified database system. Distributed systems are cer-
nents which may not have any parameters within their tain to rise in usage and popularity, and by Incorporating
visible external interfaces, a distributed DBMS (OMS), we can migrate the RLF nat-

urally to such systems. A system that provides access to
In a library setting, Gadfly can be applied for two different a heterogeneous system would be Ideal In that knowl-
purposes. When a part is offered to the library, Gadfly is edge base components could be located on a fast local
invoked to establish the degree and types of testing that server, while the components themselves could be stored
need to be done in order that the part be approved for in- at various distributed siles served by slower speed serv-
clusion in the library. In a production-quality version of ers. A DBMS/OMS would also facilitate the handling of
the qualifying librarian, a part should be officially validat- more diverse software artifacts such as requirements, de-
ed according to the test plan generated by Gadfly before sign specs, test cases and reports, etc.
it is officially installed in the library.

7th Annual National Conference on Ada Technology 1989 429

We would like to expand our repository management ca- Careful design also affords significant opportunities for
pabilities. Possibilities Include maintaining and reporting reuse at the module/package level as well as the sub-
usage Mtatistics about component withdrawals, maintain- system level. For example, during the design of
Ing and reporting reliability measures based on borrower AdaKNET, we identified the need for a tables abstraction
reports about using withdrawn parts In applications, and that simultai.cously provided persistence for the objects
audit trails that provide library usage information and per- and relationships being managed by AdaKNET as well as
ha"s lead to the creation of Individual user profiles. Such for efficient access to stored data. Later, when the ira-
profiles could support individualized start up settings for plementation of AdaTAU required a means for AdaTAU
preferred mode of interaction (browser, classifier, advi- structures to be made persistent, the tables generic pro.
sor) and could automatically change usage modes as vided the necesssary functionality. Our experiences with
user experience increases. Gadfly and the various librarian applications are ample

proof of the reusability of the AdaKNET and AdaTAU
Finally we would like to expand the native Intelligence of subsystems themselves.
the librarian itself. We envision a pro.active librarian that
could automatically manage the repository and underly- Reuse of another, perhaps more powerful sort, Is provid-
Ing knowledge bases. Expanded roles and functionality ed by the use of generation techniques. From our high.
for such a librarian Include the rearrangement of compo. level knowledge base specifications, we automatically
nents and categories based on usage frequencies and generate Ada code to initialize machlne-processable
the Installation of new components, Identification of miss- knowledge bases. Because the specification language
Ing components or library categories which are lacking In processors are themselves generated from their own
quality or numbers of components, and even the actual high-level specifications, we need not hand-write code to
solicitation of new components based on unsuccessful create parsers and lexical analyzers for these languages.
withdrawal attempts. A related long-term goal Is to incor- The small amount of handwritten code that Is needed to
porate the use of generation techniques so that a tightly support the semantic processing provided in the Ian-
coupled collection of software components could them- guage is often an easy adaptation of code provided for
selves be replaced by a generator and a much smaller other languages that were developed using the Ada-
collection of specifications. Each component in the famt- based compiler-compiler technology developed here at
ly could be produced by the generator from the proper the Paoli Research Center.

The adaptation of the RLF knowledge base components

5. Experiences With Ada to new application domains Is achieved in part by writing
high-level specifications of the knowledge that captures

Various Ada features have been positive factors In the the new domain and then automatically generating the

design, coding, implementation, and Integration of the Initialization code. Only a relatively small amount of ap-

knowledge representatlon systems and applications de- pication.specific code needs to be handwritten. Another

veloped during the RLF project. Certain aspects of the advantage of the use of specification languages is that
current generation of compilers and run-time systems knowledge descriptions can be written by domain experts

posed obstacles that needed to be overcome. This sec- who are not necessarily Ada experts.
tion presents some of our basic essons-learned. Our collective project experiences were not totally post-

Our approach to the construction of AdaKNET and tive, however. Many of our difficulties can be traced to

AdaTAU emphasized the basic design principle of data problems with the Ada compiler and run-time systems

abstraction and depended heavily on the use of Ada go- that we employed during the project. We faced problems
nerics and exception handling. By concentrating on a with reuse of outside software components, execution

careful and reasoned use of Ada capabilities, we were performance of our own code, and a less-than trouble-

able to develop systems with traditional Al functionality free port from a workstation platform to a PC platform.
that also promote system maintainability and evolvability. For the most part, the blame for these problems cannot
Out plan for growth and evoluton of our systems In- be attached to Ada, but rather to our own Inexperience

cludes analysis of various feature sets that are deemed and to the limitations present In today's Ada language
useful within possible configurations of deployed sys- systems.

tems. This domain-analysis sets the stage for early sys-
tem versions that, while not fully equipped, are potentially Our foremost problem was a profound tack of control
useful in applications that do not require the entire com- from within our system of dynamic memory - memory
plement of features. Thus prior domain analysis leads to that Is allocated through the use of the Ada new com-

an orderly evolution from limited prototypes to a final mand. Although we attempted to be as careful as we
product. In fact, such early systems are also more com- could possibly be regarding memory management, re-
pact and more efficient than their full-featured counter- turning memory back to the memory pool (heap) when no
parts and so may be appropriate where there are re- longer needed, we could not control process memory
source constraints of one type or another. growth using completely portable Ada code. A large part

430 7th Annual National Conference on Ada Technology 1989

of the problem turned out to be the Ada run-time's own 6. Summary
use of the heap for IO buffers among other things.
Because the appication's use of the hoop was conl"cting Some idea of the scope and size of the proect Is ob-
with the system's own use, our applications Invariably tained by examining the development platforms that wore
experience large-scale heap fragmentation and subso, used in working on the pro,oct and some statistics that
quent performance degradation. After talking to several summarize the large amount of code and documentation
Ada vendors, It became clear that the ony way to com- that have boon produced. Our primary development en-
pletely control heap memory was to take matters Into our vironmont consisted of Sun Microsystems workstations
own hands and write code specific to the compilation sys- (3150. -0 and 3175's) each of which contained a mini-
tem In use, thereby dpdori sacrficing portability, mum of 4 megabytes of momoy and was operated under

Sun operating system 3.4. Available Ada compilaion
An Interim solution turned out to be as simple as provid- systems Included Verdix Ada Development Systems
Ing a limited amount of memory management from within (VADS) 5.5 and Alsys 3.2. Our Initial development took
each basic abstraction. For example, oblct free lists are place using VADS mainly because of our Initial familiarity
managed from within each of the basic abstractions such with this system. As work proceeded, we end.avored to
as lists, sets and tables. Whenever such objects are allo- use the Alsys compiler to remove any system specific de-
cated (using new), they are never released using un- pendencies. To demonstrate machine portability, as RLF
checked deallocation, but rather are attached to the free components were completed and refined, the source
list when the object Is logically no longer needed. Our code was transferred to a Un'sys PWJ500 computer
experience to date !s that though process memory does (IBM compatible, using MS-DOS 3.3) and compiled
creep upwards as execution continues, this growth Is tlot- under the Alsys compilation system which Includes an
erablo, and performance Is not severely affected. One extended memory board.
very Important lesson-learned Is that for applications re-
quiring extensive use of dynamic memory, heap manage- The system, at the time tHs paper is being wdten, Is
ment Is not a luxury, or a performance related fine-tuning, comprised of 70 handwritten Ada packages (23,000 Ada
but rather a necessity. statements, 80,000 lines including comments) and 84

generated packages (for the language translators) con-
In addition to less-than-perfect memory management (e. lahing approximately 13,000 Ada statements.
g. file buffers are allocated on the heap, but are never Knowledge base descriptions (RBDL and SNDL specifi-
deallocated after the file is closed), we also experienced cation files) contain over 6,000 clauses (each clause
a number of other compiler system problems. Both com- roughly equivalent to an Ada statement). Over 5C0
pilor systems we used exhibited Ada library management pages of documentation have been produced during this
and performance problems as well. We had problems In- project. This documentation Includes design reports,
volving the use of generics (generic Instantiation glitches user manuals (both as on-line ASCII text, and formatted
and compile-time performance problems with nested go- printed copies) and presentation materials from several
nerics), exceptions (poor propagation performance), and conferences Including TRI-Ada '88 and AIDA -88.
the use of Ada-Make facilities which are supposed to au-
tomate the process of generating executables after The basic achievement of the RLF project is the provi-
changes to various source files. Today's generation of sion, In a demonstrable prototype, of a general frame-
Ada compilers require large amounts of disk space to work for the construction of domain-specific libraries of
support their custom forms of library management. Ada software components. The domain-models express-
Executable object files also tend to be very large (certain- Ible using the RLF components support the statement
ly compared to other less powerful languages). We ex- and evolution of detailed taxonomic descriptions and sup-
pect many of these problems to disappear as compiler portive search capabilities that enable high-impact reuse.
vendors Improve their products. In addition, we provide automated support for users of

reuse libraries Including component selection, Insertion
Finally, although portability is aided by Ada, it is not as- and qualification.
sured, nor is the process made trivial. When porting our An Important Incremental achievement was the success-
system from one compiler to another on the same hard- ful application of knowledge-based technology to the
ware, we experienced difficulties due to library manage- area of Ada component testing (Gadfly). Both of these
ment differences as well as compiler limitations. When achievements were accomplished based on the produc-
porting from one machine to another, using the same tion of general-purpose knowledge-based components in
compiler we once again ran Into compiler limitations, as Ada. These tools themselves support the Incremental
well as resource limitations (in a PC environment). We addition of knowledge-based processing to other Ada
also experienced minor, but tedious, operating system products and systems. The project also represents a
consequences. For example, due to our use of text files successful experiment in the hybridization of dual knowl-
to store knowledge bases, the port to an environment edge-representation systems that together Insure robust
with very strict file naming conventions was not as easy coverage of procedural and declarative forms of Informa-
as expected. tion.

7th Annual National Conference on Ada Technology 1989 431

Finally. we wore able to exporiment ih Innovative uses SiuoO Mark Simos, noe Gmroig ofha Organon: A
of Ada for the Impomeontation of know,'edgo-basod too's. HybddiKnovJWlogeflasod Technology and
We have learned a groat deal about the techniques and M.fthodhoogy For Soirware Rouse. presented
approaches that support the doscgn of rousab!o software at the 1988 NISOP Conference on Software
components and bolova that this know'edoo can cirivo Rous;bi!41y.
further work on the ALF project az well as guide us as we WAL88 K. C. Wal~nau. J. J. Soditsch, M. A. Simos,
develop our own component rouso Lbrarics. R. C. McDowell. K. A. Cassell, D. J. Campbell.

Convi'nction of Knowledgjo*Based
Components in Ad., In proceedings of
AIDA-eS. George Mason University,

References November 1988

BARS85 *Domain-Spociic Automatic Programming".
IEEE Transactions onSotwaro Enginering,
November 1985. pp. 13214~336.

DATZ83 J. C. Satz. P. M. Cohen, S, T. Redwine. J. R.
Rice, 'The Application*Spocific Task Arear.
IEEE Computer, 16 ,~ 1. pp. 78.85, November
1983.

BRAC81 R. J. Brachman and J. G. Schmolzo. *An9
Overview of the KL.ONE knowuadge represen- A i
tation system". Cognitiva Science, 9(2):171 -
216,1985.

BURT7 B A.BuronR. . Amon.S. . Biloa K D. James Solderitsch Is the chief programmer of the STARS
KuR ehB. r. uLon A. Mae. Araqo eS.Aailey K.ftwD. Foundations reusabiisty Library Framework (ALF) project.
Koehray. A.MEs. oRual SoftwareJuy187 p 2-3 Dr. Sokferitsch joined the Unisys Defense Systems

Ubray. EEESofwar, Jly 987 pp 2533. Software Technology Laborntory In January 1986 after
FREE83 M. W. Freeman, L. Hirshman, D. P. McKay, M. having been an assistant professor of Computer Scienco

S. Palmer. KNET: A LogicBased Associative at Villanova University for 8 years. His primary interests
Network System, presented at the third are software reusability and the Impact of very high level,
Knowledge Representation Workshop, Santa domain-orientod, specification languages on software
Barbara, CA, October 1983. productivity and reusability. He holds a B.S. degree in

MATUSS P. Matuszek, J. Sable, J. Clark, D. Corpron, D. Mathematics from Villanova University and an M.S. and
Searts. KSTAMP: A Knowlodlgo-Based System Ph.D. degrees In Mathematics from Lehigh University.
for the Maintenance of Postal Equipmont, Third
Annual United States Postal Service Advanced
Technology Conference, reay 1988.

MCCA86 Ron McCain. Reusabie Software Component
Engineering, IBM FSD, Houston, Texas. July
1986.

Mcit.76 M. D. Mcllroy. 'Mass-produced software com-
ponentsw, In Software Engineering Concepts
and Techniques, 1968 NATO Con. Software
Eng.. J. M. Buxton, P. Naur, B. Randi:,I Eds.
1976, pp. 88.98.

PAYT82 T. Payton, S. Keller, J. Perkins, S. Rowan, S.t
Mardinly. OSSAGS :A Syntax and Semantics
Analysis and Generation System", Proceedings
COMPSAC '62, November 1982. Kurt C. Wallnau served as team leader on the RLF

POLL87 R. Pollack, W. P. Loftus, J. Solderitsch, A project responsible for the design and Implementation of
Generative Approach to Message Format AdaKNET, the semantic network knowledge representa-
Processing, presented at CASE '87, May 1987, tion component of the RLF. Kurt Wallnau has several
Boston, MA. years experience In the design and prototyping of Ada

PRIE87 R. Prieto-Diaz, P. Freeman. "Classifying environment tools. His key research interests are in ob-
Software for Reusability, IEEE Software, ject-oriented systems, integrated software environments
January 1987, pp. 6-16. and advanced data modeling techniques In software

engineering environments. He holds a B.S. degree In
Computer Science from Villanova University.

432 7th Annual National Conference on Ada Technology 1989

John A. Thalhamor is tho managor of STARS
Foundations prolocts at Unisys. Ho hos over nine years
experienco in tho design and Impomcntation of software
suppon tools. His primary Intorosts are in the oaes of
tesvaridation tools, Ada, compi!ars. ond user Interfaces.
He holds an M.S. in Computer Science from Cornell
University and a B.S. in Computer Sc onco from the
Pennsylvania State University. Ho is a member of the
ACM and the IEEE Computer Society.

7th Annual National Conference on Ada Technology 1989 433

Add, hlypertext, and Reore

Larry Latour

Computer Science Department
University o Haine, Orono, Maine

Abstract little work has boon done an the
evaluation problem, i.e., the

In this paper we discuss hypertext as understanding problem. Assuming that
a tool for describing caxonomies o Add components stored In a library are well-
packages In order to facilitate their designed for reuse, and assuming also that
rouse. Our basic promise Is that the there exists a way to orgAnIze these
primary inhibitor to the rouse of software components for retrieval, the problem
components is understanding. We describe still remains as to hay the components
a component as an information "web" of will be evaluated once retrieved. There
attributes, containing specification, is usually a wealth of knowledge that must
implementation, and usage information, be considered when performing such an
The hypertext model Is used to describe evaluation, and little consideration has
component Information webs, alternate been given to tools to aid in this
taxonomic structures leading to these "understanding" process. One such class
webs, and class Information webs of tools, based upon the hypertext nodal,
describing information common across seems to be the right approach to the
component webs. problem.

llypertext tools allow the user to
Introduction create webs o annotated nodes and links,

manipulate information (textual,
Reusability ts a noble goal to shoot graphical, voice, etc.) within the nodes

tor in a software engineering environment. and links, and navigate the webs by
Its advantages are obvious. Development various textual and spatial commands. At
costs can be decreased by rousing code, UMane we have constructed the h)partext-
algorithms, module specifications, like system SeeCraph (6), In Ada, on our
subsystem designs, etc. Reliability can Vax workstations, and have also made heavy
also be improved by rousing well- use of Nypercard (1), a Macintosh tool
engineered, well-documented, well-tested providing a good deol of hyportext
parts from a parts library. In fact, it functionality. We have used SeeGraph to
has been argued that the advantage of store and retrieve the knowledge web of
increased reliability alone justifies information embodying the SecGraph syatem
rouse, even if development costs might bo itself, and are using Hlypercard to
increased, construct the knowledge webs surrounding

both the taxonomies and component parts of
Unfortunatoly a number of inhibitors the Ada Booch Components (3j and

exist that tend to negate the advantages HcDonnell-Douglas CAMP parts [4).
described above. The amount at work
required to find a pre-written part Ilypertext is not in itself a
(whether in a repository or book), to solution. One must be careful, when
decide whether or not it is applicable to constructing hypertext webs, that their
the problem domain, and to integrate it structure does not get out of hand. When
into a system might more than offset the using ill-defined hypertext structures I
savings gained from not having to develop am reminded of the hacker's game o
the part. In addition, the "shoe-horning" Adventare. I recall entering the room of
of a pro-written part into a system might a friend's ten year old son, being amazed
lead to reliability problems at the system to see the complete map of the Adventure
integration level. "world" attached to a good portion of his

wall. Without such a map, it is almost
A good deal of work has been done on impossible not to get lost in this

the organization and retrieval of reusable "world". The same thing tends to happen
software components [2]. Unfortunately, in hypertext.

434 7th Annual National Conference on Ada Technology 1989

llyjertext Is to informastion pecifi~coton ta i~tlenentotion, o

structuring as gotoi are !o programin.. component rould bo Considered 4
Early writers of proarans ustag #equoneo aperlfirotton together with a class of
and transfer of control operation# o t impleamntations, each requtiring tt own
have said, "What wonderfully complex unique mix of re~ourtas (e.g., meoary,
systems we can conscruct - systems to external stornge, processor tine, task
control robots, jui44 nisasles, bo rae overhoea, etc.).
our charkbookt ... AaalaInl". Wit aust
view hypertext in this gane manner. Typically. component information
Methods must be develop*d that parallel takes the form of printed 4o nc tn on.
the gystens design aotions of structured nforteunatly, printed udia suffer from
programming, Infortntion hiding, and the drawback of soqutntial organization.

A gooi example of this is the Ad
abstraction. This, to anyone forced to Roforence Manusl. Embedded within chis
build surh webs. should be obvious. snual is a web of reference trails that

core often than not creates an
We have discusied the SeeCrmph #lte uncanfortablo aote for the Ada progrowner.

In (7). In this paper we concentrate on llyportoxt tools provide 4 much more
our oxperimoots In Sypercnrd. We show the nAtural made of access to these
structure and content of conponeat Infor=gtion webs.
information webs as vell ks the
flexibility of the hyp rtgxc madel In When considering specification,
allavinp for the conacroctlon of alternate Ilenttion, nd usage information more
taxonomic structurva of cumponents and closely, one quickly becomes Aware of the
sharing of componeo attributos. Ve breadth of information that can be
finish by discussIng the usefulness of associated with each modulo. We do so in
flypercard as n ipplIlcation ganeratur, and the following sections.
the Inplications of this for reuse.

Specification Information:
A Note about h ft 10 cozzone"t
Ir I rbri r ls The specification is the contract

between the user and the impleaencacor,
In our study we have made use of both and as such needs to be ta precise, yet as

Grady Beach's component taxonomy and the simply stated as possible. This
Mc~onnell-Douglas C.ANP (Conmon Ada Missile infornation might include an Ada syntactic
Packages) components. tooch's component specification, a descriptive and/or
collection includes approximately 500 Ada graphical presentation of the user's
"computer science domain" components, mental model of the specification
including a number 3t variations of semantics, formal semantic descriptions,
stacks, queues, graphs, sorts, etc. The and syntactic and semantic Justification.
XcDonnell-pouglos collection consists of
approximately 200 Ad% tomponents, For exnaple, consider the web of
containing both computer science domain specification information for tooch's
packages similar to tooch's as well as undirected unbounded unmannAged graph,
components particularly suited to missile represented by the llypercard "card" in
guidance system softare. figure 1. Using this web, the user can

access specification information in avariety of forms.
Components as Inforoncton Webs

o

Stypercard allows the user to create
The problem with many component cards ond place any number of "buttons" on

libraries is that the code is considered a card. These buttons provide an area on
to be the component when for purposes of the card for the user to "click on" with a
understanding it is only one attribute of mouse, invoking a procedure which can
the component. Generally there exists (or transfer control to another card as well
should exist) a significant body of as perform any number of housekeeping
knowledge about a component, broadly chores. Clicking nn the mental model
,livided into three categories - button, a combined text/graphical
specification information, implementation description of the package appears (figure
information, and usage, or domain, 2). The purpose of this information is to
information. This information exists as a give the user a quick and dirty feel for
complex web of facts about a component the overall behavior of the package. It
that must be well understood in order to is a rough sketch of package semanticas.
use it properly. In fact, It can be
argued that this information web is the The Ada spec. button leads the user
component, one small part of which is the to a syntactic description of the package
code. Furthermore, to the extent that interface (figure 3). This is a minimal,
there is a one to many mapping of compiler readable form of the interface,

7th Annual National Conference on Ada Technology 1989 435

providing senantics only In the form of and Implementation arrow buttons land the
operation noaes, formal parameter names user to web cards for the respective
and types, and exception noes. Notice Information.
that llyperrard allows for the creation of
scrollable fields, as shown by the scroll
bar to the right of specification. Tmptamentntinn Tnformetton

The informal spec. button leads to an The Implementation is the
Ado specification annotated with english atinmfaction of the specification
language semantic descriptions In a form contract, and the user needs to be
simtlar to that used by Guttag and Liskuv comfortoble that it indeed accomplishes
in IS) (figure 4). From the effects Its goal. In additon, the state of the
clause of the ADD operation, we see that A art in specification Is such that the
vortex Is croted, on input Its is placed Impleaentation must be there to "fill in
"In" the vertex, and the vortex is added the blanks". This information might
to the graph. The restraints clause include a property structured and
defInes any requirements on the input annotated Ada body, nodule design
parameters, the nodifies clause defines information, a mental model of
which if any of the Input parmaters ore Inplenmentation structures, verification
modified on procedure completion, And the information, and implementotion tradeoffs.
exceptions clause defines the Ado
exceptions thot might be raised by the Consider the web o; Implementation
procedure along with the abnormal effects information for the graph specification
of the procedure if such exceptions ore described in the previous section (figure
raised. 7). This implementation web Includes both

english language and graphical
The rormal spec. button leads to a dQscriptions of the representation of a

formal Larch-like (5) interface graph, an Ada body, the Ada private part
specification (figure 5). The semantics of the specification, verification and
of this specification are defined in teras test plan Information, the resources used
of an algebraic model of graph semantics, by the Implenentation, and A Justification
accessed through the Formal model button of the package implementation design.
(figure 6). This two-tiered approach to Notice that the Ad* private part, although
describing abstract data type behavior is physically in the package specification,
useful in that It allows for the Is actually part of the Implementation,
separation of language specific featuren and should be treated as such. This is
such as procedure side effects and not really a problem, as environment tools
exceptions from language Independent can present twe different views of an Ada
semantic descriptions written in a package specification, one containing the
straLhtforward functional style, private part for the compiler, and the

other minus the private part for the user.
In addition to the buttons leading to

overall semantic descriptions, there is a
button lending to a Justification of UsM Informntion
specification syntax, and a button loading
to a description of thn operations in the Usage Information is an extension of
Interface that collectively form an the specification semantics. In the case
iterator. The Juntifh~ation description of complex Interfaces, the user needs to
includes a rational for why this understand how the functionality of a
particular syntax was chosen along with compoqent can be combined to construct a
examples of other possible forms that complex application.
could have been chosen. In our particular
prototype the iterator button leads to a As mentioned earlier, a specification
single card describing the iterator is a contract between the user and
operations and presenting a graphical view implementor of a component. Complicating
of the iterator. It is important to note matters here is the promotion of reuse as
however that the flexibility of llypercard a software engineering goal. Clearly a
would allow us to represent the iterator specification needs to be designed with a
by yet another "web" card containing class of users in mind rather than just a
buttons leading to a different attribute single user. The usage information
of the iterator. supplied for a particular component

therefore should contain not only specific
The remaining buttons are traversal examples of component usage, but also the

buttons, i.e., they aid the user in moving characteristics of the class, or domain,
to related "web" cada. The Graphs button of users that can use the component, and
leads back to the Graph class state window general patterns of usage within this
(see taxonomies sections), from which the domain.
user can choose another graph and begin
the exploration process anew. The Usage

436 7th Annual National Conference on Ada Technology 1989

The above Information is to a great queues, graphs, arc., and Implementation
extent domain specific, and it is ot models ore limilar across components with
entirely clear to us how much Information the same form. Algebraic models are also
to supply for a general purpose "computer similar across classes of components - the
science domain" package such as Graph. sequence being a possible model tor
For our prototype system we have provided stacks, queues, deques, ate.
a number of examples, including one for a
PERT chart (figure 8), as well as general Recall that the Graph class state
patterns of Graph usage as typically window contains a Graph button. The
presented in good data structures texts. intent hare is that this button lead to a

class information web. The structure of
the class Information web reflects the

Repreiienting Taxonomic Strurtures: similarities between the individual
Information webs of that class. For

In addition to describing cosponant example, the class information web
Information webs, hypertext has proven contains a mental model button, describing
useful for describing taxonomic structures the general attribute-independent model of
of components, as well as information a graph, and a formal model button,
associated with component classes. Fur describing the formal model of a graph
example, the class state window in figure used by all coaponents of that class.
9 is used to access the class of graph
,omponants in the Booch library. Our aim here is for the user of a

taxonomy to be able to extract as much
The current "state" of this card is information as in possible without having

of an undirected unbounded unmanaged to conit to a particular component, thus
graph. In this state the info web button further speeding up the evaluation
leads to the assocLated Component process.
specification information web.

To change the card state, the user Shared Resource Webs
needs simply to click on (thi4s
highlighting) the Change state button, In addition to experimenting with
followed by any combination of tie class Information webs, we have
Directed, Boundud, and Managed buttons. experimented with tying component

information webs to information webs about
The Modules button leads to a card a particular web attribute. One area we

describing a broad class of computer are particularly interested in is formal
science modules in the Booch components, specification.
including the Graph class in particular.
The ? button allows the user to exit the We have taken the Larch handbook of
Ilypercard application to start anew. algebraic models and have created a

hierarchically structured hypertext web of
"Meta-information" about the taxonomy specifications, including sequences,

itself is important for beginning users of graphs, stacks, etc. We have then
the taxonomy. When the Change state attached component information webs to
button is in non-highliChted mode, the this specification "database" via the
user can click on any node In the tree and formal model button. The user can then
get Information about the meaning of that access the formal model of a graph from
node. Specifically, the Graph button this shared resource. In addition, the
leands to a class information web, backtracking capability of Ilypercard
discussed in the following section. provides a trail for the user to back out

through Qnce the formal model web is
entered.

Exploring Commonality

As we have constructed knowledge webs Alternat Taxonomic Structures
around the individual component parts of
both the Beoch Components and CAMP parrs, At times it nay be valuable to
we have become aware of a great deal of provide alternate access to a collection
information shared across modules, the of modules by means of di£ferent taxonomirc
sharing corresponding to the structures. For example, rather than
classification criteria used in the using the Booch taxonomy to access his
taxonomies. This has led us to look at components, we may prefer to use the
the relationships across information webs faceted classification method of Ruben
within various component taxonomies. Prieto-Diaz [8]. With hypertext, we can

provide both structures in a single
Consider the following examples. hypertext web.

Test plans and test drivers are similar
across classes of components - stacks,

71h Annual National Conference on Ada Technology 1989 437

As mentioned earlier, we have also could construct'and describe taxonomic
applied the hypertext model to the CAMP structures of component collections using
(Common Ada Missile Packages) components the same hypercnrd model as we used to
of Hclonnell-Douglns. While the general describe the components themselves. In
CAMP taxonomy is a fairly rigid hierarchy, addition, we could easily construct
as pictured in the llypercarf card of alternate taxonomic structures for the
figure 10, alternate means of package same component collection, class
access exist. Specifically, an expert information webs representing classes of
system has been developed by McDonnell- component information -debs, and shared
Douglas where, through a series of resource webs describing "databases" of
questions and answers, the user is led to information for each component information
proper choice of a component in the web attribute.
collection. llypertext can be used as the
information structuring language in A large part of constructing the
connection with such a system. The user information webs for component libraries
then has a choice of whether to be guided such as those described in this paper is
to a choice or to peruse the taxonomy tedious work. We have made an effort to
independently. fill out the webs for both the each and

CAMP modules in a way that "proves the
concept", but much work needs to be done

Hlypertext Systems as Applications Generators to complete the project. A good deal af
information already stored is repetitive

A number of hypertext systems, and needs to be consistency checked, and a
llypercurd included, contain a rich set of good deal of study needs to be done to
tools for prototyping user interfaces. It eliminate existing redundancy. We are
was for this reason that we began currently looking toward techniques
expertmenting with lypercard. Our developed in the object-oriented
intention was originally that llypercard be programming world to restructure our
a "stop-gap" until we completed our library components in this regard.
SeoGraph system, but hooks In lypercard
along with the availability of Macintosh-
DEC interfaces make a full-scale library
system with a Ilypercard front-end Acknowledgments
feasible.

The author grateful15 acknowledges
llypercard, with its flexible graphics the work of Elizabeth Johnson and Carol

editor, script language, and built-in Roberts, graduate students in the Computer
facility to create "stacks" of cards, Science Department. Ms. Johnson spent
contributes significantly to reuse. A long hours constructing SeeGraph on the
number of Application Generation tools Computer Science Dept's Vaxstation
such as this one exist under the headings cluster, and Ms. Roberts spent long hours
of CASE tools, 4GLs, UNIX tools, etc., constructing the Ilypercard prototype,
and it is in these areas that we are populating the Bech module webs with
making great strides in reuse. As with information reconstructed from his
the accessibility of component libraries packages and textbook.
described earlier, understanding is the
key issue. Whether we p.ovide parts for This work is partially funded by the
systems designers to compose systems or CECOM Center for Software Engineering
application generators to generate under contract No. DAALO3-86-D-O001,
systems, the designers must be provided Delivery Order No. 1041, Scientific
with a clear understanding of what is Services Program.
provided. This is a noble goal that is
rarely achieved.

References

Summary [1] Apple Computer, Inc., Ilypercard
User's Cuide. Cupertino, CA: Apple

Our premise in this paper is that Computer Inc., 1987.
understanding is the primary inhibitor to
the reuse of software components. We have [2] Biggerstaff, T.J., and Richter,
used the hypertext model to describe C., "Reusability Framework, Assessment,
information webs of components, and Directions", IEEE Software, March
collections of interrelated component 1987, pp. 41-49.
attributes that we argue collectively
define a component. [3] Beech, Grady, Software Components

with Ad.a, Benjamin Cummings Publishing
A number of interesting uses of Company, Inc, Menlo Park, California,

hypertext emerged from the construction of 1987.
the above webs. We recognized that we

438 7th Annual National Conference on Ada Technology 1989

(4] CAMP, Common Adn Missile A'jout the Author
Packees, 3 Volumes, McDonnell Douglas
Astronautics Company, St. Louis, MO. Larry Latour received the B.B.A.

Degree in Statistics from Daruch
(5) Gutia, John V., Horning, James Colleoe/CUNY in 1973, the H.S. degree in

J., and Wing, Jeannette H., "The Larch Operations Research from Polytechnic
Family of Specification Languagas", IREF Institute of New York in 1978, and the
Software, September, 1985. Ph.D. degree in Computer Science from

Stevens Institute of Technology in 1985.
(6) Latour, Larry, and Johnson, lie in an Assistant Professor of Computer

Elizabeth, "SoGraph: An APSE Tool for Science at the University of Maine, Orono,
Organizing Reusable Abstractions", ME., 0469. Ills research interests
Internal Report, University of Hnine include database transaction systems,
Computer Science ne.2, Orono, July 1987. software engineering, formal

specification, programming language
(71 Lattour, Larry, and Johnson, environments, and reusability.

Elizabeth, "SEER: A Graphical Retrieval
System for Reusable Ada Software Modules",
Proceedinus of the TPEP Conference on Ada
Applications and hinvironments, Manchester,
Nil, May, 1988.

[81 Prieto-Diaz, R., and Freeman, P.,
"Clas3ifying Software for Reusabitity",
IEE.R. Softwanre, January, 1987, pp. 6-16.

11roRHIATION WEO Of AN UNDIRECTEO UNBOUNOD UNftNAG[D GRAPH
Specificotion lnfonnation

to
Ad* 4 Mental modet declues
bodlj

,lds SpeC. haed an ar ol ec.

elaborated 14 Infaimal spec. CEglhsh desc.

ust iflcaton fol E licldeh.

SUqioma daeais Iterotor rtnlmdl

ripurc I

7th Annual National Conference on Ada Technology 1989 439

IiNW 0"41

11.0 Mt kk "ttO Oue to i edi 4 L4*^we t^'..Vubqj wV00 is tfdt of te0
sie a lot f wviet" or.l a ftt of *I)-;,1 C*Mt inWt con I-old on It16m
of infoeutei l0f411oft) lv.q v.wtqtl ft.1 Xt 44*fI -id 1 tie"q objects on

I" tow iajlrqct-1 "# 11- it no gopt1.ClIi tvl.q, Fot omid

v0oi #jff. .si l.s, fvk i 4it9c ftr I tq A tdosd. ~Vt4i a Is, **hma

limit to 0he r&i. of ~ vo~. fV ei)q %I-It -Oj be .5o 10 VJ,4 vKAi
nin Uov www *'d 9"Iifi %I o at* e-uoii(IE~ti e 9.t4(q coIlqftfim at tihe

oft* of llo 9inoi @1 hi

rieurv

firum Cfa.t~ ofl uhe tajrected utafawa)0. u-mog.j v.Ofl t

t'm Afift ljie felvatt.
'aXI"~~ Is

I%" py"Ilt Is jIi alo ww*1WAMV is foiwoo.

MILLJ.VSIEZ fceeaat MOMtCI
,t.Li'VC ""tenIt WC.

ftocedrq ~c" ifte4i~ n CJWII.
1O.th.q',1 in Out COI14)

1 11 (q*w aCM Ot..roain out flVMlI)
N'OWuj too Mwve.Aea in, cut fLRICK,

voltf.the.Ite. in SlfI.
to..the..Qqph in oaut Gtrd"O.

-i~ ~~ir (0 3to nc wi-Rtr
cII

Inimreo smeifCtiao of the uw1ars.tw~ urtsa*J

PNoOr.o CLEMt Wthe.yvgh in wt1 7 ,qha) is
Rlestraints full faaact1ma
flodif let uewjy-a
Ef fects CEM removes allte I w* rs madl vwtcee% from t

V9DM " make &Sit wCitv

Proedalre IID OUwe..vert In out vtex.~ Mitooole in Ie..o
ttAe.omii n out vom~) is

ReCstraints full fa'actlOn
Ot"di flee hvae. h.soi
Effects ft verex Is created mid filled wAf the ite" mwi Is

added to the 9-op
Cxceptions JOJrLI - U.. Wcf has reoded tysto copocitya

Proeedure IPftO (theweteat in out metex. Ihews-Wf in out grepl) is
flestaolnts full function

Fi~Return

440 7th Annual National Conference on Ada Technology 1989

ofv$ &Qtvoiq %#WtqsmirqI.4 cul'.me rc)4 v xv4u) mnIf~, Mj

e*:W. ULA mrIWl,1m.Lwtlf. 194SAIL.
ISJOAL,' ltWA0 tJ 1i~1ff 1tnX.W.

If LAJii(3, ISA~rsWllt
t-v41 VI *;l v .41h tint ow. II: . ft. (t.. @Mx 9 IV. 111

$W, te AIMr

hfr~kr)q 0N vil th~ me, 92 in *-A"ft 9 I(AI

"l.164 q41 " 4i 4

clfittt ICU% lot% W MCCIS %20" L 8104% #1* * WtA 14,M11~iW IL
%h qq 1tI. 91.0 (qI. 9 IP qq9l~ht - kv ivfl. I

Ifresi to..

All ."4i'1 WI 9.a~.qIT 1 .41w,. W~n W% W.Wyr 6041 of a
WiwiA .filct go (.*#.-a CA U" L.Ml Of 4 tj ilt it s Al"1 0mon of
t..j.415 in to4 f..'toculw H'eea li-co(to^a ", I'A lp~ts gl 64
f*40%. os hI silt of , W W0 cq vl-Ij 040 a 49t of aiws o1 .fmat1

I#in t' ea41B4 014t of 14t.n fi*W to .^" $I oil Otto".0~ IVI -0)I

UA. 414it 9(.C of~ea W1. 1tc uts tll thiot*~ 1--q fight thVi 4.6.

Iret cftvul

l.tphvte -7c IV$ lt= ft.- e.. lSgic TVy f AUlay is, 640

sI&Wts MY .1te tIC for 410..

Opowts t*WvTa PXL. Itan Chl
E M Pu Y 0 M - 0 . .C t c -

"Al 0491. 1= -s U4,"
MIT='c &iV"#, Me -0a 0441

ItopwiaTIu win iur All UNI.OIRCTED WUOUNDtED UUNIIIAGED GRAPH
IflD:fllntailon Iformation

Grapahical ti19i11t1

(Combined] d boq - Ifuecdt!

to Ada e'c flasoihJe

Sptuiefe d as.

7th Annual National Conference on Ada Technology 1989 441

AtE VI As1 v I f~ 4 tww.- 1 awstow or k q..*Jq4 O~t

~T WO.0.4 004 *-- q4 feom W"s 4lh4.416" 4#"0 INy4 0.40C
TI9~~- ta.~. ;.. *.a.4" 40-R vov *q ooi.-l* t"61. 1"*#- 4th61

sI9tq* uf-0 -*m 1 04 wlw14.1 6.469 0*tq"4. 499 k w
4

qq§4 TV~

a 6 '.11.4 "&4I" 19 .. O* Pt4* 40mw s6I~ OI4 A 16.4 11.61

44.e'04 Oft14 ttIl #Ik40t fit K'"ONOV*At 491ft.4 44 WV4t.I v

TI 4 9'.4~ 1,619 f(WqI4'1 t* I(Il 64t91 94^, aft .6vo1 14 V
.eI4..1114 I(miff vC~!rLh(19t o4w 19IiC k#V %w IJ. 4.41

11rur*' r-

fl~f(CIUNMOUNDS GAR1111cc

r Module,)(tioc __ ls

CMII' P'ARTS TAXONOWI

ADAA PAXAC PARIS *luar.MdAWAI PAR%
DATA O~d1M4T PART As"46%mfCK4m1 PAcli
-DATA 1I*MTTRS Orttttt4IAIM .

*UtC(Njr I flh PARI tI -MA1194ALC(WA'MI

IAL KOPWtOIY iEt rWC(1 - LIDAI(t.UMAIS

-DO A frT.P~

1 1AIAM t & AP.-*"t EoIJC tmA T4I(T1U. tM S "AIOALAW PtAR

: AOMMNC RVZ.SAIS .. 11
ri4r 1

44 7h nnalNaioalCofeene AdaUPA Technology 1989I!

DISCIPLINED REUSABLE ADA PROGR MING
FOR REAL-TIHE APPLICATIONS

Frank Arieo
knd

Anthony Gargaro

Computer Sciences rnrpnratlon
Defene System. UivISion
Moorestown, New Jersey

Summ? u
is compounded by the emerging use of

Many DoD systems have boan developed multiple computers to achieve parallel
using reusable software parts. Conversely, program execution within embedded real-
embedded real-time systems, have been time applications.
developed with a minimum of software re-
use. The inherent difficulties in develop- A significant amount of material has
ing reusable parts for embedded real-tLime beao contributed to the literature on
systems result from critical tLiming con- developing reusable Ada parts 2 . This
straints or dopendencies on processing material has included guidelines and
resources. To overcome those difficulties, paradigms for both design and coding;
an ngressive policy for part reune must however, there has been limited attention
be practiced throughout the software do- to part performance efficiency and real-
velopment lifecycle. This paper identifies time constraints. The exception hs been
issues in writing reusable parts within recognizing that performance enhancing
tie conceptual framework of real-time dependencies upon the individual
programming. A programming disciplino in execution-Lime behavior of Ada runtime
proposed that would be based upon guide- systems must be avoided when developing
lines, paradigms, and uniformity of Ada parts for mission critical computer
runtime systems. resource applicationd3.

Ely Words. Ada, real-timo programming, Thin paper focuses upon issues that
software reuse. must be addressed by a discipline for

reusable Ada programming in real-time
applications. This discipline combines
current Ada reusability programming

Background practices with techniques that, remove soma
of tho program execution unpredictability

The number of Department of Defense that can thwart writing programs for real-
(DoD) applications using the Ada language Limo applications. In addition, tie
is incr'easing rapidly fostered by tie discipline promotes deducing a program's
availability of over 200 base and derived validity from its static text. Programs
validated compilers covering a broad spuc- are designed based upon a precise
trum of computers. Reports documenting specification of the execution time
these applications indicate that many have constraints of the application together
bean successfully developed either using with an understanding of tile impact of the
reusable parts or having yielded reusable Ada runtime system on software reuse4 .
parts. In addition, specific applications
have bien targeted to demonstrate the Initially, the paper presents a brief
efficacy of reusing Ada parts for embedded discussion of the conflicts and
real-time DoD applicationa, namely, the difficulties of writing reusable real-time
Common Ada Missile Packagel. To date, Ada software. The discusaion provides a
embedded real-time DoD applications have context for bounding the issues that arise
not achieved a high degree of part rouse from translating into Ada a simple
because of the difficulty of developing paradigm frequently used by real-time
reusable Ada code that must satisfy hard applications. Finally, the paper outlines
real-time constraints intrinsic to a proposal for introducing a discipline to
deadline-driven systems. This difficulty practicing programmers.

71h Annual National Conference on Ada Technology 1989 443

Conflicts and-Difficultien dependencies to ensure thl opLimal
utilization of processing resources.

Explicit in the design goals for thel Traditionally, the predominance of single
Ada langunge was a desire to reduce the processor computers |han permitted only the
cost of writing embedded real-time logically concurrent, execution of
application software. The language' programs. The scheduling of processing
ability to compose an applicatLon from resources, or processor sharing, among
independently produced voftware implicitly program parts has become an important
advocates software reuse as a significant dimension of design and coding real-time
contribution towards achiaving thin goal. programs. While multiprocesvor computers
Unfortunately, the Availability of a and multicomputers are now commonplace,
programming language, however rich in many applications do not have sufficient
abstractions for software reuse, is resources to avoid some degree of
insufficient to guarantee reusable code. logically concurrent execution. In
Tie In,-' of guaranteed reusability in addition, there are often instances where
particularly evident once adherence to logically concurrent execution may be
execution time independence is compromised advantageous when physically concurrent
by Assumed explicit or implicit processing execution incurs substantial penalties in
resources. In the presence of hard real- sharing data among tle parts resident on
time constraints, execution time remote computers. Therefore, scheduling
dependencies must be reconciled with processing resources in real-time
software reuse, thereby presenting programming will continue to complicate
numerous conflicts and difficulties. These part reuse.
conflicts and difficulties can be
ameliorated only through disciplined Event Synchronization. Event synchro-
programming that carefully legislates nization allows program execuLion to be
against the uncontrolled use of formulated with respect to a consistent
implementaLion dependencies that bound the specification of a part's timing
semantic fringes of the luiguage. dependencies through a uniform abstraction

of time. When the timing dependencies are
Real-Time Software. not predictable, i.e., events are

asynchronous, concurrent execution of a
Real-time software generally refers to part is commonly employed to achieve the

software parts where correctness depends necessary event synchronization for
upon timing constraints over which there correct program execution. Real-time
may be libtle or no programmatic control. applications often comprise parts whose
For example, a part must meot a hard execution is referred to as periodic,
deadline or else it is in a failure mode. aperiodic, or sporadic. These applications
Often these dependencies are associated have requirements for synchronizing with
with controlling or monitoring external differing events, e.g., an internal clock
devices whose successful operational tick, a signal from an external device, or
performance is Lime critlical. These exchanging messages among concurrently
dependencies lead to several execuLing parts.
distinguishing features that may be used
to characterize real-time software. Among Ada Real-Time Model.
these features are concurrent execution,
event, synchronization, fault tolerant In Ada a unified approach to
execution, and low-level hardware concurrent execution and event
interaction. In this paper, concurrent synchronization is specified through the
execution and event synchronization are Ada tasking model. While the model
considered the features that frequently provides potentially reusable abstractions
dominate the design and coding of real- for concurrent execution and event
time programs, which in turn, compromise synchronization, it has been the subject
the reusability of its constituent parts. of intensive debate when applied to real-

time applicationsS. Three key issues
Concurrent Execution. A principal become apparent when writing reusable Ada

reason for concurrent execution is to real-timo parts. These are briefly
decrease the execution time of a program. addressed in the following paragraphs with
Parts of a program may execute on regards to justifying a programming
different processors or may share a single discipline.
processor. Consequently, the partitioning
of an application for concurrent execution Abstraction. The Ada tasking model
requires the careful analysis of part supports a-stractions for the asymmetric

444 7th Annual National Conference on Ada Technology 1989

communication and synchronization among scheduling event. However, reusable parts
autonomous parallel threads of control should not, rely upon a delay of zero to
within a single program. The abstractions effect task rescheduling given the current
can be used to express many classical lack of uniformity among implementations
paradigms that protect shared data and of Ada runtime systems. An implementation
message passing with minimal regard to the may treat this abstraction as a null
underlying processing resources available. construct, and continue execution of the
While this level of abstraction may be enclosing part.
perceived an promoting software reuse, it,
can be a disadvantage when writing parts It has boen recognized that, a program
subject to critical timing constraints,. enclosing reusable parts must exhibit

functionally identical execution when
Disadvantages result, from the transported among different execution

unintentional misuse of abstractions and environments7. A corollary of this would
increased semantic complexity introduced advise against relying upon the
into a part whenever concurrency and functionally equivalent execution
synchronization constructs are integrated guaranteed by the Ada standard when parts
within a programming language. For of a. program are to be widely reutied.
example, timing anomalies can typically, However, even this desideratum cannot
but surprisingly, occur when insufficient guaranto successful part reuse,
attention is given to task activation and particularly among real-time applications
task termination. Thin type of problem may where there is a propensity to exploit,
be obviated by guidelines that recognize language features. For example, in the
the program-wide implications of the instance where two parts are combined from
abstractions. A more difficult problem is different programs, the existence of
manifested when arcane use of the implicit, but conflicting, runtime system
abstractions becomes necessary to program depenlencies would result in aberrant,
commonly accepted real-time processing execution behavior.
models. For example, the partitioning of a
program for distributed execution remains While the prohibition of many
unspecified within the tasking model and implementation dependencies must be
leads to a diversity of execution models included in the programming discipline,
that are not conducive to writing reusable relaxation of the prohibition may be
parts. Therefore, it becomes necessary to essential in order to achieve predictable
adopt rules that facilitate the and reusable execution behavior. The
composition of distributed programs from relaxation would most likely occur where
artificially constructed abstractions or reusable paradigms are provided that
paradigms. stipulate implementation characteristics

based upon formal analysis of the critical
Eventual resolution of these kind of timing constraints.

problems may require specification of
carefully defined auxiliary abstractions Performance. The production of
that complement the existing Ad, tasking reusfe-soft-ware can be achieved only
modelO. Tite auxiliary abstractions would through more intellectually-intensive
be used to coustruct reusable packages software development practices and by
that implement common real-time processing sacrificing some degree of performance
models, efficiency. For real-time applications the

tradeoff between reusability and
Dependencies. The abstraction of pe-formnce efficiency is a dominant

concurrent execution and event issue, especially in the presence of
synchronization into the Ada tasking model scheduling shared resources. The semantic
would seem to remove many of the elegance and versatility of the Ada
transportability obstacles to reusing tasking abstractions may impose both
parts from applications that have execution and storage penalties upon an
traditionally depended upon specialized application that are not competitive with
real-time executives. llownver, when those imposed by a compact rudimentary
critical timing constraints are present, real-time executive kernel.
parts may become dependent upon specific
implementation options permitted by the In many instances, variations in
model or upon constructs having implied performance efficiency may depend upon the
temporal semantics. For example, a delay individual runtime system implementation.
of zero may precipitate an opportunity for However, variations may result from the
task rescheduling, i.e., synchronizing a design aid implementation strategies

7th Annual National Conference on Ada Technology 1989 445

selected for an application. Consequently, language. In this paper, the discipline is
the programming disciplin must provide shaped by Ada, its runtima system, and
sufficient guidance so that strict, tonots for software reuse.
adherence to Ada reusability rubrics does
not overwhelm the actual functional Fundamnntaln.
processing of a. part. For example, a
reusable part. that implements 31. The fundamantals of disciplined
comput,%tional Intensive algorithm required reusable Ada programming for real-time
to perform frequent numeric convarsions to applications adapt, the principles of
accommodate different. numeric types, will Wirth's discipline to programming
be reused only if the conversion execution practices for achieving software reuse.
costs are insignificant compared to Lhe Conflicts between expressing time-
actual computations. In addition, tile dependent execution behavior and writing
discipline should recognize the effects of reusable code must, be reconciled.
compilation techniques that, offer the Reconciliation compromises part
opportunity for variations In parformance reusability to tile extant that only
efficiency. The performance efficiency of limited reusability in achievable in the
using dynamic arrays in unconstrained presence of critical hard Liming
record types can differ significantly constraints. At a. minimum, the design for
among implementations and typifies a the part should be reusable it part
common construction warranting attention reusability is claimed.
and evaluation when used in a reusable
part. The formulation of binary and general

semaphores has been used by Wirth to
A DisciplinedApproach illustrate implicit time dependencies that

may occur in tie simplest of real-time
A discipline for real-time programming applications. While the dangers of using

was advocated in a paper by Nicklaus these paradigms have been cited0 to argue
WirtPX Tihe mctiv .ion for the disuipline for the safety of the Ada rendezvous,
was to provide a straightforward approach their use in real-time applications is
toward analytically verifying tile frequently necessary for nfficiency, since
reliability of real-time programs. In their analogues are commonly supported by
order to support the discipline, the use the processing resource. Therefore, they
of suitable abstractions for expressing provide a pedagogical example of how to
concurrent program execution and apply some of the fundamentals of a
synchronization was deemed essential to discipline when adapted to Ada.
minimize dependencies upon processing
speed. Through these abstractions logical Recent work has indicated that even
assertions would allow the validity of a such classical paradigms are not without
program to be deduced from the program's flawslO unless reused under execution
text with the same assurance as for a environments where the Liming dependencies
serially executed program. Such a are well-defined. Therefore, wary of this
discipline would increase the potential admonition, a general semaphore is
for software reuse. constructed from two binary semaphores by

directly translating (reusing) a correct
The essence of the proposed discipline implementation of the paradigmll to Ada.

is that the reasoning and facilities for The general semaphore is then transformed
real-time programming should be limited into a reusable Ad. part which is
extensions to those supporting critiqued with respect to its use for
multiprogramming which, in turn, should bb real-Lime applications. Finally, the
limited extensions to those used for difficulty of instrumenting the part for
sequential programming. The important real-time use is presented.
contribution of the discipline is managing
the complexity of real-time constraints in Prozramming for Reuse.
the presence of processor sharing. The
discipline requires that processor sharing General tenets for programming
be ignored in assertions of the part's reusable Ada parts have boon described in
computational state and confined to the literature1 2 . In addition, criteria
analyzable timing considerations of for reusability have been defined that
processor utilization, qualify a part as weakly, effectively, or

strongly reusable7 . Weakly reusable parts
Finally, the discipline should be require extensive source modifications and

decisively shaped by the programming have limited application; strongly

446 7th Annual National Conference on Ada Technology 1989

reuxable parts require minimal source would substantially reduce its utility
modification" and harve widespread unless Lte server task type idiom was
application. In this# paper, progranminK nppiroprimtoly optimiz~ed to minimia@s Uhe
effectively reusable parts is omuasixed. norma~l overhead associated with aL task
These ip~rL@ possess it high pragmatic entry call. In addition, thin particular
potetil for reuse. tnak idiom fails to provide st suitable

method for self-termintiLon Of the task,
Blinary Semapho~re. A bintary nemaphore thureby. requirling mom* external action,

to prote-act .critical -regiio of coda may be viz. , x:, abort, to ba employed. The idiom
implemented in Ada using :L trivial server can be modified to enclose the accept
task typo idiomg. Thio following two @LtcmtcnntW within a select statement that
variation"s provide for Lte bina~ry includest a terminate alternative, but thin
semaphore to have either & "1locked"l or would most, likely increase overhead. U11-
. unocked 1 condition initially. Tho dorandinK these limitations Lto abstrac-
semaphore I* constructed i a an abstract, Lion may be reused to construct n general,
type encapsulated in x simple package that, or integer, semaphore.
providesn anl interface specif iciation
reflecting the accepted notation for Outoral SA hore. A general semaphore
binary entmphore operations. A task type in constr:ucte an the following abstract
in reused to achieve the different. initial type encapsulated in a generic package
conditions, using the binary semaphore package. Again,

Lte interface specification reflects Lte
poteke~ 8ter, Semaphoe r Pckm Is accepted notation for general semaphore

type Locked biary Sooophor. Typeoprtos
is ltmitod prIvate; prtos

type Unlocked 11lnery Semaphore Typo
Is10 4prlvate; with IIlnoryS..phoroPcego;

procedure P (Sees Lil~ In LceSI aryeohr 9y~)1erc
proedure V (soe.a Lock 4_:nry Semophere Typo) I ~ p P* 0Semaphore Coun% Typo Is roe*, ()I
procedure P IeOe t In pokgGnrab temophe r* Pockng. template Is

Unlockedi Inery-Semephore Type); type Caner I 3em4eretpIslmedpve
procedure V (Seo. I In proedre o S. In set General Semaphore Type);

Unlocke91d g yt Semphore.Type)l pro4edre V ASe.t In out General Semaphere0 T YPe);
proas JINEN (P, V): Semephore-Errer, InvallISomephere Iagceptlen;

private pri vae.
took typo Uplco~~ay~eehr~p Is too Emery Semephore Packeges

entry I' V, typo Generl Somophore.-Type In
entry VPg reoerd

ed Unlocked Ilnery Ss.phere Type; Mutee I Unlocked Illnary Somaphore*Type;
typo Locked Binary SenophreTp West, i Locked SlnarySephoreTypsj

Is pew unlocked Iey.gohreTypos Count I Semophero. Count TIpo
end Ullnary Soeoephore Package; ao Semap soeCoun%._Typ'Let;
pock"*g ho~y Binary, Semaphore Package to end record;

took body Unok~Snr.oehr yeIs end General Semaphore Packagoe" ate;
11% peckoog.~ bodyGneral gemsphore Package Te" late Is

oopw procedure P (Same IIn out Generel-Somephoro Type) to
ecopt P V1 "girt
accept V-P; P (Sem.Ute,);

and lop so"aCount 1K 1eee.Count,-1
en . lca ~ay.,eihrjye If Some-Count (* Ohen
procedure P "Som I In V (oaUte)

Lecked.SlnsrySoasphoType) Is P (Se aeit,)$

SieoS PI V (so"a.Uutoex);
end PI exception
procedure V (Some IIn when Constraint Error a)

egnLockedll1nery-lomasphorejype) Is V (Soffaelut;i .
b"Iftrole* SemophoroError;

Someo~ . V; so# P1
end V1 pr9oedre V (Some t In out General Somephore-Typo) In
procedure P (Some aIn Nbegn

be~nU"locktodIlnarySomaphoeType) to P (Some.Uuteox); 1
beginSee.Count to Seme~Count,

Somep PVs If Somo.Count- (a 8 then
end P; V (Sema.welt)j;
procedure V (Some In1 *190

Unlocked SlnorySemephoreType) Is V (Seme.mutox);
begIn end It;

Somto.V.Pl excpt on
en V en Constraint- Error a>

end SlnarySemphore Package; V (Some.Ivutex);..

The above package illustrates, upon end V; rieSmphrjrr
initial inspection, a reusable 1I notI eahr on~yete
implementation for binary semaphores. "if l.no Inva~ Somphor e;ntTota

However, it is likely that for real-time edIf;
applications, performance considerations end CeneralSomaphore.Packaue..Jeplate;

7th Annual National Conference on Ada Technology 1989 447

The above package Is a reusable and enable parts to be optimized for minimal
safe implemenatLion of the general execution time or economical utilization
semaphore. It provides a semaphore of storage. Understanding the relative
nabtraclion bhat, may be used to create efficiency of programming constructs is
semaphores of differing capacities, i.e., important. A construct that, contributes to
each semaphore may be reserved by . Lte generalization of a part, may incur
different number of clients. The formal unaccopLablo execution Limo or storage
generic parameter, Semaphore Count Type, penalties for real-timo applicaLions.
specifies limits for both tio number of
clients that may reserve the semaphore, While a programming discipline must
Semaphore Count Type'Last, and for t* not. eschew performance efficiency, st,riv-
number o? clients that may be queued ing for optimal performance of a part does
waiting to reserve Lte semsphoro, not guarantee its successful reuse for
Semaphore Countj Type'First. Through the real-time applications. Finally, i disci-
use of a -goneral semaphore, acces to a pline munst carefully delineate between
shared resource may be controlled by programming optimizations and codo optimi-
restricting the number of concurrent, :ationn when striving for performance
clients. When Lite semaphore lia reached efficiency. Code optimizations are likely
Its specified capacity, subsequent clients to compromise part reuse and are inappro-
are required to wait unil a reservation priate Lo a discipline.
is released. For example, in the following
code fragments two semaphores are Refined General Semahore. A refined
declared; one is equivalent to a binary goner&J saaporelM ad'-sses some of
semaphore and the other allows a maximum Lite criticisms associa d with an exact
of three client parts to reserve Lte Ad& transformation of Lhe paradigm is
semaphore. achieved by improved utilization of the

Ada tasking model. The semaphore is con-
subtype Binary Count Subtype sLrucLed using an abstract type encapsula-

Is Inteer ranoe -UMa Queue Slze.,t; Led in a generic package using an aquiva-
packae ine1y S1na phore rctaoe Is mw lent interface apecification.

Cnoral S$*phr:-?.ckga TmIsato
($eoaphr -Count Typo a) generic

Binary Count-Subtypo) typo Semphore ContTypo Is r ne
wee Stnary.So.ephoroeacage; akpoe Ad Sophor o Packge Toate In

typo Cneral So~ephor*_Type*is limit" private
Sinary SaapIore a ConeraiSemephor..Type | proc ure P (So. " In General Sephore rye) 1

owbtyp. Quarternary.CountSubtype proetMurE V ($, V In Conoro.$phoro Type)
Is Integer rnOe -Me.KQueueSize..3 S.o-phere.Error, InvalidiS.mephere 1 oacopkio i;

privet*pockoge quarternary.Se.phoro.Pockage Is now tor k type Is

ceneral Sophore Package Template entry PI
(Sonaphor* Count Typo a) entry VIquarternary- Count- Subtype) and enerl SemaphorV;e

we. Qurtornary S~apheroPckago end Ada Seap6fpore Package To"Plate;
packes body Ada i.omphoro Pacliag.T6Jplat Is

quartornarySopophore : conoral.aephoroType; task body Ceneral Seaphor- Typo Is

From a performance efficiency Counti So _.pIor._Count Tts..
perspective the implementation may be blgn a. S..ap ore Count l.Last.
unsuiLtable for several reasons. The most.
compelling reason i& the necessity for twoslt
t.sks to service the binary semaphores; ahon Count) S a>
even in the presence of task accopt P do~Count :a Count - 1:

optimizations, the efficiency of the nd P;
abstraction is likely to be compromised, or
Also, it is dubious that the ability to occepL v dobegin
"inline" procedures will necessarily Count in Count • I;
improve efficiency given that the exception

subprogram bodies are nontrivial and rely whn Constraint-Error > ,...
upon exception handlers to control misuse end roies $ophor*_Errorl

of the abstraction. end V;
or

terminate;
Program.inK for Performance. end select;

oxcoption
whnSomaphore Error =>

Prograi-ming practices to increase nul ;
performance efficiency vary with a end,
particular language. These practices on:nd oop;

4eneral Semaphore Typoh

448 7th Annual National Conference on Ada Te~hnology 1989

discipline. Consequently, an informal
11rmdwr* P (so 1 In G.ner.I S.per* Typo) I* approach 41ma, introduces a greater degree

s.-..r of predictability into the timing behavior
P Is of an executing reusable part must be

r .- r. V (Som , In . .rl s...ph.r .) I developed.

M Intuitive in the approach, iN.. d V; minimizing the interaction of the temporalIen In te.pher. Cevrmi1~p. . semantics that may influence execution
rei.. nV8ll4 S,30"phre; behavior. Simplifying these interactions..-d Iff by carefully restricting concurrency may

ed Ad. Semphere Packl eg Tetlte| often be sufficient, to formulate logical

Tite most important aspect, of this assertions that. predict, execution
refinement is the elimination of the task behavior. This requires that the critical
implementing the binary semaphore used to timing dependencies for a part be
serialixe access to the semaphore count,. accurately Interpreted in% terms of a
Tito synchronization guarantee of the part's execution behavior. For example, a
rendoavous affords a straghtforward general semaphore should blo k the
alternative for protecting the logical execution of a client part only if tthe
consistency of the semaphore count. uemaphore cannot be reserved. If it in not,
Consequently, performance efficiency with possible to guarantee this, then the
respect to execution and storage may be potential delay from any additional kind
improved. Furthermore, the refinement of blocking must be predictable for the
appears to simplify reasoning about part to be reused.
execution behavior particularly with
respect to blocking conditions. The eventual acceptattce of a reusable
Unfortunately, by using the rendezvous to part, such as the above generic package,
serialize access to the semaphore count, for hard real-time applications will
te ability to limit the number of clients frequently depend upon its effect on the
waiting for tme semaphore ian been application's execution scheduling
relinquished. As a result, the procedure requirements. Normally these requirements
bodies of tme semaphore operations are mandate that the most, urgent processing
trivial, allowing them to be inlined. Time within the application be completed on
triviality was achieved by promoting time time with a minimum of delay; nmaely, tihat
exception handling for detecting semaphore execution is never blocked uness
misuse to a single accept body within the deliberately self-imposed, e.g.,
server task and allowing an exception to processing has been completed and must
propagate to the client part. It should be await some event. Urgency necessarily
appreciated lmLt detecting semaphore introduces the notion of priority.
misuse in only illustrative and is not Priority in Ada is conveyed through the
included in the original paradigm. (One of use of a pragma and is discerned as a
te dangers of this paradigm is its lack potential impediment to part reuse.
of protection against misuse in a hostile Consequently, only through disciplined
environment, e.g.O arbitrary V opera- programming derived from proven scheduling
Lions.) theory can the use of priority be

justified.
If the accepted notation for sema-

phores is unnecessary, the syntactic Because formal scimeduling theory for
camouflage of the procedural interface can applications distributed among
be eliminated allowing the task entries to multicomputers remains an area of ongoing
be referenced more efficiently. No research, scheduling in commonly
practical loss in reusability results restricted to applications that execute on
since a procedural interface may still be a single computer. Therefore, it is in time
obtained by renames statements for each context of a single computer that a part's
semaphore. effect on scheduling is reviewed with

respect to time programming discipline.
Programing for ReaL-Time. This is not necessarily invalidated when

the context in extended to include
Adapting a reusable part for real-ime multicomputers.

applications presents a challenge. The
paucity of formal techniques available to Priority Inversion. A deleterious
specify the intricacies of time-critical effect of tie d tasking model on
execution preciudes the confident and predictable scheduling execution behavior
rigorous application of a practical is tme potential for priority inversionS.

7th Annual National Conference on Ada Technology 1989 449

Priority inversion refers tu the t.ondition explore regulatory use of the tak model
where a lower priority task is executing coupled with explicitly defined runtime
and is preventing (blocking) the execution system implementation dependencies as a
of a higher priority task. a ch lime a practical mans for programming reusable
higher priority task calls an entry of a parts for hard real-time applications.
task that may have been called by a lower Therefore, it is discussed as a
priority task, the opportnity for significant, contribution toward
priority inversion exists. Consequetly. a. disciplined programming of Ada tasks in
reusable part, using the tasking model muNI. the context of the previous semaphore
avoid precipitating priority inversion In examples. The discussion is incomplete and
an application. In particular, rendezvour should not be Interpret ed as an
engagements require careful analysis to authoritative treatment of the protocol.
ensure that the first-in-f irst-out. It is provided to illustrate that only
protocol queuing of entries can be through formal reasoning about critical
neutralized. While paradigms using entry timing dependencies can reliable
families can circumvent this protocol, the nbstractions and paradigms be devised for
attendant increase in execution overhead effective reuse.
may limit their rouse In real-time
applications 13 . In addition, the inability PrI'or y CIt iling Protocol. The
for a part, to change the priority assigned priority ceiling protocol ansumes the use
to a task prevents expediting the of binary semaphores to synchronize access
execution of blocking tasks. to shared resources or critical regions of

code. It minimizes the time a higher
Reexamining both versiono of the priority task is blocked from reserving -

general semaphore shows that thero are no semaphore by lower priority tasks. This
safeguards against the occurrence of Lime is bounded by the maximum time a
priority inversion when reused by clients lower priority task may reserve a
of different priorities. Th I is semaphore. In addition, it guarantees
exacerbated by the fact. that. when a lower avoidwnce of nontrivial forms of deadlock
priority client is blocking a higher in the presence of multiple semaphores.
priority client, the code protected by the
semaphore is executing atL he lower The implementation of this protocol
priority, thereby reducing any beneficial requires two important, conditions to be
effect. from assigning the semaphore tasks satisfied. The first, condition is that
a high priority. Furthermore, without when a task blocks the execution of higher
analyzing the client tasks, the blocking priority tasks from reserving a semaphore,
Lime Is unpredictable, this task should execute at the highest

priority of all tasks it currently blocks.
Rgulting Task Interaction. An The blocking task is said to inherit the

approachxi-minimlii priorty -inversion, priority of the highest blocked tak. The
consistent with Wirth's discipline, second condition is that a task may
strictly regulates the interactions reserve a semaphore only if it is
between client and 'server tasks. Wirth's executing at a higher priority than the
discipline focused upon a specific variety highest priority, i.e., Lite ceiling
of server task, vim., device drivers, priority, that may be inherited by the
based upon simple utilizaLtion analysis. tasks it preempts. The two conditions are
More recent researchl 4 provides evidence sufficient to achieve a prioritized
that when these interactions rigorously ordering of tasks that minimizes the time
conform to analytic scheduling algorithms a high priority task is blocked when
the blocking of tigh priority tasks for a attempting to reserve a semaphore.
simple class of client/server tanks can be
successfully minimizvd within predictable 1. is clear from Lite Ada task model
bounds. The algorithms require that the that those two conditions would not b*
overall timing constraints of an achievable by the implementation of the
application are subject to the rate binary semaphore presented earlier. The
monotonic scheduling theorems, i.e., tasks priority inheritance of the rendezvous is
with the shortest execution periods are limited to that of the client, and the
given highest priority, execution priority of the code protected

by the semaphore is static (unless it is
One result of this research, the in the body of an accept statement).

priority ceiling protocol 5 , is Consequently, different task idioms, that
particularly relevant to disciplined do not, preclude meeting the two
programming. The protocol provides the conditions, must be used for client/server
necessary understanding for continuing to interac.it-tis. These task idioms must

450 7th Annual National Conference on Ada Technology 1989

adhere to specific rules that reduce the, Thto use of these idioms in themselves
nondeterminism of task execution. In Rddi- do not. guarantee that. Lte above conditions
Lion, these idioms may assume an explicit are satisfied; they merely cont.rol task
dependency upon a "frion~dly", buL valid, intaractionl Us that blocking of nog-server
Imploentation of tht Ada- runtime oystem tasks becomes predictable when the
with respectt Lte execution freedom that, conditions art satoisfied. Theo ttficacy of
may govern tasks having nto specified prio- Lhe idioms depends0 upon the Ada, runtima
rity. system ens1uring tha~t the conditions are

"MUtied. Tito f irstI cofiditio: iv
Thto rulas are briefly stated in terms ac,:omplished by requiring that before x

of client and server tasks. A server is, client tank. isrjlacod on n entry queueo
in *&nence, r. "emaphurst whone entries for a server tas, it must be executing aL,
control access to critical regionst, and a aL priority higher than Lhfi coiling
clienL is s1imply P. non-server task thaL priority of any server executing directly
call* at least one server task. or indirectly for another clianL. Theo

requirment results in queuing of only one
1. Each non-server task must be client for a server, thereby eliminating

assigned a priority consistent the effect of firsL-in-first-out queue$ in
with rate monotonic theory. favor of a single prioritized queue of

2. All server tanks must be assigned blocked tasks. The second condition in
either no priority or n. priority nccomplished by allowing server tanks Lo
higher than the hight.t priority be rescheduled an required by Lte set. of
non-server task. tasks that are currently blocked. Theo

3. Each server task must comprise a rescheduling is legitimate only whet' no
single continuoust loop that en- explicit priority is assigned to server
closes an unguarded select state- tanks (rule 2). In this instance, the Ada,
mont. standard does not prohibit the runtime

4. Thc select statement must enclose system from scheduling a server task to
only one or more 3accept state- effect priority inheritance.
ments and a. terminate alterna-
tive. Apjlyin Ceiling Rules. Applying te rules

5. Nested accept statements must not of Lte protocol to -the binary sematphoret
be used. example, a reusable package is constructed

0. Conditional %~nd timed entry calls as follows:
must not be used.

senee ic
The application of these rules result pihproBinar Crftpho FRe mpiatent

in restricting an application to the fol- yp minit ~er e r-Is 1 imited priveto;
lowing task idioms if priority inversion pro edwrO pendy7 1S . n inarysmeph re.Type);
is to be controlled: took ypoSnrS~ehr Type iss

entry Pn~
tr typo Server Too% -Type io eo" Binary Somephore. ype;
entry Crit i-eRoion-1 C..) e n ariy Semaphore Peckoage Teesustel

pachegep b.j, Binary Somep o Pachag.Tep,.te Iis
entry Crits cmloRgion-n (.;took body 8niet eephore lyoo is

q0d Server Tush Yypo; "!Liek zoy Server. To skType Is
,loop accept P_ and .V do

*el ect Critical-R#9ion;
accept CriticaIRegknl1 C... do endi Pnd.Y;

end Critical-Region-1; ... ter"inete;
er 0e4nd keec;

accept Cri tical -Roion-n C... de4 end e;
end 112arySeephore rype;

endi CI ticslR-Rgion-n; Cedur * -nd-V (Sae i aIn BInsrySomaphor9_Typo) io
or t i

terminate; Seine.P ond V;
end gelect;' end Ps;n&V;8end lovis; en nd *isy-SespherePchage Tpsto

end Server -TakTyp*; The functionality of tile
took type Nons~rvorTaok Type Is implementation is similar to Lte earlier

pregee rvorI1 C...); version; however, the two traditional
teok "edy Nonsorver.Teeh. Type Is semaphore operations have been collapsed

..-- I Non-aerver Is client task. into a single operation that is explicitly
Server-ash..2.cr Itical Region-I)...)

end HonServerTesh.Typoe;

7th Annual National Conference on Ada Technology 1989 451

Specification for a Disciplineassociated witl: th1e resjource Lo be
protected, I.e., the critical region. The disciplined approach discussed in
Consequently, progrnaing of critical t.he preceding section demonstrates some
regions would differ. For exaple, t. difficulties of developing reusable parts
following program-dng achume required by for real-time applications. Adapting a
the original vursion; reusable part to satisfy hard timing con-

atraints may not be possible. Conversely,
t.k 6"Y TNmA. Is took 6*41 70 2 If L.e reuse of a part from a real-time ap-
boin plication may |e affectivo'only whte rous-

' C r &GI " ad in applicatione that suffer tle same
V (Stm.); v (tWA)l Liming conatraints.

Ta k ed To,.,.e!

would be changed to: The specification of a programming
discipline that maeliorates tle difficul-

to.k b*4y Took I I. t..k b4d Talk : to ties is essential. The evolution of such a
eOn begin dincipline cannot progrens unless there isP eon V (Se*e)i I ad 4v (S...); a underlying basis a practice and theo-

etd YTok 1; ed TsIs. 2: ry. Todmy no such basis exists since real-
time ano reusability technology are di-

This reduces the freedom with which stinct crafts within the programming com-
Lie semaphore can be used, viz., the =unity. To 4stablish the basis for a die-
clilents cannot use the semaphore to ciplino, a gradual and systematic transi-
protect arbitrary critical regions. IL is Lion of these technologies into program-
apparent that allowing such freedom in not ming practices is necessary. This becomes
conducive to analyzing tie predictability practical only through formal guidelines,
of task execution uld, therefore, proven paradigms, and uniformity criteria
qualifies as a potential rule that would for Ada runtime systems that sustain the
be included in a programming discipline, guidelines and paradigms.

The construction of P. reusable package Cuidelines.
for the general semaphore becomes
untractable using tlhu priority ceiling An example of informal guidelines that
server task idir¢,. The guard on the select are consistent with an approach to disci-
alternative of the refined version plined programming has been promulgated in
contravenes rule 3 and must be removed, an Ads reusability handbooklO. These
otherwise bounds upon blocking time are no guidelines include the fundamentals for
longer predictable. Its removal invites developing reubable parts. While the
reconsidering the original version of the guidelines do not address developing parts
general semaphore using two binary that are subject to hard timing con-
semaphores to protect the count reserving straints, many contribute to an awareness
Lhe critical region. Because the integrity of Lite temporal implications that compro-
of the count is not guaranteed outside of miss part reuse.
the server task implementing the binary
semap.ores, the call to the server task Developing and using these guidelines
implementing the queuing semaphore must indicates that it is unlikely that empiri-
now be enclosed in the accept statements. cal guidelines can be formulated to re-
The result of this revision precipitates spect hard timing constraints. However,
self-imposed deadlock that cannot be specified guidelines can result in pro-
precluded by the protocol. gramming parts where reusability has been

moderated with regard to performance effi-
Only by increasing task interaction is ciency and execution criticality. For

it possible to imitate the functionality example, a guideline restricting a sub-
of the general semaphore using the program supplied as an actual parameter to
prescribed task idioms. This clearly a generic instantiation from use outside
reaffirms that the general semai :re is an of that generic unit would be applicable
abstraction oriented toward time- in the context of the generic binary sema-
independent concurrent execution, whereas phore package.
the priority ceiling idiom emphasizes
predictable synchronized execution sharing Paradigms.
a single processing resource.

The derivation of paradigms that can
be reused within real-time applications is
essential to advancing the discipline.

452 7th Annual National Conference on Ada Technology 1989

Paradigms should synthesize related guide- The above paradigm requires that each
lines to comply with formalized timing critical region include %n additional
constraints. Without, Lte paradigm, Lte parameter to restrict its rouse to the
individual guidelines might possibly ap- binary semaphore package. Thin necessitat-
pear counter-intuitive. Thto value of such ad a minor change to the binary samaphore
paradigms is evident, from the discussion package.
on priority inversion. InI this insttnce
Lte server task idiom is the derived para- In Lte near term, the use of paradigms
d 1gm. may be Lte only practical means for

deaveloping partitioning strategies for
Theo discipline should include the ral-time kpplicationso that must be

reuse of matm-paradigms to support real- distributed among multiple computers.
time applications. These paradigms are Paradigms such as those derived from
used in Lte construction of paradigms that virtual nodasl7 place sPecific
comply with formalized timing constraints, restrictions upon Lte locality Of Parts,
Alternatively, they may support, the use of thereby extending the programming
a specific guideline. An example of a discipline into more global concerns that

01e1ti-pa~radigm would be a generic package have been left unaddressed in this
that, ensured a subprogram implementing :L approach to disciplined programing.
critical region is reused oa'ly within a

s pecific context. An outline for a MetD.- Uniformity.
Paradigm to accomplish this reuning Lte
binary semaphore package is as follows: A prevailing maxim when programming

Adal reusable parts is to avoid
packang. Crit~ico.Region-Paeeoi dependencies on runtime system

type Region Cuord-Typo Is I ited privet.; implementations. For part reuse in real-
proedwro A'Crltictge time appJlitons Lte strict adherence to

Prc (Rogion_'b:ardq 1. in oon-Guard Type);I thin maxim must be relaxed because of
wIth precodvro Critical Region application timing constraints. Critical

(Region -Guard I In ReiGuard Typ*)i tiig osraints can be a~uived only
pacag Emry S~~por.acmgo~o~plteiSwhen runtime system implementations

wd *inary,_S9mphrie ckeMogoepats conform to peilydfndsemantic
Unsafeoua 1 aceptionj inerrta~tions of Lte Ada standard that
prnion Raio* Unsafe Use, return Boolean; lead to practical ral-time execution

typo Region - yp. Is (Won Critical, Critical); models.
%Ylte Guard. Type

(G.r : Region-Type :u Non-Critical) Is
recordr Theo priority ceiling protocol is a

case Guard Is convincing example for programming
weon critical a) rual at ae pna"redy
ill)rual prsbsdUona"redy

Wheus NnlrItIcel implementation of the runtiDe djystem. The
Unsfe I Boolean to Raiao-Unaafo.Use; example demonstrates that iiL parts are to

end ce;berue inara-ie ppiaon
end rec:od;berue inara-ieapcto,

typo Region~cuardType Is where priority inversion must be bounded,
record eednisuo herniasse aRegin Guard i Guard-Typo; dpnece pnterniesse a

ereo rd; be used to program effectively reusable
end Critical ReI oPac6ag1 parts. This warrants a programming

packag od Riti-al*Regio Pagei discipline that,, while legislating against
feuBion leaan z ae; eunSoon uncontrolled use of implementation

1,1,n Saethn dapendencies, is sufficiently flexible to

.retvrn True; promulgate controlled use of Ada real-time
ole. Unaf Uo models. Controlled use implies that
aic UI f ese uniformity criteria be established for

end nols ns; Uo runtime systems. The discipline would
procedyre ACrI iescal-Roolon ... , require that the reusability of a part be
package bod~y Binary-Seoephore Package Template Is qualified with respect to the uniformity

toak body SinsrySomaphoroayp9 Ia rtrastsidbs utm ytm
bee~ intra aife b u~m ytm

.p For example, a part that must tolerate a
aeleact SoaeErrecpinmgtrqiet,

acCept P_and_V do SoaeErrecpinmgtrqieta
CrltIcal-Region the runtime system guarantee the execution

(Region-Guard Typo' (Region Guard a> of tho exception handler for the frame
en uard..TypoT (Guar W) Crtical))); the.t suffered the exception. Consequently,*nd P~ndV;reuse of the part would be qualified by

end inary-Soaphore -Package; this requirement.
end CrItIcalRogIonPackage;

7th Annual National Conference on Ada Technology 1989 453

References
A corollary in tht.t all reusable parts

constituting an application must depend (1] McDonnell Douglas Astronautics Co.:
upon the same or compatible uniformity Common Ada Missile Package (CAMP),
criteria. Thin would ameliorate the Toch. Report AFATL-TR-85-03 (May
potential problem that culrently exists 1086).
when parts with conflicting dependencies
are combined. Conflicting dependencies (2] Trac, W.: Ada Reusability Efforts
become detectable since the discipline - A Survey of th State of the
would require the assertion of uniformity Practice, Proceedings of the Fifth
criteria for each reusable part. Annual Joint Conference on Ada

Technology and Washington Ada
Leveraging the Ada runtima system to Symposium (1987).

program reusable parts for real-time
applications is expected to increase. (3] Gargaro, A. and Pappas, T.:
Initiatives such as the International Reusability Issues and Ada, IEEE
Standards Organization's Uniformity Software Vol. 4, No. 4 (July 1987).
Rapportaur Group are evidence that
uniformity of runtlme systems will evolve (4] U.S. Army CECOM/CSH: Analysis of
in time to support the objective of the Impact of the Ada RunTime
disciplined programming. Environment on Software Reuse,

Interim Report (September 1988).
Conclusions (5] Barnes, J.C.P. et al: Proceedings

of the International Workshop on
Ada promotes many of the programming Real-Time Ada Issues, ACM SICAda

language practices that Wirth perceived Ada Letters VII, 0 (Fall 1987).
when proposing a discipline for real-time
programming. This paper has borrowed from (0] ACM SICAd. Ada RunTime Environment
this proposal to argue the necessity for Working Group: Catalog of Interface
extending the discipline to construct Features and Options (December
reusable Ada parts for real-time 1987).
applications. In addition, it, has
emphasized that the desiderata for a (7] Computer Sciences Corporation: Ada
discipline comprise guidelines and Reusability Study, Tech. Report SP-
paradigms that rely on sound theoretical IRD 8 (August 1986).
principles and improved uniformity of Ada
runtime systems. (8] Wirth, N.: Toward a Discipline of

Real-Time Programming, Comm. ACM
It is apparent that extending the 20, 8 (August 1977), 577-583.

discipline to increase software reuse
among real-Lime applications offers a E9] Ichbiah, J. D. et al: Rationale for
challenge not only to tho fundamental the Design of the Ada Programming
principles of the original discipline but Language, Honeywell Systems
to Ada. This paper has provided a Research Center and Alsys, Inc.,
perspective on the scope of thin challenge (February 1980).
by suggesting a proposed discipline. (10] Kotulski, L.: Commnts on

Implementation of P and V
Acknowledgement Primitives with llelp of Binary

Semaphores, ACM SICOPS Operating
This work was supported in part by the Systems Reviews 22, 2 (April 1988).

U.S. Army Communications and Electronics
Command (CECOM) Center for Software (11] llemmendinger, D.: A Correct
Engineering (CSE) under contract number Implementation of General
DAABO7-85-C-K524, Task 7067-34040. The Semaphores, ACM SIGOPS Operating
authors are pleased to acknowledge the Systems Reviews 2, 3 (July 1088).
contributions to real-time and reuse
issues gained from attending the Real-Time
Technical Interchange Meetings sponsored
by the U.S. Army CECOM.

454 7th Annual National Conference on Ada Technology 1989

[12] St. Donnis, R. J.: Reusable Ada
Software Cuidelines, Proceeding" of
the Twentieth Annuml Hawaii
International Conference on Systems
Sciences (1Q87).

E13] U.S. Army CECOM/CSB: Real-Time
Requirements Annex to the Adt.
IteuNsbility Handbook, Interim
Report (September 1g88).

(14] Software Engiseering Instituta: An
Overview of Real Time Scheduling
Algorithms, (June 1988).

[1] Coodenough, J. and Sh, L.:
Priority Ceiling Protocol - A
Method for Minimizing the Blocking
of lligh Priority Ada Tasks,
Proceedings of the International
Workshop on Real-Time Adn Issues,
ACM SICAda Adia etters VIII, 7
(Fall 1088). Frank Arico is an Ad. specialist

with Computer Sciences Corporation. lie
[10) Computer Sciences Corporation: Ada has been s principal contributor to

Reusability Handbook, Tech. Report several Ada projects, including one
SP-IRD 11 (December 187). directed toward the evaluation of Adareusability technology.

[17] lutcheon, A. D. and Welling, A.

J.: The Virtual Node Approach to Mr. Arico received a MS degree in
Designing Distributed Ada Programs, computer science from Temple University.
Ada User Vol. 10, No. 1 (1080). Ill is a member of the ACM, SICAda, and

the IEEE computer society.

Anthony Gargaro is a lead scientist
specializing in the use of Ada. for
defense systems. During his tenure at
Computer Sciences Corporation he has
served terms as Chairperson of the ACM
Special Interest Group on Ada and as a
member of the Federal Advisory Committee
for Ada. In 1Q83 he was awarded the DoD
Distinguished Service Award for
contributions to the Ada Program.

Mr. Gargaro graduated in Numerical
Analysis and Statistics from Brunel
College, U.K. lie holds the ICCP CDP and
CCP, and is a member of the ACH SIC
Board and the British Computer Society.

7th Annual National Conference on Ada Technology 1989 455

The Morehouse object-Orienttd Reuse Library System

Acthur M. Jones, ph.tD
Robert c. Bozeman, Ph.D
William McIver

Miorehouse college
P.O. Box 131
Atlanta, Georgia 30314

motivation far this research.

This study ot data Padsl$, library Mtatelles and
:ftqliftsllIfl eirtonmets vassPrinciPallr InfluenC~d by th
desi:Rto accomate" infoation; wper't nnt to softwoare
pt Ad Ie (rce.s by which the itr doeveloped.

Abel ~c Thet coupling of library managoment with configuration
management reflects an assumption that the utilt a

As & partICIpant In the Ads Poeut# and Nttrie, *@earch arce reuslirarya imleion wh:ich captur. and
must 1eybaiYuo the appication of soundThi .inalooent, Wnormatioll, Cessunkceliona and Computer principles of configuration management.

Sciefce IASAXICID, the "orebouse Coll414 Software Group has Thsfaeoki & ntaidocntto cem fr
coapeted two tasas A atudy af th. appropriat eness of Ti rmvr sagnrlie raiain shm oa ver41 database models for supportn reulabllity tol In reuse libraries. It provides a tramavori from which many

current ~ ~ ~ ~ ~ 1 an:uur1%erae.rIrmig nirnmns he types of libraries - large or small. ptiblic or privlte - may
development of a conceptual model of an eae ble be described.
Integrated software development environment which utilizes a
commo101 object-oriented database sub'ytm The
Object-oriented Database model has been gaelted' a thep eerred Mo~. lorehouse College io currently 1.2 Library Attribatea

mpl ment ng &.breuse h'n liray sse sng eit The contents and use of one library may Vary rastly withObjet-oiened ataasetecnolgythat of another. One library might be a large. national
repository of part descriptions, for geneoral, public acces&.
Another might be a large, yet local company repository
Consisting of both parts and their description$ for use In a
propritary project. While the latter library Is private,
any numlber of parts may have been Imported fron otherlibr aries. Thus,. high degree of commonality among
liraries should be gought.

As seen above, reuse libraries may be classified In term. of
a number of attributes. several major attribuites are
onuaerated below.

1.2.1 Site -1 LIBRARY IK4AGMVIT ISSUES The SIRe attribute represents ti,. number of parts contained
1.1 Intrcduction In a library. The purpose of this attribtet Is to providethe user with Information which would help determine aThe desOf oftwre ystms fom xising search strategy for using the library.* This attribute bearsTeIe ofbuilding sotsesses fo xsig directly upon the mannsr and speed w th which a user maycomponents Is very old . perhaps old enough to hav: been navi ate throaugh the I brary. ror eampe user might notreognized by babbage. As a result of recent research, ant for a *Ahotgun' search stalegy whenp" acsing I ibraryhowver th cocep ofreuabiityhas evolved In scope to w ich contains a very large number of parts.Include the knowledfe gained during a software development
life Cycle As well as the software Components themselves.That It, curienc opinion emphasizes that reuse archivesshould capture *proces aOng with *Product*. 1.2.2 Farts Domain -
Some researchers have predicted that theepotential dividends The part domain attribute Is a list of tb. classes offrom the Investment In development and know-how io muchgreater than that fro tothe softvare components. This, inPit 4Of enormous technI barriers toteipenttn
of A practical reuse repository, was tthe ompeanptlling

456 7th Annual N&4!onal Conference on Ada Technology 1989

:oitvato pact% contained withIwA the library (*.I. ,ra.h ics.
amflttetieflabCtC.I LIWArae MAY be liwngiv 11(multiple A SINGLC LCVCL.MULTI-DOMAIN LIRRAR'Y

dotain fopsitoties. A 000411% cisoitatiens lis would be
.toced wi th evth %lialy and shouald be derived from A
standard4 sot of csica@Atriljuti I and 21. 14

R CA!AH, -*--.

LCAC NULTIC I. SMAIN LEVE DOMAINUAA

: E 14 ONCLV

IULK iUFroAj~t LEVEL DOMAIE LEVE

figurel 1. tar Stuctu.

Aiur 4.T-LVL A IGL muli-l Nl s Iinge-oAinlira

COMUNCAT3N CoApetenss

Compltenes is te estnt o coveagCOoMinfImCtioIthS
parts in e ARicARClibraryconanLhscnb

expressed~~~~~~~~ intrm fth reec o beneofifrmto
in ~ ~ ~ ~ ~ ~ ~ ~ ~ PIA each1 ofteprt'ifrmto atgre. rL

LbrrEVL l rbbl edt atlgetecotCmlt
parts Dhil th0otwdl0acse irrsmgtol

conBaiK partMTI AIosto uf in orcnutn Nti1
esarchem.E /0 s h em tC orfrtotern fa

1te. rCnkpletfiuess 3..rdi)

r7the Anua Nationa Cofref one Adaenc Teholg 1989nc 457norato

C00AWNKATONSAorganization iluce $1.

~ZMAV 5(ACN CV(LWIDE AREA ARI1 tN N(TW0NIC

A.EO PRIVATE ORAN~tIZAION

ICCI I__tm
I --

PATCOMMUNiICATIONdS GRAPHICS

ourT. Octr.

63 -AVAILAILC INFORMATION4

E p - UNAVAILAWL INFORMATIONt PROJ(CT I PROJCCT 2

figure S. Part components.

1.2.4 scope -

heScope attrib'ute describes the range of users which can L, ACRUSELIBRARY
ath the libraryt provide Services, Scope supports the
notion of lre whch are globally publie or privte a

wall as that of libraie I hich are ubi c l~ fvat. within
acertain level of 1 netw~ork oa. of natanc* an 1.) Library Parts

organisation may posse libraries which It dee public only *fn a t tob hefnaena.ctaoudunto
within the Otisanititon. it may alo decar othe fudmetl deflie unitCC

librrie tobe rivte o crtan goup wihin the library. A part contains soe or all of the Products

c rested during the software develo ent life cycle phases of
a software component. in addtion. a p rt Mar have
attributes stored with It along with Its ra Iationsh pa to
othor parts 1231.

The Ad& $*usability Guidebook suggests a comprehensive list

458 71.h Annual National Conference on Ada Technology 1989

of Information 4Catgdgie And Associsteld ata elements that
&%egli be stated uptn evr ~nn I4f inclusion In a ee~~libraty [.-)I. % Pact&Iat ititj is oa tellass twonm nt Imptsd. e.1. 'ompilqf. toolS. p,(ilphtfel,..

catier 9e0sability Ptc Is
MAT MCAUifli01 Other categories at Infatuat~ion iAclude oisclaiinels.SaftvAte support. ?4lscellAAeo-us istfuctiona. and mtedia.

TItlo
Typeof: raft, -cde 5cai gn. 41C.1
Typ I rn C on 1.).1 raft tatensibllty -

intrf(ace Peqiltir nta I nitially, It is likely that only 4 minimum sat o f
PMT CO"SWMINTS Iiforation - cate gO .Ies can be satteed upon. Havevet, a pact

is a snapshot oIs cotnun I~tuate dtvel~i~ft pfac~t
Abstract and4 its pout it oe Ja If; the litze Ccl o
Ase "Ageet SpeCifiastsn :Ofivate Component. -.ht data toaa within a Part viii hive
runcticcal Specliicatian to be updated vhvn mo41fieationa to a sottva(e componntm.
DI' It" auch as bug fixes. $to made. futute softuete deviepe Sflt
Alolithm ocr Manin to*ls ad 1t5e55e5t MAY necessitate the addiion at now
LourcaCde intforation csatolies to the libcty Schema, as well as
obest Code 4odI IfiatI Ons to the existing scem. The lIbrary
Tbet SVr-C~~f tchitectrue thtore. proI~lvid.s for the addition a W
Test C0de modificaion oatinfrmatia categorie and their Associatedl
Test 06%41 Mesults data elements.

PMT WISIORY 1.3.2 sulk Irnform~ation

Resof fom paetio beeeenulk Information such as source code and documentatien mat'

bescriptions of applications Used be referenced by pointers lot It &totale permIts, bulk.
riequency of Use Information may be stored In a libmey along with the other
0eacript ion of Dewelopsent standards Infatmation contain In a a~at.
Version Ptuiber it has been recognlsed that hklgrvordegrees of reuse ot

SUSIXIZR DATA Information conta14ned In mnolihic Items. such as
specification documentation. could be promoted by expressing

Wage th information In small. reusable Itoups. ror Instance.
Addreg&s/ Network Address specf!ication documents could be manipulated as sets of
then*e4 sal r scificatIons 13..1.
Contact It is highly desirable, thertoae, for the library

?AAT TTAIITZmanagement system to provide services for mantpulatIng bulIk
PMATI5UZSInformation Items In the appropriate logical part. Tis

geyvords(to search onD could be accomplished by str logi :1cal and behaviorsi
Development La:nguage adquaslities, such as akpasing meIchanisa and the appropriate

mos gv~cftVA I omute ad pertig sstm)syt 1 of a 1ul Information ie In the library. This
Taogt gioset Coputr adoperating system) has been .demonstrated using object.-oriented database systems

5tSTAICTkoq4s

Government 2 THC REUSE LINPARY SySTCX

In this section vt Av zi o.vetviw. u! out 4waiiy..

7th Annual National Conference on Ada Technology 1989 459

Our deill has three lotvelst an t1ieI d AtabAIV
which sanaJGe 4 reuse llhraf le. 44 01JVIi~tIln Inltyfco to
th. *b0IM-oliqnlrd W.l19464. APA- 4, 110I(AiA~d sftware
eflJhneeImn rfVtloa"C-nl. At the $Sol -' MIA Waill". u

Val I&bqlt C~cql t'I . e dald44 level 61 th

LI The lAtlftwis d q(tvAls talinqeeing tAlkicistn. Level

Our lntvicAtl software qhgugihl tgnvilenetnf will. be
C OnIsgluttie by C:4!IIgq $eVefal weislipn tools In our
s 614ch enelfensenlI A44 will be used to panag q h O(IIa O[AZC
avbpeocesses needed to tatcute the tmtla In the P i~neI -MmA~a ,-t - AKSUAIZ1
In adii',the ueer Interface vl?- be iiiftvztlu d In Zd4.

The Potivatiorla btklfld the She4(ofite~grated sof-val
geInleefint 9AVilet~enIC ale veli lnCft. An Whitoongatl
a consistent uset Intestte C4 tanSimuate systlem conception(
at A high-level cc abstllreit AnM 0,4r be contiguled to

svpjuoI C p(tivul~t design eh~~~y e~
obec~~ele. peedrl. ec.l !:~l * 1 Mil

COOela, 1 aupnt te dveipmeu Molbt. A Consistent ~lIl
C::er !,,!;,11%a :, til fia he 110d for the developer IS OACT S(AV(R
petter. mental Context sviItues. which CAR reduce

Zn addition to havin A Csan user interface Oang tools. a
tightly coupled 4.1 naint, Isone in which the: to01s that#
I~inem~dIale c~pcestnt~tions of sofivafe being dtotlopd In
t e entvh(An. 0ne 6ppboarh that hAs Wi~n takenf Is, to

have the toels $halt a tomain database which x4Aagel all the
life cycle lsg~l The desirable Ch e tetiStics 01 Is.
integlated safte engineer ing environment Orl

1. that It be extensible. that it. it supots the IIE*UCGI- Nelvogh tOpololy
C0AnveniI additiun of tool* to the envitsluaenti

2. thatItII u~pOrtg Intetoarability. that Is. all tools
thile Ik %as* undeuly I f databae tepreslnlttIOAn. and
they propeurly Interiprt these i*taeietattoos.

uas, bility can be arh Ieved in a iamkje part Itough the
(~ St comon dstabse 191. ilecoperability cnbe

achieved through the selecion at en vnderlyinj dat abase
model which has flexible and robust sudeling capabilities
trigure 71 lS.I.

AN INTEOIIATCO SOFTWAIIE £?JOINCRNIO VlnOuuMEIw

CASt aC ~ . Via

tool j.-.. V61,44.uae

- thDIW, -

wallt

rigure 7. An Integrated softwar2 engineering Qnviruonsent.

2.2 The Database Application Interface Level

Thetdatabaso aplcto inefc Ill provide a scommon
protocol wIt which Ike tools inthe Inte' rted softwareenvironment will use to comunicate -With the datbs. Th
Interface will alto provide a bridge between the procedural
features In Ads and the protocols used to comunicate vith
objects in the database irigure 8, 91.

460 71h Annual National Conference on Ada Technology 1989

2.3 The object Database Level

The database will support an mastnobl. object Mihss got
:1atintnilbrarits dt ceussblt softva: coaponconts. most

ht te nt aI n the database will be Coxpl:: polsittnt
objects. The objects will be of several c & ass libraty
objects. part objects. several part Constituent object

USAAT'"' ITAAQ~tTWCClasses. and several other aptclAl Object classes.r cOA~Ilowi Cath V -f has both Sttructusral and behaoal properties,
T he "*..Ctsaie at an object may be diewcid In Weas at thnaantiMalt qvantity and Classes at censt itutnt, objtsl It Contains.~5s~e~e4The behavioral p ropettles of an object aft described In
t* of the method I ipoceuteel which say bq used to

cosounicato with the objetct to obtain services. Each ClassVIA at tbjieCts Vill have methods dqfintd to provide Useful
wevices to the 4plIcAtlef Inttlacv, level. such as
MtAtIM1. displ*yin? And Modityinl object.

-.eA5O his systeI 15 4being issnted usinaj the ctsne

I 4= 4su~s 2.1.1 Library Objects -

At the htlhest level at the database &thes ate Ilbtasy
objeots. *Ather than Itteatlil the database 60iver"itserl as

Ot ta- 'titt(~t a lbay, the schema dotints library objects which ate
Ioalltm objects Contolning Part Objects. by dftihtnl A

;e library as an object, a Stolle diabise servet can I01OliaIly
:4:n1e 441t, than antsrvin tlbrr fprs o
1ssapi. 1an11 organisAltio 1VSytnIihft anan sprt
lI tatios got each at ats depatents In a Alilpic database
Silver iriyuts 1*. 11).

risure 10. Object baser atructure.

ieIv Colette

Ciguie 9. Library mantlem,nt arkhitwctv. C D -.

tiquit It. Library object stct~tulrv.

2.3.2 Fort Objects Anid Part Constituent Objects
A Pact abject It an extensible class of objects uhirh may
contain sMe of all of the pioducts genercted du I Ing thelItfecycie atI a , ofta' copnn" oar Smple, a part

objet sy cota s s os. a . f f h ollowing intorsatio ntpar I ca5ssifications. docusentation, source code, tet
reutadpact histry. Each of these different types of

inost~n Iafe represented by I coor:sponding class of
oblects who.e instancets ate constituents at Part objects
if lute 123.

tlgure 12. part object structure.

7th Annual National Conference on Ada Technology 1989 461

I SUMMARY 4 As=lJ Tot AIINO.3
Tbf mmolac at44un# t.- soutle tothe(toArthur Rt. Jones iacoaived the N.A. degree inI xathqzAtIceTheImediry t e~eds e~a sluiaoto he19$a5bility Iran Il0leheu College, Atlanta. GOt Ias and the Ph.D.Problem p#o~e a dilemma. while p a tical ImPlemen14atli~ne degree irk Itathem~tical Statistics ties the thilveality otImutt be soulht nov. a parall1 effort must beo mjilted to loa. IV44 City, lava. Me vas associated1 v ith CXA Indevelop ftusAbilit'I methodologies SA tools that Vill be Chti4g-. Illinois as an Actuary Ia 1964 to 1142. we haslullilea tly (tasbi and robust to allow the incorperation tau U.. mathqaatIcs And computer science at both Alolhoav:1 future programming technologies. Cal i eg and Atlanta University. Atlanta, 040ell ta nce 197%.
Theobj~t-rieteddat moel ppers o hve verheling Since 1)52 he has solved as dicectol Sr the Ilalehoutodatam-Ae apptat to av % ftl soltuate Group.&Ilie vat the 1principAl Dlgarlhlf ;It the firstAdv LAIQa In CQmpaflg n With Coooiting on.. 6 Auch Vs th Annual ra tiona Conterence on &44a tehno.Og,. Whitti Val

;4ld on the itorehoust Collett cam"Pu n January, III]. MIlfestarch itereOsts Include tandom spcings. goodness-to-tItrelational model. Watwithatanding the Presenc* at mature. Mets, sottuare qelnqg I ft7n. claputol'-b55e4 Instruction, and
catteCially-avAilable rotatianal datAbASes, the extra database oeihollleiq.burden at building library and cantiutatian managementsubsystoma in pursuit at en abjtet-of1 Aeted appraach should Rabet C. z~eman is Ptstateflof atnathematics at ttofehausebe botne. Colle9e. *Atlanta$ Gesella and has taught there Oince IIU.

Heiec iv d the .So dicce its^ Alabama A 9 X~ vniverslty
Reterr'CetIn 1Oil And ite M.D. do; (ee in Rathematics tran, vansdeibitItitof~tc~sUniversity in 197). In lis1 he WAS PArL t ta team in the

Atlanta Un iveusi ty Center involved in iesqarch an the Ada
rievelopaent ot a liii a h eeetary mAthematicalXaia,.. and gim, Myoung.Jaacoat~-ad-, rede uta tunctionsa In Ada. I. resach nltsi inclode arbital(t Cbject-ecrinto4 applieatioa.Aci transactions methManc. nuafrical methods far oi~inary differentialant office Intormatian SystemaJ~nuAyIM7Sl-6 equatians and sottvact engineering.

2- Cutn,...rgo1.W.saly.S.A.. Koehler I .O., WilliaA MtcIver received the N.A. doll-et in Computer Scieneand Rayed. L.A.. The I'elsable Software Library fioa motrhousp college, A1tlA, Geariat In 1066 and theIEEE SattvareJuly 1961, 4121-Ml I%.$. degree In Coaputer Science 111oa the Cqargia institute
3. Sltan 5. endIroia. t.. t anAdaat Teoac Atlantta. Gaita in 1966 iRe as turr*ntly aP3a. Librnary:n4$tld. x.,t een~r t aanAsresearch sci6entist with the naltheoise Sattvate Group and

Conference!In on ~ a he fourthAna nt:uo t Computer Science. in 1ife. he vaa involved InCofrneo t A4 hnaly. Patch 119. Ma-.0 the Ada geus and mretric& research qutart beinl conductedtar the Army Inatitute for OVseae4h In ItAnagement.Delsl.N.neicsy~.,chart,~.,Vieving a Progrsaming l ,at Ion. Communications and Compuler Scienlce. HrisEnvirofment as a Singlet 00o ACR. AuguSZ 194.954 roarch Interests Include object-erientvid databases.
S. hudson. S.C. #Ad in. .Object-oriented datalbase cu c object-oriented demign. and human tactots.

fa tota environnt ;mo t ~ inG nl
Conference at htanagten at Data. MAY 1947.

S. hudson. S.C. and King. it. The Cac~t Piaqcti Database Support ~)~far Solar En Ines lnI, trcan&. on software

I.K ng neig ue 95 (m
A. Ii, Ada R abh ity and Lifa-Cycle lanaltment, AlpMICS

MP. itaich Isis.

I. Leblanc. A. and Ornburn. S.. -Revised Position Paoera Gteric
SPvcitICati0As. Georgia inctitute of TechnologVy. I.Atlanta, July 1967.

I.o:inrarcNlti...K~i~~tyThe Trlls A.
Piagraang Environment. 0OPSMA 198? Proceedings. MOctober 1147.91-102.

10. Pucdy.Alan.Schuchrdt.s..and maier.o.. Integratin an Objqct Arthur Mt. Jones Robe~rt E. Bozelkat.%
Sre ihOther worlds, ACA Trans. on Office Into. syst.,January 1287, 27-7.

11. RPs. Thomas. Teitelbaua~fim and oemrs. Alan, Incremental
Cotesl.-Dep*ndent Analysis tor Language-1ased editor&,
ACA Transactions on ProGrCaing Languages an systems.
July 1063.

12. Smith. Xaten~and Zdonik.Stanley a.. Intermediat a Case Study
of the Olttglences 5etween Relational and Object-Orie nted
Dats systeme~oopst.A 1957 Proctedings.OctoWe 1967.

13. Teitelbaum, Tim an X10.hoAs The Cornell program Synthesizers
1911153-S73.te f 9ogrAmain9 Envi0romnt. ACH. September

14. Wald. C.. Paubility Guidebook. Software Technology forAdaptablu. Relilble Systems program. Oprtumont, of William McIver

4.62 7th Annual National Conference on Ada Techir~Iogy 1989

Dany-S. cluinldi
Spetwer Rtigaber

SoftareMignecingResearch Center
Georgi hfitttt ofecehology

Atlanta, Georgia,

SUMMARY
Although sot:ne aspects of thle software development
life cycle have been adipitd to dell with reuse, oil%- uierm have beven itmortd. in particular, ilha verification Duig thc past yar tile authors have been
anti validatioin (&V) 0res a o ei dpe involved in ilia cevelopment of softwarec tools and
to dleal wvithi reusable I qmponcnms During thec pim c-11I 10(.host be Used fOr tile Validationi and
yea*r ilia authors Ila,. inesigaitd ilhe verilication verification of reusable sftwarc componenus.l' As
aind vatlidation of rcusatu> softwarc componcnts. As Pairt of thl.-t pro cct, a review of diffctent software
part of that proj c(, a review or different software development lipt cycle models wa-.s conducted in
development U C cycle m1Odels was conductedI inl ordcr to determine their effectivmiess in the actual
order to detennine their applicability to thidl l on devclopecorusbeofwr dthprerd
ment *of reusable softwan: and the prercrrd V&\'V tchnliques associated withi each. Amnong~
techniques associated with each. Among those stu- those sruided were thle "Waterfall," thle "Spirals'
dlied were thc "Waterfall," 2167," "2167A". [lhe model, "2167 " "2167a," the "Domin-Or6cnted"
Software Reusability Guideboo k, 'and thle Spir.al model, and tf-m Software Reusability Guidebook.
Model. In so doing, each stagc o1f thle different life is paper summarizes the results of the study and
cycles was studied fronm thle perspective of thle proposes some methodological ehanges onented
relevance of ilhe prcscnbed methods to reuse and to towards making software dayelopmnp with Ada pro-
V&V. Thlis paper sumnmariyes thle results of thal duce more reiaible and reusable code.
study :ind propoMs some methodoloical chatnges
geared towards making software dcvilopment % ith e
Ada 'produce more relialble and reusable code. Mie

'Ile waterfall model"3 consists of six siages:
rd(uiremncnti, specifications, detailed design, codling

b-ukwm lli~nittestit. hnuegration and system testing, and
T'ie ability to. reuse software has bcc:i heralded mnaintenlance. ":tch stag~e incorporate1 y&V Zictivi-

as one of Ade s biggest benefits. Nonethecless, there ties. I low to conduct \t&V L net explicitly stated in
have been few niiingful example~. of software reu- thie methiodology and is thus tip to thia software
sability within ilh. Adat comnuinity.u * part of thle developer. Thlc niodel alsu does not explicitly indi.
blame can be atinbuted to thea fact that Ada is new cate it preferred prograumming methlodolog, thus
and still not completely understood, that Ada coi- allowing the possibility of m-using parts by basically
piler toclinolcgy has valy, been in pLice for a few designing only to thle Facl wl-vc thea parts would fit.
vea. , and that progatniin envitionments for Ada 'lie Waterfall Model was developed before
are still being -levitloped. IMrc significant, however, reuse was a major concern. As such, it makes no

he li fact that thea methodq being Used are those comments on development for thia sake or reuse. It
derived from traditnral software development, is important, however, because it is thea development
Although some aspe)as Of t11C software development mcthod generally taught. in cc- puter scicnce fro.
life cycle have becn ada p ed to deal with reuse, oth- grains and because it is ilia standard against w dcl-
ers have been ignored. in particular, the concepts of other life cycle models are mecasured.
validation and verification (V&V) have not been
adapted to deal with reusable componen-ts.

7th Annual National Conference on Ada Technology 1989 463

UncimM~IJU DoI).STI)2167 (lots discus~s reuse I,
1110Spial odct y~l dvelpedhy arr encourage$ cotractors to incorporate Into tile

Tito~~~~~~~ SilMoe#wtdvlpdb ary currenlt software deIn commercially available
BIlh as :1 Ilechans o ctigtl i~ o~r tte i t innished software, and rcus-
involved in developing sftwarc us,19 traditional1 able sotmare developed for other applicatiots".
miethods At each stige of the process, risk analysii Iltwver, it does rcint Out lte V,1V of the rcusable
is cone~ j and thl. eve p foli vs ili pail' pat is til -mpnibl of the contractor.

Wich 1irnii risk. Thei Spviral moiicl cooiss or
seera cell, eseb cycle co"sting of four l~

and con~trainis or thle curicat cycle. Ilie second LD,!21U2.2jD) A
plia-ic cviluates die .Alr ntives with respect to lte Doi)1)ro.67A' is a recent revision to DOD-41%jectivts and constraiint,; espresd in lte first S'rr'Ihl7 that descrilvs thea
phse of the cycle. ilia third phaivii$ i or lit unfrts~o eieet o are developt-

dcylo~nen an retin~ o th spcifc pod c m which are applicable throughout lte Iifc Cyce.
being devcloped. gibe methodology used during this It itipprtant to note that Dob.STD-2167A does
phase is up to thia developers. 'Ili last pha1se is not describe a preferred lirc cycle tior does it inlrose
useta to review thle nchievcmenrs of the curent cyce at softwarejr developmnent -nethlod. DkiD-STD).167A
and to initilte planning of lte following cycles. uses thle same softvare lire cyvc describeld by

1litmodl d%:rbcdabov dos nt dpen Di)-YSTD-2167 as a sa-mple to explain lte set of
upo an partcli devibdaovew thoe ilo t Isen ret irenients impoted by ilhe standard. D~oD*STD)-

upo an prtiula dvelpricn tehnooa. i~ 21T0 difrar froin QpoD.STD-2167 in the level of
simply arl up rolch to managing softwarre develop. cal.WeesDDST-17tidt evr
rrvnt1. One Or (lhe objectives stafad in the first phlase specfic as to how certain activities arc to be con-
uf a cc 'Allh V. ito achieve a certain kavcl ofdctd DoD-STD-2167A still expre% %he need forV&V. thle mael' iiself does not desenibc how that such activities but does not go into thea amount. Of
Would be done. Dereratiriing if such an objective is darail as to how they art to be performied.
.chievahic is one of the problems that the developers
would faice in the second stage. Ilie mote! its DoD-ST1D-'2I67A introduces a few new :enns to
described allows for lte incorporition of any avail- deline oid ideas. One of them is Non-Icvefiolmient

tbl echniolone'. 'flius if certain technologies Seiftwo~re (NDS), wh~ich is an~ software that is not
fo uewihn roin.i e developed under the contract ut is Iprovided bytlite

systemn of reusable pat with an integration Maechin. contractor. tlie Governuent or a third party. iIDS
isin, a V&.,-V tool, tc.). thle modelI allows its incur- Ca1n be considered to be equivalent to reusable
porition. software. DoD.STD-D2167A encourages thia use of

NO)S by requesting that the contractor consider
incortirating NOS inito tile dclhveratile software and

DDI1j-DZLs_7 documenit, its plans for using NOS. It gives peris-
I~oD5TD-167'estalishs th reqiremnt lollio to use NOS without approval from the contract-

be applied during the developintnt andi acquisition of inl agerdnc ast lon a as thenI i ll dcuene
nmission-criiical comptiter systent softwarc. It con- i codnewt h tnad
sists of a specific set of steps to be followed through A final itemn of interest concerning DoD-)SiD-
thea software life cycle. Ilw system development 2167A is thle contitnuous eneontagement for [lhe usc
cy)cle consists of four stages: tlie coticept explora- of automated tools to suppi'rt Lic softwa~re develop-
tion stage, the denmonstratiotn and validation stare. ment affort. Such tools range from software
the fuill-seahe developmcnt stage and the productin egnein niomntlSEssotlets
and deployment stage. Relevant software develop- environments (simulation software, -odc analyzers,
ment usually occurs during tile full-scale develop- etc), to simple revision confi'al symcrns. Where-is a
inent stage. Thle software dcvelopmntn cycle coil- great deal of detai! has been omited from DOD-
sists of six phases: 1) I[he software requirements SlI'D-2167A. thc document ,does touch on a few ncew
analysis fhase, 2) the preliminary designphase, 3) areas and does encourage t. s f uo~te ol
thea d esignd phase, 4) thie codin and unjit that wvzl; hopefuily ill in dhe amount of detail that is

netig hae,5)th cmpte software. conpret needed to perform ilhe activities adeqvately.
tCSCJ integrationd testing phaeall6 thle
CSCI testing phase.lqDmisreje ntagUeCc

Ilia software development life cycle proposed TeDmitO'endSfwr f v!
by2167 includes formal and informal reviewvs and Alieauesrcddrvaloeperecib

Ilhe development of forinal arid informal test pro- inAlteauesrcddrvaloeperecib
cedures for V&V of thea product. 'Ile specific in a software life cycle mondel that specifically
design and testing methodologies used are left up to alfdressed reuse. Thlis was thia Domain-Oriented
the user although a top-dowfi approach is suggested Software Life Cycle model developed by Mark
for tlahesin coding, integration and resting. Simos at Unisys Corporation.-~ The domain-oriented

designlife cyccle, on the otlier hand, closely models the way
software is actually developed. It takes both a top-

464 7th Annual National Conference on Ada Tectlnotogy 1989

down, "Problemn-driven" approach anid a bJO11om1-up, components would Lx, heavily useCd, they should thus
"parnisiaen" approach. Develont friterate be tested more thoroughly, and 2) thia Tti hit they

b~~~rwcen ~ ~ ~ ~ i tetoppoce.noraonfnipre- arc u~sed more and in mnore varied environments;viously developed, related applictions is used to would eventually result in more reliable products.guide top-down development. Using relaited applica- Ani importanit issue thait is pointed out by thetions, or "domnains" as the Source of reusablc enti. Gu1idebook is tha thr ar three diffect type,% ofties imkes reuse more natural and achievable individuals who arc 1inVOlved in ilia reuse cifont.because thle same ty-pe or objects are handledl and -11te -re tbe anauacrrhepnueadthe~~~ pam .ye maufcurr prolem aret uslcr, Aaniudrdtin am thso rbesacsovd atclr e 'ibrian. 'arf.% manufacturers hiave to verify anddiincould mature to tie point that developers validate their products with greater care since theyhlive lcimplites for every sma e of tile ife cycle and are likely to We used in ,I large number of applicationneed only ill in thc details that3 pertain thle thce par. rind mancbine environnts, and thea success of reusetictilar application at hand, will larjely# depend upon thle conlidenec thalt he"A donmin-oricntcd lire cyTc rmailizesi ItpiCL users wlt Ihave onl thle reusable part. 11,4 pans userpatterns in thea development or a rehired senci o~f should only , (once thle applicability of tile part, isipplicaitions and tilc persistence of iriforniatirm from understood , have to be c~ticemed with inicepraonone aplication to thea next.", It Mtquires flew (black box) testing of the difrcrent pants. TheimethiodS of analysis to deteniate wvazt parts of' a librarian should h~ave a well tunidestoc way ofarticula application are ampjnriatc Pir meuse, and accepting or rejecting submitted pins.
tiows ith iniict amountkeof. 1:r applica- A point madec in the Guidebook is thea need forlios propsgifcath aus of rEmdnont CodeC, mnetrics of reusability. 'Ile mnetric-s should coverSinmos prpASiles.- onrS Appliczhan-Spccific concepts such as a measure of confidence that1 a nlewLanaesiti (ASoIA. Anuag io a nnpredural user of a previously developed pair Mnay reasO ablyspecification ~ ~ lagaeIa a~ odvl p pl y to tile suitabiliy ofapanr -Iplillfescu ald beuefo aslate o Ipplct~ A translator rep acoud e uedtotrasltea I iJc. ilsii 11 , SL aplication. Thice should also be mectrics of theainto ~~ ~ ~ S code aauie. .tf5 ndpendence of thea part from the host and targetith ie e of ahigh level lndg Appliciios computer. TFurdlennore, mectrics measuring ciiarauc-tat can be uscd in a variety of situitis IT&g a mia- teristic$ such as couplizig, cohecsion, reliability,tisti cal packagea) could be developed witil a libry modifiability, localization, protection -Againstapproach. Research areas inehidce exploring ways to incorrect usage, and error handlIing are also impor-decompose,. problems to detetmine itppr\.qprmte lant and could be used to determine thr. adequatenessdoinain classifications and *the viost eftecove of a part.methods of reuse. 111e domaiin-oriented life cyckthen allows developers to **capture and mi.use slun)Ni Although there are some well known mectrics;
specific knowledge across aipplications. mcuby that1 canl be used to measure characteristics such as
accelerating and rendering manageable the ini~ll*.f-; coupling and cohesiveness, some of the other chamac-
process of reuse that currentlly occurs." teristics mientionedl do not havc adequate or genera.lly

As canl be observed frin this summairy. Simios' iccclcd measures.'
approach is primarily concerned with developmient. Thei issue of liabilities and warrnt iies is also
lie makes no mention of thea V&V phtases of the explored by the Guidebook. Thle point is made that
firc-cyclc. advloper mig~ht be reluctant to reuse pins if hie or

she will be hiNble for failures of subsequent reuse.
'Ilic part developer, thea Guidebook run~gests, would

i~euili,~,ideonkbe responsible for guaranteeing that the pant meets
Thea Reusability Gzuidebook,, is a compilation ofr rgnlseiiain 'leue fru:bcpnthemajr ssus t~lte toreus biftybeig tuded would be responsible for the developed product,byi thead comunselty. t oesablt enor s deal within thea limits of any werranties which may existb ild ess the unty issuoes ofvrfcto and v~alio from thia original developers of the incorporatedIrcstlisuso eiiainadvldto parts. 'here arc three categories of ownership ofalthough it does rrfer to terms such as software test- pants: Government ownership, mixed ownership,ing and proofs of correctness. None of these and private ownership. UJnder Government owner-occurrences directly relate to thea V&V of reusable sIn, use of parts is optional and any user acceptscomponentls. Thle Maill points mentioned in thle 1Fl. cdocuent ere he fllowng becuse eusal esponisibility for thea use of the part. Unde

docuentwerethefollwin 1) ecase rusale mxedownership liability is governed by iltherms

7th Annual National Conference on Ada Technology 1989 465

of a license agrecenent, and the owner accepts Conclusionis and Rccommeindatinns
Ussprisibility for mleeting the pairt spcification. Traditional software life cycle models do not
Under private ownership liability is governed by the address the topic of reuse. Thiose people who have
terms of a license agreemnent. considered ilhc issucs of reuse have largely conccn-

Software pails are normally designed in the con- trated on t implementation *phase of, software
text, of a particular method such as object-oniencd development. Wc believe that incorporating *stages
design or Iunctionai decomposition. Parts designed into li fc cycle models where the primary motivation
based on a single paradigm have certain distinct is the desi n or incorporation of rmusmble corn-
advanttges over the multiple paradipm approach. ponetcits would be highly beneficial. We also believe
The Gukkbook notes advantages of designing pans that somec of the labor intensive activities involved in
based on a single pa~radigm. Specific goals men- incorporating reus could be automanted by a
tioned in the Guide k an: the following: 1) uni- software development environment. Although somec
formity of interface comprehension, 2) simplificeation attention has latcly been paid to the reuse o fdesigni
of intra-component comprehension, ?) simplification we are not a~ware of any discussion of the relation Ri
of part development and maintenance, and 4) reuse to the V&V 2ctivities of the software develop-
simplification of part testing and optimization for ment life cycle.
automated testhed generation. When reuse is a consideration, V&V activities

T1e Guidebook states thlat integration of parts ill becomes more complicated. IiK complications arsse
unanticipated ways requie a larger testing effort. from (lifferences between the environment fer which

Par ofanyreuabiityeffrt houd.go into evelop- a component was developed and the one ini which it
in& a well supported miechanismn to integrate rusabc will be reused. Environmental differences derive
parts. Unfortunately, the Guidebook is unabl to from different hardware architectures, compilers,
defline a methodology to achieve such objectives. run-time systems and fronm different, application

cveral other points are made in die Guidebook environments and usage patterns. T raditional V&V
th.-i arc worth commenting onl here. treats these issues as non-functional requirements.

Convensional testing techniques are constrained, to
+ 'T'he use of proven pans canl reduce levels of detcting differences between functional require-

development M~ort and test and integration time ments and actual program behavior and therefore can
through fewer errors and will result in more reli. not be applied to nion-functional requiremlerns.
able products." Tro deal with these problems, traditional func-

Eventho h hisis loicalstaemet, t i imor-tional specification techniques need to be extended to
Eve thughthi isa lgicl sateent itis llior-deal with these environmental issues. The first step

tant to realize that pirt still need to be used for to accomplishing this is to characterize the eniviron-
their original purpose and that if they are nlot. they nnal constraints that may affect the behavior of a
may be the ones causing the "faults" in the system. component. Such a characterization includes
Assuming that they are correct undcr any cir- language issues and a discussion of -application

eumlstancc canl only create problcems. enivironmntt issues such as synchronization and
+ "'ll us ofrovn prt cal rduc leelsofmemory management. A description of anl initial

+ Teeofen crover atscnreueleeso characterization has been given in a separate paper.,

This, of course, is dependent whether the part is Rrrne
:xing used in a way anticipated by fihe original
developers and on how much edaptation needs to be IlI Bcrard. E-. V., "Creating .Reusable Ada
performed. Software," l'roceedinqs of the Niional Conference

'Tesingis aciitaed y us ofoneinrnsielyon Software Reissabilit), and Afaintainabilitv, Sep-
+ tTsigi aiiae b s foeitni ely inber 10-11. 1986.

testcd generation piece." Once this piece is
trusted, only variable pairametric attributes of each ohBW."ASiaMdeofotwr

instnce eed o b tesed frthe.Developmncnt and Enhancement," Proceedings of the
It nayno beposibe t paamterze llor heIEEE Second Software Process Workshop, ACMI
It my nt b posibe t p~iamcriz al oftheSoftwaere Enginering Notes, August 1986.

desirable dimensions of reuse, at lease where Ada
generics are concerned.

466 7th Annual Nationcl Conference on Ada Technology 1989

B2 ullard, C. K. Guindi, D. S., Li~on, W. B.,
McCrackcn, *W M adRugbri. eiicto icn

and Validation or Reusable Ada Comniponents,"
Proceedings of the S~UM Empirical Fountlations of
Information aid Software Scienccs, 1988.
L41 D~artrent of Defense, "Defense System

Sotare Development." MIL.STD.2 167, Superin-
tendenit of Documents U.S. Government Printing
Office, Washington, ., 1981~

[SI. Depannment or Defense "Defense Systenm
Software Development," MIL-krD.2167&, Superin-
tendent of Dociinients U.S. Government Printing W
Office, Washington, ., 1988.

61 Emerson, T'. J.. "A Discrimninant Metric for
oduke Cohesion," IEEE, 1984.

171 Guindi. D. S., Ligon, W. B., McCracken W M, Sotany S.GininResearch Center
Rugaber. S., '1i Impact or Verification and Valda Sorgwa Intiueoferi holog

tion of Reusable Components on Software Produc- Atlanta, Georgia 30332-0280tivity", to appear in the Proceedings of the Hawaii
Internadonal'Confrcnce on System Sciences, Janu- DayGidisareahscnttatheSfwe

ary 989 Kaiua.onallaau.En rneering Research Center and the School of
Li8) Matsumoto, Y. "Management or Industrial In ormiation and Computer Science or the Geor iA
Software Production'", IEEE Computer, ruay Institute of Technology. During his tenure he K"s
1984. worked on a variety of proJeetu, including theMothra project, a system for verifying the accuracy

191 c~chll, . Get a., "ommn Ad Misile of vrorams based on "mutation theory", as well--
Pacac"Tch nic. D.P.e lp"onni A da Missile7 a 'SARS funded project for studying the

E &i irres T enlRporta June 1 5 l7 Verification and Validation Issues of ReusableEgli ~i Foce ase Flosua Jue 185.Software Components. Dr. Guindi is also intereswid

10) Simos MA, '"The Domain-Oriented Software in Human Factors and has been involved in tthe
i Cycle: 'Towards an Extended Process Model for design and development of the X Window system

Reusability," Proceedings of the Tenth Mlinnowbrook and the X Toolkit, lie is currcnmly working on the
Workhop n Sor~wr Reue, 187.Video X project, an extension to X Winidows to

[III Wald, E., et &I. "Reusability Guidebook V4.2," alothimgnofovgvdepcursner.
STARS Program, 19V6

1121 Wolverton, R. W "The Cost of Developing
Large-scale Software " 7EE Transactions on Com-
puters, Volume. 23, Number 6, June 1974.

W. Michael McCracken
Software Engineerin Research Center
Georgia Institute of 'echno logy
Atlanta, Georgia 30332-0280

7th Annual National Conference on Ada Technology 1989 467

W. Michael McCracken is a Scnior Researcli
Engincer in the School of Information arid Computer
Science and is responsible for dhe technical program
of the Software Enginecring Research Ccnter at the
Georgia I nstitute of-Tcchno o . Mr. McCracken is
currently the manager of thc Programn Mutation for
SDI Applications K~Ject sponsored by the U.S. Air
Force Rome Arvelopmenrt Center.. lie is also
the Principal Investigator of a project that is
developing verification and validation methodologies
and tchniques for testing reusable Ada components
for the DoD initiative, Softwaire, Tcbnolog for
Adaptable Reliable Systems (STARS). In a 1itin,
he is the Principal Investigator of a project that ii
studying the impact of Integrated Services Digital
Networks for the U.S. Anny a Inforrmation Systems
Command. In addition to the abov e projects, Mr.
McCracken is the Prncipal Investigator aid Co-
Director of a new National Science Foundation
Industrial University Cooperative Research Center
for Information Management.

Spencer Rugaber
Software Enginecrin g Research Center
Georgia Institute of Technology
Atlanta, Georgia 30332.0280
Spencer Rugaber is a research scientist in the
Softwar Eni neering Research Center and the
School of In frrnation and Computer Science of the
Georgia Institute of Technology. His research
interests include software maintenance, the software
design process, and the design of programming
languages. He is currently Moling on the- develop.
mcnt.of a hypertext software maintenance system.

468 7th Annual National Conference on Ada Technology 1989

A LOGICAl, FRAMEWORK FOR VERSION AND
CONFIGURATION MANAGEMENT OF ADA COMiPONENTS

A. T. Ja: a d O.. Brcaron

Computer Scknc Depawment, Univcrsty of Kctl. Keele. STAFTS STS 510. U.K

A logic framcwotl for version conMl and same name. It is otherwise imnerpwcd both u a library unit and
confguration managcment or Ada programs is pro. as the cornespoding library unit body (that is. a secondary unit)'.
posed. The paper describes th motivations and benefits The effcct of compiling a compilation unit that Is a library unit Is
of our approach and shows how css.rcfc-remlal and to define (or redefine) k as one that belongs to the program
dependency Information can be abstracted from Ada library.
compilations to support version and confituration A secondary unit Is either the separately compiled proper
managemct A prototy logic-based program library. body or a library unit, or a subunit of another compilation unit.
In plemented In the logic programming language Pro- The effcct of compiling a compilation unit that is a secondary
log. Is alO described, unit Is to define the bdy or a library unit. "he cfrcct or compil.

Ing a sccontary uNt, as a subunit. Is to define the proper body or
a program unit thut Is declared within another compilaton unit.

17he secondary unit (Impiementation) or a library unit can be
compiled and added to de program library at a latr time. ibis
means that the Implementation or a library unit (such as the body

The paper describes a new program library structure for of a subprogram or package, or subsequcnty a subunit) can be
Ada based on a logical framework for version and coofguration changed repeatedly without affecting any softwaM that makes use
manalement of software components. Prototype tools, written In or the library Unit.
Prolog. for extracting Informatlon from a parsed program, for Subunits can be used to decompose a largc.scalc softwam
creating new versions of a program, and for storing the Infom- project into manageable software components the Implementation
tion In the proposed program library are described. Before look- o(which can be.defemd to a 1atr time. This type or software
Ing more closely at the program library and associated tools wcdiscuss the general Ada compilatio philosophy and outlne stme developmen~t supports the use of structured design techniques.
ofscu the imit dato o iati ppro s ophy d c onguin mane: fly compiling a compilation unit that contains a number or stubs (
oft limtaon of existing apoache to cofigurton mage- that are specifications of program units), thee compiler will be
meit. aware that some implementations will follow at a later time and

may be stored In different files. A subunit contruct has a number
of advantages. These are:

The programming language Ada allows programs to be put * It provides support (or top-down dcvelopment

together from a number or source texts that have been compiled 0 entities or a subunit compilation can be taken down to
separately. The text compiled on a single occasion is known us a any level required, enabling the developer to design
compilation. Each compilation is a colkttion of one ot more the software structure morm accurately.
compilation unlis. A compilation unit Is a separately compiled * it can make use of library units, thus reducing the
specification or body of a subprogram or package, or a subunit, number of dependencies.

A compilation unit is eiter a library unit or a secondary Infomation conceming a complation unit is added to a
unit. A library unit Is a compilation unit (which Is a self. programn library when it successfiully compiles. Compilation units
contained. Independent module) that can act as a reusable stored in the program library can be used as components of
software component or a building block for other software pro. several programs. A programt library is a database for software
jects. A self.contained compilation unit is one that should not be development, therefore any separation of it from the software
dependent upon another module or data structure as far as possi- environment tools, can be considered to be impractical for large-
ble. A library unit is a subprogram specification, a package scale projects.
spcification, a generic specification, a subprogram body, or a
generic instantiation. Each library unit must have a simple name TLMin J iam
that Is a distinct Identifier.

A compilation which is a subprogram body is interpreted as All compilation units of a progrim must be stord in one or
a secondary unit if de program library contains a unit with tie more program libraries. These comrilation units are invoked by

nicans of a tmaln program unit thai will link together all library
units required to configure a soft% are system. Ada requires that
the root of cv, software system be a subprogram, since it

7th Annual National Conference on Ada Technology 1989 469

represents an algorithmic abstaction. Main programs ame subpro. The fundam.ntal feturs or sa~t ame
gramns that ame, at least, paramcicrless procedures. A main pro. I- the identificati of components or a software productgram must be a library Unit. An Impieetitof may Imps c - tebul eenece ihrn I ahcopnn
tan reurments on the parameters and on the result. If any, of aN hbul&,rkcisIeenInahcopet

mali proram.3- the build sules to derive or redcrive executable code
In our ea.' a ain program unit is defined to satisfy the front soure code.

following conditions: M.ost existing software configuration and version Manage.
1. it Is a subprogram body, Men tol have the following limitation:

2.~~~~~~ ~ ~ ~ ItI h =o olaSScad0 Only Source code Is covered by the storage andor control.
2. I Istherootor sotwar sscmandlintg sclihim No Provisions ame made ror Incorporating3. It is parmctcrlcis 4- other Objects such as spcificatdons documentation, or user

requirements
*K thUK possible relatinships between versions of a module areAda ecoourages the development of sell-tontalned modules, limited In type a&d generally fixed In numberThes modules act as ready-made components for future re-use: 0 It Isn't possible: to incorporate different styles of versionhence an easy and flexible apromach to incorpoirating these

modules Is required. Ads provides two construcs to make managment In diffecrent projects within an organization,
modules visible to other software components that need to use al
them. These constructs are: for Ads. what tools exist have t following dra~baeks:

I. UI-laus AW a* mgrt between aprogram library and Udn: environment
Ii. Jut-claeuses. tosI ifcl Witei

With-clausts express relationsblps between compilationt 0 the PrOlram library Is ccmplex, restrictive, and lacks ports.
units. They specify %hieh library units ame being used or which 1:ility
odwe comnpilation units are necessary for the execution of a givent 0 each implemenctution itas its own enivironment tools that can
unit within which the- clause' api-ear. Thecy als enable the cnm* no0t be used by other Implementationm The Ada program.
piler to check the use of utcac, library units (listed t, itie %itA. it lAnguage is portable and so the environment tools
claruse) In the stbmitted compilation against their sprClf'tion In should also be portable
the program library. * dependecies and mrelatinsli between configuration corn.

The second construct, kstcclanse, Is used only with package ponents and versions ame fot computed automatically from
units and eniables package expri to be rfeencd directly by the Ada source file. F-or example, in the D)SE syttem, the
their names In the program unit under consideration. ,r se-ewzst ustr has4 to provide dependency relationships among corn.
Is not secikd the syena poncw.

< rntrieof-packagct . nuft-or-exporD The proposed version and cor'jigaratlont management system
alms to overcome: the above drawbacks by providing:

would have to be uqed for every applied occurrec of an * the f-ilwer to Incorporate intelligence. La browsing and in
export. Trhe use of virh-clauts and urc-claauses Is in ai to writ- corrmand Interpretng, along with a consistent rpretation
Ing programs that are radabc and easily maintalinshie. of knowledge and data,

Softwar a deductive capability of producing new facts from existing
S~fllZM~D~iD~ct1C~l~zch)4.ones. A prototype Implementation has been written In Pro.

Software products have been applied to nuty co~oplex log, which unlike relational databases. provides an infertrnce
problems In the softwam re ndstry throughout the 1970's. mechanilsmr t1.1t2,

,%any of these products have filed over the last dea3 In 0 a portable program library. which depends only on the Ada
resprue o thx falumsmom ttetionhas een iven witinsyntax rules a defined by the Ada Reference Nu11311 It is
respnseto hesefaiure mor atenton hs ben iven wihinimplemente using an Ada parser written In Prolog. fromthe software enigineering community, to Methods towards di which the necessary facts are extracted and stored In theautomastion of software configuration management. program library,

Software Configufation Ma~nagement (SCM) hass lie * a Complete integration betweecn the program library anddefined by IEEE standardst Pis; the process or. configuration and version managezuent model.
" Identifying and defining the cu.efiguration Items in a * the: possibility of having more titan one program librarty

systemn such that therm can be a, high Irweraction amongst them.
" controlling the release and change of tics Items * an automatic computation of compiation andi recompilation

throughout thle system life cycle dependencies from the Ada source. code through the parser
" recording and reporting the status of configuration & a way to compile new versions without Interpreting them

Items and change requests as a recompilation unit.
* verifying the completeness andi corretniess of * a capability, such that when a progrm unit has been

configuration items. modified an automatic request Is generated, to modify all
Ads Coplt une UNIX. units affected by this modification. For example, if a

specification Of package is modified then an automatic

470 7th Annual National Conference on Ada Technology 1989

request to modtfy its dcindencis (Lc its body and as a packa %prc1atkon(Cotplation..Unit).
cons , ucncc the affected stub units or te modified body) Is packagve.b9d(Cospltio..Unit).
issued, subprcgrrn.spedkatln(Compliation-Unit).

* a wuitabie method for txprcesing softlwar component func. subpogram-body(ComplaitlonUnl).
tioalwity ror the purpose of reu.c. 11ochm" has suieted generic-specialion(Compilation.Unlt).
tw very significant Improvements in software productivity ifenerkInstantiation(Compilatio-Unil).
will only be scrta when softwar rc.us Is widely practised. 2. dcpndenccs such s:

0 a sinlei and efficient way ot deleting old Informaion,
adding new Infonnation. and Issuin queries about com. ipar tLUl(P&"t1.UP1l.$Nsw. i .Wt.Na,4
ponent nanes. t)ir, storage locatios, version numbers, lithcln*ua{ Lkl.OtUalt¢,Dep l.ttit).
tinc of irt compilAtlon. number or rccompilalions with 3- other useful Infonnation such as:
daics. and so on, and

* a reduction In the siz of tit necesar code for 1Iuling a cunyost&_of Compilation_1.nit, lJst.Of.UnRls).
prograiumming support environmcn or version control and
configuration mngemcm tools 6. compostd-t is a fact that shows the p-tam units constituting a

compilation unit.
DkftV LLb!AII ihe tool "cre ic-,-sIon' also provides a rchansn to add

nc Intonnation to the existing program library. This infonnation
A basic srictum for CM foe Ada Is the program llbrary. A Incliud the following sample or fxts:

prototype program Ibr4y has been dcsigned 7- 9 to act as a data.
basc for CM. The components of a program lbrary rmprese unit(optimi*, op4IMl1l;1112S,
smtruct, within the software system being dc~clopcd. hese sbprogrt nbody(eWimls, optinhiel"1t31112345)).
stnciur's can be viewed as a set of componew and a set o logi.
cal relationships and dependencics between the compone s. A Iklnmcf subpnoam.body3lIIl234S,
logic proramming language seems. therfore, an ;propciatc tool subprogrambody(opstliw, optimlsllI 112345)).
%hich can be used to express thcsc logical rlationships and
dependencies. date(opcimise]I[l6lll2345, [llW 'OIM ', 31, II, 23,

We believe that this p roo)c program library olfers a 45).
firm base for.

systm(optimistt!"3l11234S, ' UNIX').
" building a mor efficicnt and flexible wslon and

conAurad manAgenit system for t Ada po-
graMnming lInguage. lsntwW optimi*1"1113i11234S, IAda').

* expressing the functlonality of the components of a dtbo(Wi nk 9lI31 I US, rMliable).
library.

* portability, because It depends on the grammar rules at Slat(o iimisellU31 11234S, undternlned).
Ada as defined In the Ada programming Rcference
Manual.

Thc program ibray Is creatcd using the following tools: Durinl the dcvcloMinCt and maintnance of A software pro.
* in Ada pa r writtcn in the logic programming duet 3 number o versions of a panricular module (speciicion)

language Prolog. am generaly produced. Dilftcmnt versions may be alternatives or
" the tool 'makdlb' to Inse r the facts. extracted from vaiatiOfns that ar applicable to difrcrent operating cnvironments

the parsed Ada prolram. Into the program lirary. or systems or they may be revisions which arm successive
attempts to Improvc an Implementation. Multiple versions may

Dependencies and rdationshids btwen configuration com- Also exist for odcr reason (for exaMpIC a dcbug, a high spcd/
ponents and versions are computed aut-matically from the Ada high storage version) where the versions bear no chronological
source rile. relation to each other.

The curtnt Implementation has a tool 'cmateae lrsion' to We aim to encompass any rcltionship or set or version
create new versions of a component by automatically copying or attributes that may be required, and do not imposC any of the lina.
Inheriting values of properties (i. attributes) from i previous iattons which exist in other version managcmcnt systems.
version onto tc new creascd version. When a version of a com. *Th Value Or a logical framework for version management
poncnt (or compilation unit) Is cmeated from scratch then the tool ahe u er o rso o verson n oqe t
crecversons hat It llows the ucr to rson about vrons and to query to h

ponent source code so that the necessary Information can be version database to. tar example. Identify a specific version of a
extracted and stored In the program libray. iWs program library module, or discover the rltloinshlips between all existing ver.
is similar to any text ile under UNIX. The Information extracted slons of a particular module For example, one can find te ver.
by the tool 'mikclib' Is repsencd by dhe following facts: Sion which Is derived from one of tile versions or th compilationunit 'optimise' with tie ime atrib t constrained bctcn Timcl
I- type of compilation unit such as: and Time2.

7th Annual National Conference on Ada Technology 1989 471

dcrlird.romC Com.plIaka.Usit, Ncw._Vtrdl~u, ITIUml, Timc-2):- Ada jcogramming languac, one can dcduce new frcts from
unlit(Comp lllon.Unlt, Old.Vtrslon, ., cslstlig ones. delete old Information. add new Infortnilon. and
coptcdJi'om(w_.Yerln4 OId._crsion), Issue queries about ccMnponcnr nmes. I)Ts, storage locatio"s,
daie(Nt Vcrstin, Time), vcrslon numbers. timc or first cocopilation or rccomplli'lon wlit
Time <Tlnwel, daits. rvr cxample, oe can dkeine a main unit using the tollow.
Thme > Time2. Ing rule:

Deleting vcsions of an object can 'easily b achieved by
searching for tk rvquitd vcnlon cither by giving Its full situe.
lure or by Including some of Its altribuis. For c ample: ntiln(Unit) :- subprolram.body(Unit),

roo.or.systcm(Unit),
paramielrlew(Unit).

dcttc(Version, Time) :. or Issuc the following query:
ditt' version, V), WhM are the Vtusons f Ae COntiOnRAt CivplCr.RLC t hdoa d
datt(Tsion, V)were cro:td on 31 Ociober 19$$ at or .Vkr ?Aajfl jpt nAic ln the
Vna Tim morning ?

This "ppaCh also rovldes a ba ils for MfM.UIsgi the pOll. I?- unite 'Complex.elations', Verskm, Type),
rsm|ion of vcrsions during te cour or A project. Automated dal(Version,)ale),

clean up suppots can be provided. Foe wm .ic, one could delete Dole l IMnU 'Oct', 31, II, MI, ,l
All but a dositcd 'mos; mrnt' version. or ,:i vcrfIo created It > Y, M >2 30.
Wetore a specifkd time or within a period of time or all versions
with a pmtliculr set or attribute values. In fact, any policy Or Version n 'Cornplex.RheillslI 194144,
convetion tlt cwt be expressed as a nule could be enforced. It TP' a p~kakzIfttloIkM('Con'plex.Rlitloos',
might also be desirable to Implement 3 policy whereby ttributcs 'Compl .ld*tonlI l 44,).
of an object could be modified without crcating a new v sion. one could a 'wher Is die a verilo re01 "

The proposed fmminewo covers not just source code but
Inmowrates othr objects in the sortware engineering life cycle
such as user.rquirmictis, specifications, and design. For stmpll. I 7" MIe.mt(Fik, 'Compl I i.estkl Jll 4t4
city. within oir prototype implenaloo. uscrrequlrtnients.
scliflcailonis. and d"lls 3m made available throuh w objc File n spte3l41l44.11
called descriputOn. As many mvislon5 of the object d2ctiptipon as
mqeircd can be created. These rvisko ar linked directly to the Thc currets prototype Sstem has a capbility, such tha
source code (Implementation) revisions through the fact: when a program unit has been modified a request to modify all

units affecd by this modifltmion is gci-ratcd. For cxmplc, If a
specification or st unit is modified tihn an automatic request to

drIpmIl...qt(tkli¥11pitm.N. hIue, €Cllit~lti W). modify Its dqdxrd cs is issued. Two wlys of noifying the
It Is possible to Iswue any query regarding description rcvl. user are:

sion a code rcvslions. For example. one cm issue a qucry suz'h I. relying on the user to issue a query:

"display de piogram units that conStltute the modified con.
list all rode revisions tf dcs.rlption version 'dcescrip. pilitlon unit 'ComplexRclailons'
ton19S$27124513

1h anster Would be:
I 7- composedor(body('Complex.Reiuioas', J, Lst).

'1'I answer Would be:

plhgk ic¢'im'i~i °lto List * I subprogram.stub(sqr. sqr198S16121309).
t+<.lo.r+iaoh~dits~jtmsup"ogr'zn.stub(divide. divlde19SBRl321245).

('Ikral5t'.a.5ttitI.M~~ lratSwa.~ld.h<.diX l tflt~l') subprogram.p stub(sc3lmuli, scalmult19S881089234),
pa~kace.hod: . .]

2. automaticdlly:

pckzle~lf tfor cxample. when a new version of tie package

t'lter~i.S-an.Mtrhd','IIltarer.Swa.Mterbottkgsl@tl ~spcification 'ComplexRclnions' Is crated using t e tool
parkagebody cale-vrsion, as follows:

p'Itcra.lu.od ikoy',Ilusrie.Swaa.ttrhodlIIt41t')

rmin the d.tbase set of facts and de logical recktionships
that exist between compilation units and/or program units of the

472 7th Annual National Conference on Ada Technology 1989

I 7 C att.er. i('CotmpkX.Reat l'). ompiki according to Ada ruls I A pret cond:iion (or a set
of conditions) Is used to Som e selection or the requrcd vcr

the user Is automatically noifled of the def tencks by a sion or s t of versions of each complaton unit.
e-,.vsc h 3' Mxh selection criteria can be vaiatblc, txcd. or under user or
"1'tcsc remember to modify t comtspadin; body %hich Is manager conml. according to local necds. The following code is
stored in the Me 'cotp.jrA* -. an Csar4iC $e Of conditions (or $Ckilcin 3 paricnlar ersion or

Whoen the tlte 'compcl.A' Is modified a request Is also Sen. A compltion unLt.

crated to modify its pubs:
'llcase temcmbtc to modify the stubs of the moified body k)DSM(CosaoieqtUpk,

-Ahich re stocd In iles 'rest,.comp.A', 'SMr.A' dot(Coniplsiton .U.'i, Time),
then the systcm asks: Thin > m. Tml,
Would you like to cdi these fles ? (yn): 'rime < To.ima21

gle(Compiithn.,Unit, good),
Odhr vrion or obccrmctai.tniotailon that could be lisngalt(Compilalion.Unil, 'Ada'),

recodcd includes the rcsons for its cioni , th reasons for its debut(Compllationt.Unlt, rliable).
deletion. owmersip. derivation, aW oftir statistical data. This
Information can be stoed In the dxabw, u facu In th form: A 'cmpitonUni,' (or set or units) is s itocd ir it is

crCated between time 'From.m l' o.*r1mc' its state Is
good. It Is wdincn In Ada (vcnions of modules %%tlttcr in

CrtniPk(Obj t', Wh)A Iwlguages other an Ada could be Incoqorwxc). and it Is
dcdtn Objct, xea,.ms) believed to be reliable-
derhfatln(Object, ln rmtlot), If no version ltiies the se Condition thn cithir a

"Ik O(O)bet, UOdfy), request can be livl for permlision to use a defauk version. or
Dow Object, Other). 'missing compilation units i simply eporled. The curent Implc-

TI Infomtion could be useftu, for example. for tracing th lhis- mcnttion allows defaulting to either 'irffcnx-d' version or to the
tory of ti Implementation or a paniculir pI~rm swictxip. 'ltist' vcrslon but any lgical rule could be Imposed. It also
In fact systems t maintain ths so t of infomaltoo hav,-e povcd Incorporates version ptiorities.
useful In the Pas. IhalIicht reports that n a comilation unit Is modiroed and then reconpikdt.

manytimestfastesta hto findingabugIs the wh Ad progm of hi It Is a ompoo . doesno

no analysis of th pmrnm itief. but analysis of the have to be recompild. The wits that need io be rcompilcd are
hsto y of the pogram how It was crtated'. Identified accotding to the following rules:
Mcta.data may record thl teixtual derivation of an object or * A library unit rquires h r compilation of ill the

version. This codd provide valuable infonmaion for storage lgo. comilaion units ht kpnd upon (iL use) this
rdhms wi*ch antcn;4 to minimisc the storage mquirements of library Unit
multiple versions of mm. 4 if ia compilation uni! is not a library unit and ctoxists
Other possible qucts about versions ame of a picka e body or subprogram body, it only

requires the recompibtion of the subunits declared
list all veniont of library unit X. wihin Its body. Other compilation units which use the
what ae ti compoents of a program? modified compilation unit do not need tv be reem.w
find th stubs of a certain body utit. piled. because they do not depend upon ie impemen-
ind all versions of secondary unit Y that at createdi tation or the package or subprogrant bdy.
bctwen tirmel 3nd iMe2. • A subunit does not requirc L' recontplation of a
apd so on. prcunit or any odr subunits.
Tis Information will permit the building of portable ver-

sion control and copigurodon mi wlgement tools since the pro. When a unit Is submitted to a compiler. die CNI systcnt will
Cram librar) Itself is portable, seard the database for it. If a unit with the sane naite las

almady been compiled then the system will take s r=ompllidon
-flhligiW ~ rtiP 5iL slcms. action. otherwise It will take compiling action. For the rcconipila.

'ThMe Ada programming languge is designed to suppor lion action, tile sysicl will automatically recompile all the nccs.
separate compilation for constrcting large ptogratnis and creating sary units according to tie Ada rco:tnpilation rules. When a cctt.
program libraries of precompiled components. Compilation units pilation unit successfully compiles the proposed configuration
can he compiled in any oner as long as ie chcking of con. nlanagcr stores its qt as a fact In tie forml:
sistency between the compilation units and code generation Is
observed.

Our prototype configuration man ger automatically comptics conmpilcd(subprogMrarnbody(opthnuise, opth-
an Ada system (program) according to the rules governimg hde isclgllO111234)).
dependencies of compilation. When a compilation unit Is sibnit- This additional infonnation about a compiled unit -llows.
ted to the compiler. all its dependcncies ar idcnniiflcd and new versions of a unit to be represeted without them being

treated as recompilation units (and hence replacing the version in

71h Annual National Conference on Ada Technology 1989 473

use). A prese condition can also be wied to govcm the, selection19.
of the ajropaecrsion for ftcontplation. (131. W. A. HMbOc. 'Software Conflgurtion MA11agcmen(: Coot-

dinatlon for lam P odoctivity' Addison.Wcslcy Publish.
cm!dAl*1ML Ing Company, 1916.

Software configuratio nsigmmn amd version contto is
an im11V 3Smnt aOfc or=ftWsee ttirlint. It provides the
mca of identifying the components. And the meationships
hetwvcn comnieints. of a Systemn At mny point In time. 'MIS
adlo~i the systemaic control of changes so A conifiguration arid
rtMVIdc owerll Control. visibility, And traceability of a
configuration throughout the lire cycle of a Poftware system.

A logical structure for the Ads program library And the
configuration of versloos has been proposed. TISs ru Is
ercmcd using An Ada programming language psr writtea nt the
logic lwogrmming language Pvol* The loput to the rsexr is t~r ptt ur o holdS an
the Ads source file. Useful fants ame eatrxced frm the r~md eStAblishe IT IO(
pogram vnd written In the propwsd prxan library using tools
written In I'rot. This proosd symei. we believe. pmoidcs Rtc~ Fellowship In the
the flc~ailliy required to tackl the Issues &x~c aibov Dcpartaxtit or Consplter

Scicec at)eele University.
Rclsb LShe joined the depannn In

Ill. lrpanmicrt of Dcfcime Referce Manual for the Adi 1979 AMd has since: %%cked
Programming Lmpguage' ANSO. MLSi1 1515 ixnuary on a number of Gotrment
1983. funded projects. She

121. T. Lyons wid J, Nissen (11D.). 'Sckecting an Ada rEtwirn. currently heads the Sysicems
mcni.' Cartxbidge University Preti.1956. Research Group arid holds a

131, Elf1. lerot *rlcnmr of Software Configuration aNaxgt. tnj Alvcy Awald invest1
rnens. l1M3X TrAnsaction on Software Dliineering. Vlol. gating the risc of
513.10. No4.1. January 1914. knwlcdge-bascd techniques In software cnlnccr

141. J. S. Ikigge, 1'T" lmpicicthtlottS of the Arda Progrm Pretviously stm has -Aorkd At ThU Sciec and Engineer'
Ubrarf'. Sofnwarc.Prscilm and Espeseuree Vol. 140). Ing Researh Council's Daresbury oratoroy, at Nottirtg-
491.500. May 19114. barn University And for Pilkinpton Drotticr$ Ltd.

15). N. Geban. *UNIX Ads Piograrniing, ATkItell Labors.
toie5. Prenrlce-1iall, INC., Englewood Cliffs, NTIO632. Abid Jsam Is a positrauate
1917. student involved with

161. P1. ASIMreW And P. Inveratdi. 'A logc dmtbase to suppoit developing a logical
configuration management In Ads. AdaComponecnts: configuration management
libradle And tools'. r~rccd~ngs of the AdsEuropc Interns. system for Adls. IeI obtained
tional Confcenroe. Stholm, 26-21 May 1957. his BSc fromt the University

173. H. W. Ilothr. 'Soflwar Engineeringt Economics ". 113131 of London (Queen mary
Transaction on Software Engineering. Vol. Sf3.10. No. 1: College) in 1977 And NISc
January 1984. 1 P15.21. fr Southampton Univcr-

(81. David S. iLeblarig And Robert P. Chase, Jr. 'Computer. shy in 1978. lie then Joined
Aided Software Engineetring In Distributed Workstation the Iraqi Northernt Petroleum
Environment. ACM Sigplan Notices. 19. 5. Ma3y 1954 Company as a researcer.

(91. A. T. Was And 0. 1P. lirereor. "A Configurmion Manage. li Ics :k member of the British Computer Society And A
ment Framework for Ade. Proceedings of the seventth Ada incilber of' UK Ada.
Interniopal Confettie. York. UIK 19-21 Setember 1958,

(101. 113131 Stlani~r rot Sc'twt'r Configuration Manragerncnk
MlAnW, IEEE Std. 828.1981. 1E131 Comput.Soe.. New York,
NY. 1983.

111 IL 03131 GAliand J. M.inkcr, (1984), 'Logic and Databases: a
deductive Appmoch". Computing Sutvcys. 16. (2). pp. 153.
185. 1984.

1121- P. Asirill. et al. (1986). 'The Knowledge Oas Approach
In the Epsilon i'rojcc. In i3SPRITSS5: Status Report of
Continuing Work. 7The Commission of European Commiuni-
ties (C&d). Elsevier Science Pub.i3. V.. (North hlollanil).

474 7th Annual National Conference on Ada Technology 1989

OSIGNING FOR CHANGE :A ADA DESIGN 1UTORIAL

James A. Hagcr

HRS - Systoms Inc.

Abstract

Sixty percent of the software costs associated
with the design, development ad Implemientation
of computer systems occurs In te mlittnance
phase. A significant reduction in the .winttnance
costs can bt realized with a design for ca'nqe
philosophy Integrated Into the Engineering Lift-
Cycle. By carefully identifying the expected -- k M , "
changes to a system and rigorously applying the am
concepts of Information hiding and abstraction of
inttefacts, the changeable aspects of a system
can be Isolated. This paper provides in Mda
based design tutorial, by tracing the design
process and the resulting architecture based upon Figure 1. Distribution of Effort In the
thst concepts. Software Life-Cycle

Several facts are apparent. FPrst, software
maintenance costs more than software development
activities. Software maintenance Involves three
types of activity : enhancing the capability of

Intkruloni~ a product, adapting the product to new processing
The widespread use of computers over the last environments, and correcting bugs.

2S years has hid pronounced effects within the Second, a large percentage of the total
Deprtment of Defense. It is currently estimvted software effort is devoted to software
that the 00 spends about 3 to 4 percent of its e.ancements.
budget, or approximately SIO billion dollar. per
year, on software. 1his number Is exected to In recent years, several new design
increase rapidly In the next few years . methodologies and supporting languages have

emerged whose goals are to !educi the overallUnfortunately, current methoologies for costs associated with system development by
specifying, designing, documenting, coding, and reducing maintenance costs and providing more
tvsting software do not provide adequl t h . . visibility to malntenance r system
isibily to taeonance concerns. e life-cycle act iit y .,sste

difficulty of generating software that Is easily
modified bcome. evident when the full
Engineering Life-Cycle costs are examined.
Figure I graphically portrays the distribution of
effort. in tho software Life-Cycle. "

7th Annual National Conference on Ada Technology 1989 475

~g.L~L1C.U~LLThe SCR design methodology Is a process In
IYO=3which:

In 1978, ;a Software Cost Reduction (SR1) All expected changes art
Program was initiatetd by th N.% eerlIdentified and prioritized
Laboratory that Pursued these software early In the design process.
*nginttrieg project goals.) na ti hdgadTht SCR methodology rtquzirts changes in both absntration hfIntefae ind
the design methodology and the supporting applied rigorously during thedocufentation structures. Key SCR concepts upon deopsto Of the sYstem-which specification ar~d design techniques are it otaemdls
based include: 3itsotaeodl.

1) Separation of Concern% Identi fying the expectai changes Is a
Z) FrmalSpecficaiondifficult process that requires significant
2) orml Seciicaionfamiliarity with the application. Ontce the

ex:pected changes are agreed upon, they are
3) Inration Hi1ding / Abstraction of prioritized based on their likelihood or

Interfaces occurrence. Although all expected changes are
important, outside factors pay prohibit

4) Documentation as a software Design tiedium. application of the entire list. Prioritization
of the expected changes allows some t1Exibility

Thi apr fcues n te ~o~ ~ nfo-~tonIn this decision procest These changeable
ThspaefoueonterlofIfrin aspects of the system become the secrets ofhiding / abstraction of Interfaces in the soparate modules, thus providing a layer or

reduction of life cycle costs. Insulation between the changes and the remaining

software.

Jlalt.I I AISN SYSTEM PACKCR.tmO

Information hiding i; a concept developed by In 1984, tft-Systeals Inc. was &warded a
Parnas In 1971.1 When a system Is designed using contract to provide computer-based training for
information hiding as a decomposition criterion, a large signal collection and procesting system.
design begins with a series of difficult The target system had a history of frequent and
decisions. Difficult design decisions are significant upgrades. The Initial training
characterized by Impacts that affect more than system contract was awarded based on the success
one module. Each module Is designed to hide such of a prototype that demonstrated the feasibility
a decision from the other modults. Each module of enhancing training by means of computer-aided
in the system hides the Internal details of its instruction.
processing activities, and modules communicate Floigamcesu ytmDfntothrough well-defined Interfaces. Ujnlike Foll te owing at rtdcc e ct Syte efforito
functional decomposition, where changeable phse the goRmentlg.i redirecti fort tos
aspects of the system may span seea ouebasedaugon the reduced risk associated with the
decomposition Is structured so that high- ex Istance of a working prototype and the desire
probability changes do not affect the interfaces to apply the methodology In the generation of a
or widely-used Modules. Les, probable changes new system. To support initial efforts. SCRmay affect the Interfaces of small closely-held research materials were provided. Although these
modules. Only very unlikely changes may affect docuzents were not complete, they provided anthe Interfaces of idely-used modules. adequate starting point from which to explore the

Abstacton s atoo tha alowsontto ealMethodology. Subsequently, the methodology was
with concepts apart from the particular Instances enhincpendeovdathSfwreEgitig
of those concepts. All representation and Prnipe (SP process.

anipulation details are suppressed. Objects of
an astract type are known only by the functionstha may be performed on them. Users of the

abstraction do not have access to the Internal
details of the abstract types.

476 7th Annual Naional Conference on Ada Technology 1989

CiC"omouter Based Training Archit it£r

Expected changes are changes which are, or
appear to be logical evolutions of the system. The modularization strategy described above
Based on cuttomer inputs, expected changes are leads to a hierarchical structure In which each
identified and prioritized during the System higher-level module hides the design decisions
Definition phase and presented for review during encompassed by its descendents. Based on the
the System Requlrmnts Review. Following expected change list, a four level architecture
customer approval, the expected changes are was derived. The first two levels are generic in
included in standard recrirements soecifications nature and would probably apply to any system.
and designers are hild accountable for an Levels one and two are logical groupings while
architecture that supports these concerns, levels three and four are physical and correspond
Ar:hItecture documents. provide a mapping between to AdA. packages.
the expected changes and the modules Impacted by
their implementation. The first level of the hierarchy consists of

The following list is a subset of the three modules:
expected changes identified during the System - the Hardware-Hiding module
Definition phase for the computer based training the Behavior-Hiding modulesystm -• h eair-iigmdl

y- the Software Decision-Hiding module

- terminal interface

- underlying operating system Hardare-Hidino Module
networking environment thatThe Hardware-Hiding module consist of modules

that need to be modified if any of the hardware
is replaced with a new unit with a different* target system messages and displays hardware/software Interface but with the same

- student evaluation criteria general capabilities.

The Hardware-Hiding module is further
- student monitoring formats decomposed into the Extended Computer and the

Device Interface modules. The Extended Computer- authoring exchange necessary module hides those characteristics of the
to create/modify scenarios hardware/software interfze that are likely to

change if the computer is modified or replaced.
- number and characteristics or It implements virtual hardware that is used by
the systems being simulated the remaining software. In particular, this

atodule supports operating system related expected
- specifications for key data structures changes by hiding the underlying operating

system. By specifying primitives for an operating
- access policies for key data structures system in the Virtual Operating System module,

the remaining modules are insulated from changes
- run-time environment to the operating system. Primitives are

fundamental assumptions located in the package
- language implementation specification that are very unlikely to change.
- additional authors, students The Device Interface module satisfies the

and Instructors network and terminal related expected changes
- additional classroom management tools through the Virtial Network Interface and the

Virtual Terminal modules. The Virtual Network
Interface module hides the commercial network

The expected change list was generated by software and how the functions are wade available
reviewing modifications made to the target to the system. Changes to the network hardware
systems during the previous 5 years and by and software are insulated from the system
extensive Interviews with customer application packages by identifying network
representatives. To provide rapid access by primitives Networking primitives include such
maintenance personnel to areas of concern within ervices as establishing a circuit, sen6ing a
the documentation, the expected changes were message, and receiving a message. If the
g'ouped in the following way methodology for establishing a circuit or sending

a message changes, modules using the service do
- hardware related not have to be modified.
- requirement related
- implementation related

These initial groups provided a starting point
for architecture efforts.

7th Annual National Conference on Ada Technology 1989 477

The Virtual Terminal module Insulates the The Shared Service modules consist of software
system from changes to the terminal by providing that controls required external behavior common
primitives for screen display and keyboard to two or more modules. These modules hide the
drivers. The display output device is managed as characteristics of the shared behavior and the
a set of windows, each with characteristics to algorithms and data structures necessary to
simulate portions of target screen displays. The implement the shared behavior. The Shared Service
virtual interface provides the capability to modules support expected changes related to
radically change screen characteristics without module Initialization, menu services, and control
affecting existing software. The Virtual Terminal structures common to the modules. A change in any
Interface hides the physical characteristics of of these areas is isolated to the Shared Service
the display device, locations of the devices, and modules, even though the change may affect an
windowing mechanisms, external behavior shared by many application

Figure 2. provides a block diagram of the modules.
Hardware-Hiding Modules. it should be noted that all required system

behavior Is provided by the Behavior-Hiding
HAIRDWANKNI OOUJLES modules. Duritig preliminary architecture efforts,

design credibility is established by mapping the
tAuMwA required system behavior identified in the System

"low Requirements Specification to these modults. Any
requirements not mapped to a module or
mistakingly mapped to a Hardware-Hiding or
Software-Decision Hiding module provide areas to

1001Mrevisit the system architecture. Several
coWNUMt discrepancies were noted in this manner.

Figure 3. provides a block diagram of the
e1 "'A- Behavior-Hiding modules.

Figure 2. Hardware-Hiding Nodules BEHAV O M MODULES

Behavior-Hidino Modules

The Behavior-Hiding modules are the modules
that need to be modified if there are changes to
the required system behavior. Required system
behavior is documented In the System Requirements
Specification.

The Behavior-Hiding module Is decomposed into M7FN]
two second level modules : the Application Driver ____j,
module and the Shared Service module.

The Application Driver modules are the sole
controllers of a set of closely related outputs.
Each module hides the rules determining the
values of the outputs and the data structures and
algorithms necessary to implement the outputs.
Expected changes dealt with in the Application Figure 3. Behavior-Hiding Modules
Driver modules include the authoring exchange
necessary to create and maintain scenarios, the
system administrator exchange necessary to
maintain target system databases, the system
administration classroom manaqement policies, the
processing unique to specific target system
simulations, the student evaluation processing
and criteria, and the student monitoring
processing. Impacts to the architecture based on
these changes are restricted to a single module.

478 7th Annual National Conference on Ada Technology 1989

Software D c sion-Hidino SOFTWARE DECIS4N HIOmK MOOULES

Software Oecision-Hiding modules are the o
modules that need to be modified If there are
changes to designer 'generated decisions. For
example, the choice of a specific algorithm not
specified in the System Requirements t
Specification Is a designer generated decision.

The Software Decision-Hiding module is M (. *tt
decomposed into three second-level modules :the '~-' ue 'u 1

*~t?
Scenario Interface module, the Database Utilities
module, and the System Generation module.

The Scenario Interface module hides changes to MIA
the scenario validation policies, the translation
process from the external scenario language
utilized by the authors to the Internal scenario
primitives, and the execution of those Figure 4. Software Decision-Hiding Modules
primitives. All algorithms to parse, validate,
translate, and execute the scenarios art hidden
in these modules. These changes were allocated to
Software Decision-Hiding modules because the Translation To Soecification
specific language implementation necessary to
support required system behavior was designer
dttermined. Desipninp a software system involves three

tasks.' Yhe'first is decomposing the systeA into
The Database Utilities module consists of modules to support system requirements. This was

software that needs to be modified If changes are discussed in the first part of this paper. The
made to the database management system or to the second is designing the interface of each module.
internal storage, retrieval or maintenance The third is producing a specification for each
policies. To insulate application module from interface so that (a) imislement2rs have enough
the underlying database management system, a information to write the software ; (b) writers
Virtual Database Interface module is provided. It of other modules have enough information to use
provides the file management primitives necessary the module; and (c) information that constrains
to support indexed sequential access data or discloses details of the implementation Is not
retrieval. Any changes to the data access revealed.
policies are limited to this module.

Follow;ng the decoaposition theme employed
The System Generation modules hides the during the Architecture phases, it is important

expected changes related to the softwarv to design tht Interface of each module so that it
processing environment and the underlying cnnsists only of information about a module that
language. It hides the command structures is not likely to change. In that way, when
necessary to compile and link the software, changes that affect a module are required, only
values of system generation parameters that the implementation of that rodule is likely to
select different implementations of a module, and require a change. The interface and all other
specialized test software. modules that use the interface are not likely to

change.
The Language Implementation module provides an

area to discuss features unique to the specific Although the mapping between the module
implementation chosen. Originally, the goal was decomposition and the Ada packages necessary to
to abstract out the underlying language support the module decomposition Is
Implementation. Since this was cost prohibitive, straightforward, it is not always clear how to
it provided an area to discuss the language translate required system functionality into
specific decisions that might affect program package access functions. The most effective
portability, approach is to focus on the Hardware-Hiding

modules. Since the inputs to and the outputs from
Figure 4. provides a block diagram of the these devices are discrete or well known, access

Software Decision-Hiding modules. functions are directly associated with otutputs.Abstract interfaces for the Virtual Operating
System, Virtual Terminal, and the Virtual Network
modules were generated in this manner.

7th Ann,jal National Conference on Aca Technology 1989 479

For example, the Virtual Terminal package
specification contains access functions to
support basic terminal functionality, i.e.,
scroll, blink, highlight, color, cursor VIRTUALTERMINALPACKAGE
positioning, etc. Each functional abstraction
should not reveal characteristics dependent on .0-."WMA
the underlying terminal implementation. It is ___________

expected that so of the functionality specified "I
in the interface would not be used by the 609 r
specific application, but necessary to fully .OWI
characterize an abstract terminal interface. OF . " t
These 'unused" functions would have empty .
implementations.

Some Software Dtclsion-Hiding module
interfaces were determined in a similar manner.
For example, the Virtual Database interface was
determined by consulting commercial database Figure S. Virtual Terminal Package
technical references and allocating an access
function for each service required (get record,
insert record, delete record, etc.). The
integrity of the underlying data abstractions
wore enforced by relying on Ada's private data
structure support. VIRTUAL DATABASE PACKAGE

The Behavior-Hiding module interfaces were
generated by looking at which system level 'fcuoo,
functions were allocated to each module. In some
cases, there was a one-to-one mapping between "'i ,- .
system level functions and module access E lfunctions. In other cases, several system level .

functions were combined into one access function .,m
with the input parameters controlling the
required output.

Figures 5, 6 and 7 provide graphical
representation of the Virtual Terminal, Virtual
Database, and the System Administration Data Figure 6. Virtual Database Package
specification packages.

The SEP methodology, like any design process,
does not provide a "cookbook" methodology to
transition from specification to design. By
focusing on the Hardware-Hiding modules, with SYSTEM ADMINISTRATION DATA PACKAGE
discrete inputs and outputs, and the modules
designers are most familiar with, a good portion
of the interface functionality can be specified.

tMKOaWANIDAIA
SItI

WWKWAMWRMlAI

Figure 7. System Administration Data Package

480 7th Annual National Conference on Ada Technology 1989

The specification of an abstract interface should A final update consisted o replacing the
have the following properties : existing removable storage media with fixed

Internal storage. This was necessary due to the
- It must not disclose any of the changeable unreliability of the disk drive. The decision to
aspects of module replace the faulty drives was made following the

successful completion of the Software
- it must present a concise description of the Integeration and Testing phase. Although the
facilities available from a module In terms Impact to the operations concept was significant,
of effects that are directly observable to the software modifications were confined to the
the user Control module and the Data Specification

- It should be divided Into sections and modules.
formatted so thot a reader unfamiliar with In all cases, the Impacts would have been more
the module is able to find a piece of severe without a design philosophy that required
information without having to study the engineers to plan for these changes.
entire Interface specification

- it should not provide duplication of
information which would mAke using and
maintaing the document more difficult

REFERENCES
A complete example of a module specification
satifying these requirements and the associated 1. R.L. Fairley, Software Engineering Concepts
guidelines for generation is found in reference McGraw-Hill Co., 1985(14).

z. P. Clements, R. Parker, D. Parnas, and J.
Shore, A Standard Organization for Specifying

Slimary Abstract Irterfaces, NRL Report 8815, 14 June
1984.

The ultimate goal of the SEP design
methodology is the reduction of costs associated 3. 0. Parnas, P. Clements, and 0. Weiss,
with the production and maintenance of software "Enhancing Reusability with Information Hiding,
systems, By providing more visibility to Proceedings of the Workshop on Reusability in
maintenance concerns at each phase of the product Programming, pp.240-247, 7-9 September 1983.
development, engineers are better able to plan
for the expected system changes. It is too early 4. K. Britton, and D. Parnas, A7-E Software
to judge the success of the methodology at this Nodule Guide, NRL Memorandum report 4702, 8
level. Several years of accurate life-cycle cost December 1981.
data are riquired to support this premise.

5 K. Heninger, Specifying Software RequirementsHowever, there have been some immediate for Complex Systems: New Techniques and Their
benefits to the methodology. From a design Application, NRL Memorandum, April 1979.
p.rspective, the methodology has proved very
successful in reducing near term Engineering 6. B. Boehm, " Software and Its Impact: A
Life-Cycle costs. During a recent upgrade to the Quantitative Assessment " , Datamation , May
system, three significant target system 1973.
simulations were added. Since these simulations
were identified early as expected changes, 7. J.A. Hager, "Designing For Change',
designers were able to minimize the Impacts of Proceedings of the 7th HSIA International
these changes on the existing architecture and Conference, May 1987.
documentation structures. Each simulation was
added as a fourth level module under the 8. K. Heninger, J. Kallander, D. Parnas, and J.
Simulation Activity module. Commensurately, the Shore, Software Requirements fur the A7-E
original system delivery dates have been Aircraft, NRL Memorandum Report 3876, November
accelerated and cost reduced to refect this 1978.
reduction in effort.

9. R.J.A. Buhr , System Design with Ada,A second update consisted of replacing the Prentice-Hall, Inc., 1984
existing 8088 based workstations with 80286
based workstations. Although the new workstations 10. B. Liskov, and J.V. Guttag, Abstraction and
provided higher resolution monitors and enhanced Specification Program Development, MIT Press,
keyboards, the impacts were confined to the Cambridge, Mass., and McGraw-Hill, New Yo'k,
Virtual Terminal module. March 1986.

11. Berzins, Gray, and Naumann, Abstraction-Based
Software Development, Communications of the ACM,
May 1986.

7th Annual National Conference on Ada Technology 1989 481

12. P. Clements, Software Cost Reduction Through
Disciplined Design, HRL Memorandum, 22 Feb. 1985,

13. Wallace, Stockenbtrg, Charettt, A Unified
Methodology for Developing Systems, McGraw.Hill.
1967.

14. J. A. Hager, Software Engineering Principles
Study Report, NRL Report, April, 1988

15. P. Clemnts, R. Parker, 0. Parnas, J. Shore.
A Standard Organization For Specifying Abstract
Interfaces, NRL Report, June 14, 1984.

James A. Hager
1627 Oxford Circle
State College, Pa. 16803

James A. Hager is a Principal Engineer for HRB-
Systems in State College, Pennsylvania. He has
had fifteen years experience, holding both
technical and management positions, with the
responsibility for the development of software for
engineering products and systems. He is the author
of numerous research articles relating to the
design/development and maintenance of systems. He
holds masters degrees in Computer Science and
Mathematics from the Pennsylvania State University
and is a member of the ACM, HAA, and IEEE.

482 7th Annual National Conference on Ada Technology 1989

A Portable Ada Implementation
of

Blocked 10

30111 J. Cttpak Jr., CCP
HRB Systenw, hic.

Keywords Pile management, blocked input-output, inlor- three different computers with three different opeatintg syii-
ntatlon hiding, data Abstraction, packages. tents, using three different Ada compilers. That is, the im.

Ahosract plentetatio hadt to be portable.
Al~otrattMap datla file have IMy ln~axis and contain various

Mkot actessitoAkekeleet iss lmpore..t wet numuber of records. Writing it packag to handle the block-
processing lawg "uaniis or I#MVga~c#a or let. ing and delointfiig Operations for each data (ormat would
rat., data. While the standard D~irect 10 and. St. not only be time-consumning, but a duplicalto of ellort.
qucMia 10 Ada pcclages permit access to tinti. It would be better to write the operations once, eacapen.
teat leks iites, they do not allow the aw to ten late them in a package, and pamaeeterise the package with
ltgelockis afdata at a Omeas44 process ludiviidual the data w~ord~ formuat and the nme oreords per data

This paper discusses a port"m generk Ada pack.
Wewhhies lter access tosigle elents, The a weedec~ripifit of the problem leadis us to de

wh~l *11cently rvadlngfwrtiag lage lilocks of data the user requiretnints as:
to aud fromf memory. The concept of As4oI tmc- * Reduction of dish accesS time
hf o i used to encapstulate the fomal of(a Mlocked
file, While anf/omwsaiou A41011 is mood to encapsulate * Encapsulation *o prtosiw akg
the algorithlcinik pl4ementaulo of the support pro. ,rtosi akg
cedures ad functlons. is Hidden blocked data structure

lntplemenitufion and poitability problems encoun.
fted Me presened at the conclusion. * Portable package

I Ad Fil Use Req irem nts Generic package
1 Ad Fil Use Req irem ntsThe following wetions discuss the design of the generic

Terrain and topographical map data files can contain up to paameters, the package user interface, andi the inmplenien.
a million and a half bytes for a one degree square area. Uis- t0t60 of the Package.
ing the standard Sequential.l0 or DirectlO package proce-
dures to read itree-thousand (3,000) 5l2-byte reords, one 2 User Interface
at a time, would impose a file transfer time penalty ot lith
processing of tlae data. For every file transfer request, the 21 Dsg osdrto
systemt incurs disk seek and latency time before transfer. 21 Dsg osdrto
ring only a single record. One way to reduce the disk access The input-output facilities of Ada ILRM 831 are capable
tim is to transfer more data at a time, thereby reducing of handling sequential files by means of the Sequential.1O
the number of disk accesses. This could be accomplished package, or random-access files by mecans of the DireetiO0
by the programmer by declaring an array of data elements, package. It is not possible, however to specify that files be
instantiating an input-output package with the data array, transferred as block& of records. The only way to provide
and controlling reads and writes to the external file when this capability is by means of a user-developed package.
the data array is empty or full. This is contrary to the For sake of consistency, the package should conform to the
concepts of da abstraction and information hiding, where structure of the existing input-output packages.
the user should only be concerned with opening, reading, For example, the Sequeutial.IO and Direct.lO packages
and writing individual records, and closing the external file. are implemented in similar manner. When only sequential
The actual implementation should be hidden from the user. access is required, the procedures in DirectJO can be used

The map data files are usually written by one comiputer in exactly the saine way as those procedures in Sequem-
system and read on another. It was necessary, then, to tial-1O. This concept of simlarity was used in the imple.
define an implementation which could be used on at least nientation of the new BiockedJO package. This similarity

7th Annual National Conference on Ada Technology 1989 483

soppocts the Software Eagineing go Except ltd .

ity. The moe alik he ocedres is she locked 10 pock. All the xceplios of DirectJO ar avallabk except for
e are to those i the Direct.lO package, the more the NOO.1UOI, which is orw!Ied since the user Is not periol.

ot will be able to understand their functionality and oft led to specify she mode in either a CREATE or OPEN oprrr.
thm. lion.

The blocked Ale organiation allows the ussr to read
and write individual logical records without rerd to their lil Mmungtsint Opertions
poellio within the physical blxk they are in. The blocked
tle strcture is thus dcteroincd by only two kinds of infor. The CREATE m0d OPEN fik manma u t operations do woA
tnatlon: the kind of dmte eleo nt, and the blocking fcor, requir the PORN paranwrcr. Likewise, the NOVE funlon

Translated Into Ada Wati, only two generic actual is "41Wtle. The remaining f l n agrimcnt oit cra fa n -
pstarneters must be supplied for any particular imttantla- CLOSE, DELETE, uREET, 0mE, Ron, SIZE am IS.OPEU
1i6n of the HlockCd.tO package: the ZLIE LT.YPE tod the - a exactly the same as the defined for Direct.tO.
SC=IN FACTOR. The user has complete freedot to spec- There are three kinds of rcords nwasipulkted by the
ify any data word, including variant records. The generic packge:
f$r*m part of the 86cwe.lo package Is written as shown logical rords

o external.cords

gastric * tnl.recods

The user reads %ad writes a logical record using the
typo ;IENIM-.TYPE is private; tlocked tO operations. This is altso the record type that

-- Logical Record Type is used to instantiate the blocked.O pkbage. Rcordh of
this type aft number frm one to the lst record written bySLOCKIOG.FACTOR : Ia POSITIVE; the user.

-- Number of Logical Rcoris per block An extoral.record is trasferred to ad (frt the

external Ate. It consists of IL0CINJACTOR number of
leCgiCl.roCfrd0. These records are numbered from one

2.2 Package Specification t) the last "bock" written by the BlockedlO Urte proce-

Since simitarity with the Direc package was esied, dure. The nuttber of t last extanal-rocord is returned
Secification patho the "4K4. prece uilt in by the Sit functi#.the specification part of the 0lockediO pacag is built in An Iatersal.rocord is owe of the logical.rocords

tke sae way ca the specificatio part of Direct c. The contained in the Internal 30T1TE, which has been read in
Nlocked.iO package expects" from an exteralrecord. The interal.rocord number

o t)peg ranges frnm (e to 3LOCINI.FACTOR.
Three additional tile mniagement functions have beea

a exceptions defined for the Blocked-lO package to help the user identify
o A~le anuadcmncat Operations which logica, internal, or external record is being manipu-

lated. These functions replace the Iadox function available
o input.output operations in the Direct 10 package. These functions are nawed for

There are a few basic differences between the packages. the record tyes manipulated:

The Blocked 10 package disallows the urr of the NODE pa- * Logical Records
raineter since all operations are based on direct access.

The following sections discuss those itetms which differ o External.Records
front the specifications of Direct 10. A complete listing of * lnternal.Records
the specification part for Blocked.i0 is given at the conclu-
sion of this article. These functions return the number of the externa, file record

currently in ineniory, the number of the logical re:ord in the
Types file, and the number of the logical record in the external

The FILL.TYPE specified for the Blocked.iO package is the record, respectively.

sme, but the FILE.NODE is omitted, since all operations Input-Output Operations
are based on direct access. The mode is always set to
INOUT..ILE. The integer typs COUWT and POSITIVE-COUWT The input.o%, put operations of the Blocked-lO package are
used for file indices, are specified as in Direct.JO. identical to those of the DirectlO package. There is no

484 7th Annual National Conference on Ada Technology 1989

Sot lIAd. procedure, however, as this capahility is fur. -- Since Ihe blocking factor Is 4,
alhi*W by the Read and Write proctidure. when using the on ely ((00 / 4) # 1) extorsal
FROM awnt To peransclets. -- records of 1024 bytes should

ho writtes.

2.3 Exanaple of Usage WT.DATA.RECORDS
To illutrale 'he use of the Blocked,1O package, we will for I is1_1..0 loop
rite a Plc of 2.56.yte weords, hlocke hy four, resuolting TISTI.0.IITK(PILI w> Toot..File,

In ass elernal Ale weord whose site is 1024.byes. The ITUN a) Tost.Dets);
rwordts will be written sequaentially. ad loop WRITZ..DkTA.RECORDS;

with ILOCItED.IO; -- Now, cloe, Of exteral file.
procedure TW1.DIVIs

TZST..IO.CLOSILE 0~ Toot..Filo);
typo VATA..RXCORD is array CI.464) of FLOAT;

-- 4 elements x 4-bytoo/elemeat * 254 bytes end TZST.)RIVER;

package TST-10 is Note how tile test prograstt $11uply indickates that ten
met 11OCKED..I0 doll reod batse written to the tie. tIokno te

(LIOvn..T ORZ w) 4);.RCOD package, relieving the user prtograil fir*.s having to perform

-- This Is the isstatiatioa, of the 5LOCKU-1.0 Also, since the last external Ale record contained only
-- package with the 2154-byte DATA..RERM. an two logical records, the remar of the record was aWo-
-- a BLOCKINGJ.ACTOR of 4. giving as external loatically aet to left* when the internal bufir was Created.
t- ile record size of 1024-byte.

Ton~fie :TZ3_IOF1LTY9;3 Implementation
-This in the internal file "hadlo" 3.1 The Underlying Data Structure
-for the external file.

The iniplemnation of the Dllocked.1O package is based
Tost.Data :DATA..R=CRD; on usage of staulard Ada elenents. The resources of tise

-- This is the 254-byte tost data record. Direct 10 package art used to npiesent all of the input-
output operations. Tile dida structure used to isplensent

begin -- rzsDroaVKa the Mlocked file canl therefore be 11napped directly to tile
*iiletilng direct file records.

-Initialize the test data array to Tile blocked file is an array of XLENZNTYTP9 records.
sequoatial floatlag-poiat values. Th blocketl type, 111FZRAICOPZS, is declared in tile pack.

age pilvate seciins, along with the RtCORD.IND9XLTYP9 ar-
INITIALIZE: ray index type. The operations of Direct-JO are install.
for I is 1.64 loop tisted in the private part of tile package specification as

Toot.ata : FLOA(I);the DID package with thst 2FlR.ECORDS type, and thle
et oo INTI LA(I llockei.0 package FILE.TYPK is definedo as a record with

cad iop IITIAIZE;its single component Data File as the instantiated package

-- Now, create (and op..) a file file.tyise, as Slhowns ill below

-to contain the test data

TEST.I0.CREATE(FILE -> Toot-File, private -- Blocked..I0 package
MAU a> "TEST.DAT'l); subtype RECORD.INDEX-TTPE is

Wrie tn 26-bto ecods.NATURAL range 1. .DLOCKINGJ.ACTOP.;

-- We will simply write the some - nenlrcr ne

-record ten times.

7th Annual National Conference on Ada Technology 1989 485

typ r .I1tR.RODS Is intrnal record ntnibtc. The e.3lock function take the
array (RICOSD..IDU.TytP) 09 LnZIENT..Typ; loical rectord stwtbee and4 returns the external fit record

It~ait l rocert data tyT nubrrc. The lm-Itogord function take* the logical record
numiber Asnd retut-1 the nibrf o(the record in tht ex.

Package Ila is leritri reror bu~v- Thus, by using the"e Iwo funclk"n,
%of DIRZCT..Z we ca t sittat wLiid. cxtejin faIMe record It "eAd itt fromt

(UMENTrr.T 0> 3VF1t*.RgCORS); disk, And which record to Access froot 14C In~ttt*I buffer to
-- astantiatiea, of DIRECT.J vith Ibloehed records Obtaint the specified losical recrd.

typ. IFILl TYPE is record Calculating the External Frie Record Nuwnber
Dte.Filit : 81.FIUZTYPl;

*ad record; Calculation Q(the nunwherp~ of the exleCIIMAI $ie wtord which
-- Zteran file 'htAnlei" cotaiis the pecife logical record is performed using ins

teger arithmetlic. The logical record ntutmer is divided by
the bloing factor, And one Added to the rmail. If the

3.2 mplmenatio Deignlogical record i.- a muoltiple o(the blocking factor, then the
3.2 mupkneuaatlo Degua xternaI file reord nuisber is reduced by one.

Iniplesneitalto "ofhe Blockedi.lO package requires all in.
teftsal "blocked" hllfer, three pointers, Ad it Ag variable. Calculating the Internal Dofer Record Nuniber
Trhus, the packag. functions ats a state inachine, sicei Calcalatoo of the numbler of the weord withi the internal
moait retait knowledge of its previous state front call to hlis also petfortued using integer aritllociic. The mustll
call. These "State" variables are showns Wo Is cooueda logical weord nomiber nod the blocking

fact0r. If the Mult it zeroM, thea the interaa rec ord mninsher4f
DeftBuf RIvzaCOaS; is set to the blocking factor (1he last record in. the internal

-lateranibufe buffer).

Carreat.3lck.Iember COUNT :* 0; Reading Records
-- Rsideat %lock sumbher 'rt Redproved~urt. dtifrincs the forrect external file

Curret-locrd.N~or CUNA :r0;cord numbler and internal record nustor, then reads the
Lcalrre.Record asatber :CUT:0;external record (ront disk into the buffer contained in the

-- Lgica recrd mmberPackage bodY. Before reading in the next buffer, however,

Duffr~eordNumer ECOD..3OE..TPE; the procedure first checks to sce if thve current butffer has
Physcal ecod sut~rbeen suodifie. If it has been roodified (that is, the "dirty"

-- Pysicl rcordmembr Nag is set), then it writes out th4c current buffer by calling

Currst-lockNodfio BOOEAN:* FLS tt IFlush procedure.
"Diretty" lock Nf l DOEK 'FLE 'rite Read procedure is oycrioaded to allow the user to

-- "Drty"blockflagread records ranstounly or sequetiailly. If the record nututitr
is not speciliedl, the next logical record is rtad and returned

The Cerreat.Block~lmbeir iaintains the nouulsr of to the user. The sequential read piricedlure Adds one to
the external file record ("block"). It is initialised to ato (lth current logical record numbeir, and rails thet overloadedd
indicating that no external file record has been read into direct read procedure.
ineiory. The Cerrest Record Nuaber inaintains thet log. Wrtn erd
ical record onmber, regardless of which external ("block") WrtnRerd
file reord it is lit. It is aiso initiali"e to zero, indicating nto rThe Vrite procedure is also overloaded to perinit the user
logical record. The DfferXecordjesaber mnaintains the to write records randonily or sequentially. If lte nmber of
numb01er of the logical record within the current buffer. Fi- lte record to read is not specified, ltme logical record itnber
miallyl lte CurretBlock.Modif led flat indicates whether is incremtented and used to call the overloaded direct write
any of the records contained within the current block ha~ve 11roceslure.
been amoified. If so, the current bltck muust be written Thme direct. Vrite procedure deterinines lte correct ex-
to lte external disk file before any other record not iii the ternal record and internal record numbers, then writes the
current block is read or written, record to time correct position within tie internal b~uffer.

lit addition to the functions and procedures identified in If tht external recordl to write is not time one currently in
lte Blocked 10 package specification, two additional func. niemory, then the current block buffer is written out, a new
tions were written in the package body to support tlie de. buffir is initialized, and thie new recordl written to the new
terimination of the correct external record numnber and the current buffer.

486 7th Annual National Conference on Ada Technoiogy 1969

sugar, Iwitl6lisat,.u Ots #il~c~lty ruuirti it*d the creation of lt packap
w%# the impkontatito of Ilhe Fv.A fu1t;on. This fssitl,

Nfore writing assy recocd to a new Islack (that is, a block itturm, k String which contains the film inforiatlon used
which will In written after the rd s;. ife c..rtri!ne filowi), Wo open of crtate f ir.
a sew blok haller it it~ialiacil to null% (aecos). Since she Me way to Iwpkisirnt this functi" ou ld lbe to return
recoird 14 foritiosd at I#41406*16tio1w, It is hot PouitWl to the formn string albtaind! fr414nt acall to the underlying I.
write null rectsrds to the hufffr suless we required the user reck 10 Form function, us #lwn in the follwing fNtsiss
to furnish it null record. We c"o~ not so do this. Instead,
we avrlay a null huffer on top of Ilse internal Istffer, m foactioa FOM (PZLZ 1la FiLt..ypt)
iihown In the following Crnk: rottra STRING Is

bogin
11ITIALIZE: declare rotura BZO.FOM(FILZ *) ILetAo..TIl);

-- r-rst, tieLd OVA% howt AY bytes is the blechod
-buffer by obtsiaiag the sabor of bits Is the Unfortunattly, this did4no work on the DE(V VAX.::tfo typo *ss tiiiqb he ausbor of bits DEC istplenalt the fkm string using ther propMitay

is te SSTU-TOR~t wit.File Dweripikn Laisguage (FOL). The string tri'rnest ex-

selor.12 FOITIK rested the constraint for the return Milo3 type. Abte,

(BUTTIA.AICu" I size / a few calls to D)FC Custoesr support, 1tW. sroble was

SYS M .31 ORAoZ.111IT); si"Ved, and the function inspicnetled "~ follows:

Pox%,Rt create a array with the same aumbor of feactioa FWS(FILZ : I& FILZ.Tlfl)
-SYSTRN.STOORAOE exits. f illed will &%Ila. roar STRING In

roruStriag : coaistat 511110 :a
Pull.af for : array(I. .31fer.3ise) 310OO(FILt 0 FIL1.Vota.FIl*);

of CNAAACU :a %ogia
(othere W> £SCXZ.Uul): retura ForulStriag;

l- ow, equivelesce this siull array

-- with the isput blockedl buffer.Thsipitiko enl h ainly6#fw

f or Nauiluf for too at Duff er'Wdreuss string returned by the underlying Direct.10 Form function
to he assigned to a conslant string each tism the Blocktd Jo

begis -- INITIALIZE Form function is called. Then, this cooltant string is re-
turned to the caller.

-- All operatioam perfortsed it declare ulatesseats

ail; 5 Performance and Tuning
Performianc of the Mocked 10 package depends upon the

suit NITIAIZE;size of the logical data record and thit blocking factor. The
snialler the sise ofthec datia record sud tlie smaller ite block.

Initialization of the internal buffer could have beet Ac. ing factor, thse larger the disk access ltle. By blocking
consplished by using VINCIKD.CONVZRSIOU to convert the (lit data, more data canl be written at a lttle, and fewer
IMLLJFU to a BUFZaJ=CADS type, and copying it disk accesses are required. While larger external file record
to the internal buffer. We decided not to implement this sizes (data blocks) will result ins fcwt: disk access to traits.
methsod, as it would require additional memiory for tlie null fer data, they will require miore nkwmory size to retain tlie
buffer. internal buffer, Choice of the blocking factor is, then, a

trade"If between how mnuch inemory is available and the
desired data transfer rate.

4 Portability Issues Two benchmark programus were written to obtain the
time required to write fifty-ithousand (50,000) two-hundred

To achieve ilhe goal of portability, only larocedares and op. fifty-six (256) byte records to disk. The first prograin called
erations available in Ada were used to implenmt the pack. the DirectlO0 Vrito procedure to sequentially write the
age. That is, no DEC VAX system service calls were made records. The second programn called thia Blocked_1O Vrite
in any of the procedures or functions.

7th Annual National Conference on Ad& Technology 1969 487

proc~ede i)Write the re"&4 MqW1664iatY. It w1W rsti. grant with the watw test ,la'n we found that the CPV
utates that the lohit0package. instaniated with the mtoetio# time w.'s 12 M- ntilisee.144. This rrpreftraleit
2*h-ytr weortantl a 8LOCKINIU.ACTMf 0f 1" (10) woold 1wvprent re4lcti". in the 11rrTC1.0 exeution lnr,
execute qtlhvr than the (Of tespoonfin; Operatlio# lt the Asia a llfty-two pemidu tewlnclio ill the execution tim @(
Difre'ct 10 package. the 11ocT.0poeue

In latt, the opposite W%;5 "114 to be true, as shown in Slufthe Oly Obvious dilfruccin the last test progrfit
in the Mollwing t104r: wa4sthe lack o(gpneric insantildion 0(the paehaW' we

havre assumedt that "woittljg in the implementxtio.' oft

Diwoct.Xa 116. 10d.x Inlnil of It "eTwic p*Cha is affecting the execution

91soodTim 2:0.54 2064TThis msumnption s supporledI by the lnukpe&wat ith
K~~~~ap. ~~ ~ ~ 411 NA. 20.4 2254 fir J which inikftes 1 i'th nb4rly Qf maNy VMIMICaeu

CPU Time 14070 27210 Audo& compilers to proprily haindle generic unls."
(mi11ivcouta)

6 Conclusions
luiforo4 10 o" 6"
(Opmatioaa) The ltlo'hert 10 package is sin example of how Auta can In

rxlctemk by means of P4ckaes. With (are, the 4W to o(
Diract IQ 34" 3493 portablity *#4s recusabsility can he sort while supporting the
(eporatioas) Software K~un ering goal o(undctstanutaility. The met

801l o(speedl, however, smotintes etwute even the esenest

S"#i#6~ctn X flaW in the prOCeilore, We ran the prOgra.' Uni rfAlacmiermorclyas ffcetyi.pnel
with the DF.C V'AX Symolic Debuger Iuabic to eltctj ni dctplescretyadefcml mk~
any obvious errr we wrote a thirdi test progrwa. This genericC6ckge prograuners ate denies the pcimary (It.
timue, we dtclafr Btlockedi 10 as an hatmral, nongenerieC cility which promotes the creation. of reuAble software.
package inside the test program. When we ran this pro.

4M8 7th Annual National Conference on Ad& Technology 1M8

7 Y3ockdJO Package Specification

-- LQCXED.I0 PACXAGE SPECIFICATION

resume IOEZCEPTIXS. USE.ERROR;
F- ile capacity exceeded. Ron-existent lilt#

-. already existing file. or Improper FORK string
-- specified during CREATE or OPEN.

DEVICE..EROR : exception
rensa.es I0.EXCEPTIONS.DEYXCE.ERIOR;

-- Underlying hardwere vAlfunction.

ENO.EPOR :exception
repnms IO.EXCtPTZONSEXD.EROR;

-- Attecpt to read record after last
-- block In external file.

DATA.XRAOR :exception
renames IO.ECEPTIOS.ATA.ERR)R;

-- Unable to read loched Buffer.
-- Possibly wrong blocking factor.

-- ILOCXEO.I0 PACKAGE PRIVATE SECTION

private

subtype RECOIRD.IXDEX.TYPE Is
NATURAL range 1. .BLOCKINO.FACTOR;

type BUFFER..RECORDS is
arra(RECORD..INDEX.TYPE) of ELEMEXT.TYPE;

pack&ge 310 is
nov IJIRECT..IO(ELEMEXT..TYPE v.% BUFFER.RECORDS);

type FILE.TYPE is record
datajfile SXO.FILETYPE;

ITEM out ELEMNT..TYPE;
FROM in POSITIVE.COUNT);

-- Returns the element "ITEM" from th. logical record
-- number "FROM". Raises EXD-ERROR exception if "FROM"
-- cauces read beyond SIZE(FILE).

7th Annual National Conference on Ada Technology 1989 489

procedure READ (FILE : 1% ouat FILX.iYPE;
ITE wit EENJT.TYPE):.

-- Returns the element "ITEW' from th. current logical
-- record nu^6er then increments the logical record nmuber.

Raises ENO.ERROR exception if current record msher
-- cause$ read beyond SIZE(TILE).

procedure WRXTZ(TILE :in out FILE..TYPE;
ITEK t in ELERtUIT.TYPE;
TO : ilk POSITIVE.COUXT);

-- Vrites "ITER' to the logical record number "TO".

procedure VRITE(FILE : IR out FILE..TYPE;
ITEM in ELEREIT.TPl);

-- Icremeats the current logical record nuber,
-- them writes "ITEI to the "FILE".

-- ExceptI4,AS

STATUS.ERROR :exception
rememaes 10OEXCEPTIOIS .STATUS..ERROR;

-- Attempt to operate om unopened file,
-- or open an already opened file.

XAME.ERROK : exception
reames IO..EXCEPTIOUS.AMtE.ERIOR;

-- Invalid "XANE" string specified during
-- CREATE or OPEN.

USE..ERROR :exception

function TORM (FILE :in FILE.TYPE) return STRING;
-- Returns the form used to open or create the external file.

proceduve PRINT-.FORK (FILE :in FILE..TYPE);
-- Prints the form string associated with the external file.

function Physical.Record(FILE :in FILETYPE)
return POSITIYE..COUXT;

-- Returns the current (physical) Blocked Buffer record number.

function Logical..Record(FILE :in FILE..TYPE)
return POSITIVE-.COUNT;

-- Returns the current (logical) record number.

function Rosident..Record(FILE :in FILE-.TYPE)
return POSITIVE-.COUNT;

-- Returns the current logical record number
-(in the current physical record)

function SIZE (FILE :in FILE-.TYPE) return COUNT;
-- Returns the number of the last physical record
-- in the external file.

function IS-OPEN (FILE :in FILE-.TYPE) return BOOLEAN;
-- Returns TRUE if "FILE" is associated with an external file.

490 7th Annual National Conference on Ada Technology 1989

function EXD.OF..LZ(FXLE : In FILE..flPE) roturz. BOOLEANl;
-- Returns TRUE If "FILE" is at the last. physical record
- In the external file.

-Input &3k output operaktions

procedure READ (FILE in out FILE..TYPE;

procedurt OPEN(FILE :in out FILE.TTPE;
NAKE : lin STRING :v "14;

FOX:In SnRING :0 oft);

-- Alsociatos the file. objtcl. 1711111 with 09e
-- external file specifiod by the ~iA* "MAKE".

proci-duro CLOSE(FILE : in out FILE..TYPE);

- Disconnects th. current association of the
*-file object "FILE" with its external fil.

procedure DELErE(FILE :in out FILE..TYPE);

-- Disconnects the current association of the
-- file objert "FILE" with its external file.
-- The external file ceases to exist.

procedure RESET(FILE : An out FILE..TYPE);

-- Rewinds the file object associated with "FILE".
-- Sets the Block and Record numbers to one.

procedure FLUSN(FILE : in out FILE..TYPE);

-- Forces the current Blocked Buffer to be
-- written to the file object associated with "FILE".

F- ile information operation's

function NAME (FILE : in FILE-.TYPE) return STRING;
-- Returns the name which was used to open or
-- create the external fi.le.

-- LOCKED.IO PACKAGE SPECIFICATION -

-- Author: John J. Cupak Jr., CC? -

-- With Support From -Roy Hoffman -

-- Date : 24 July 1987

7th Annual National Conference on Ada Technology 1989 491

with DIRECT.IO1;

with IO..EXCEPIZONS;

generic

type ELEMENT..TYPE is private;

-- Logical record type

BLOCKINGJACTOR :in POSITIVE;
-- Number of logical records per blck

package BLOCXED..IO is

type FILE..TYPE is limited private;

type COUNT is range O..INTEGEAILAST;
subtype POSITIVE..COUNT is COUNT range I. .COUNT'LAST;

proc~.dure CREATE(FILE in out FILE..TYPE;
NAME :in STRING :m '

FORM in STRING :W

-- Creates au external file with the name "NAME"
-- and associates the file object "FILE" with it.

type BUFFER.RECORDS is
array(RECORD.INDEX..TYPE) of ELEMENT-.TYPE;

package 310 is

now DIRECT.1O(ELEMENTTYPE 0~ BUFFEA..RECORDS);

type FILE.TYPE is record
datafilo : IO.FILE..TYPE;

end record;

end DLOCKED.IO;

492 7th Annual National Conference on Ada Technology 1989

References rattern Analysis 4 Recognition, Inc. (PAR
technologies). Mr. Cupak was a senior analyst

Illetr 8 Hcrr, C'. S.. ?IcNichotiI, D. G., And Cohen, S. responsible for the design And developwtrnt of
the Remote Data rntry Subsystem for (H.PARtS

G. TCoinppltr Validation and Rteusable Aili an the lloneywell/.L.TICS system using P1./I.
Paris For ReaI.Tini Enbedtd Applications," Mr. Cupak 'wss also emsp1oyed by Gentral
ACY Adt Ldfirrs, VW. Vill, No. 5, pp 751%, Dynamics - Eastern Data Systems Center. As
Sepiciobtr/Ociobrtr 1W8. A senior progrmer, Mr. Cupak SenerAted and

mAintained UxiVAC-1 100 system software. He
Lisplemente a computer job suamary accountILRM S8I1 Atnerican National Stitladrs Iletesitc Nlait. program In structured COPOL to support

val for the Atia Programistissg Laoguogv. corporate billing sysitem. He designed Daita-
ANSI/ldlL-STI) 18lSA-194$. American Na. graphics 4500 Computer Output Microfilm (COil)
tional Starntrds Intstitute, New York, 103 control And formatted programs. Use deitigned

- and implemented the first on-line documentation
manual and help commands for proprietary data
retrieval language.

- Mr. CupAk was a graduate teachingassistant in the Depart*ent oif Computer
Science At the state University of Xey York At
Albany. Mr. Cupak w.,# responsible for davol-
apintg And teachinat structurttd programming In
COWOL. Mr. Cupak's thesis, "Application of
List Processing to the Detection of Arterial
Lesions by A Labeled Cell Index", Applied an
innovative single-pasis Algorithm to detect And4 ' recognize objects for subsequent detailed
analysis. During A summer at graduate school,
Mr. Cupak was a private consultant for

SAWE: John J. Cupak Schenectady County Community Calla&*, where he
TI1LE: Principal Kngineer dettipned and inhplenanted A student Informatioai
EICAT104: I.A. in biology. Mathi co-major system In CONOL.

Syracstse University Hr. CupAk was a progrxoperlanalystL for
M.S. In Computer Science the New York State Department of Environmental
S.U.H.Y at Albany Conservation (DeCon) Administrative Services,

where he designed and Implemented the Pesticide
EXPERIEHCT.: Reporting System using COBOL and MAFX-lV. In

Mr. Cupak joined HKRI-Singer In September Addition, het was responsible for supporting
of 1980 and Is currently responsible for co- small game and turkey idlife manAgesent
ortlinating, activities of the HRB Ada Technical analysis programs.
Vorking Group, supporting the Software Mr. CupAk developed the Ada Certificate
Productivity Enhancement Program (S/PEP) and program At thet rennsylvAnia State University
Tools committee, providing guidance and direc- and has taught Software Engineering, Introduic-
tion to thle Ada project staff on design and im- tion to Ada, and Advanced Ada. Ile was instru-
piementAtion In A0a. In addition* he Is respons- mental In causing Data Ceneral to donate a
ible for supporting Mlarketing and ItFP activities. MV-10O0 Ada Development Environment to Penn

Mr. Cupak was the RI for the Mission Stete In support of the Ada courses.
Generation CPCI on project CC. He was re- During hsis career. Mr. CupAk has
sponsible for SKS, design asuA development of All authoredlpublished the following pnars:
Ada software for hsis C?,CI. He directed the 1. "Application of List Processing to
Ada/?OL selection study for project GECE and Detection of Arterial Lesions by a
Assisted In the developmat of the Ada Program- Labeled Cell Index", Mater's
mar' s Guide. He also developed the Ada train- Thesis, SLINYA, 1975
Ing course for the project. 2. '4.4JLTICS Remote Data Entry System",

Mr. Cupak was the lead software engineer RADC-TR-79-265
for the Generic Electronic Combat Environment 3. Co-author - "S-Trees; for Directory
Simulucion proposal, which was the first Ada Organization"
proposal won by HIRI-Singer. 4. Internal project study - "Ada/PDL

For A number of yena. 1". Cupak %.as the Comparisons". 198'. "Ada Course",
RI for the DEOS and directed the design and im- 1986, and "OOD with Ada", 1987.
plementation of emitter location clustering Mr. Cupak belongs to the Association for
analysis, B-tree, ISAM, and performance Computing HKichinery (ACM).* the ACM SIGAda,
monitoring software. Mr. Cupak was also as- and the ICCP societies. Mr. Cupak is tise
signed to a special project in which hie devel- chairperson for the IIRI-Singer Ada Technical
oped a disk 1/0 timing analyzer in FORTRA!1-77 Working, Group and is a member of the Singer
for the SEL-32/27 under MPX-1.4. Mr. Cupak Corporate Ada Working Croup.
also developed a prototype Automated Configur-
ation Management System (ACMS) In C and shell.

Mr. Cupak was previously employed by

7th Annual National Conference on Ada Technology 1989 493

DEVELOPING A UNIVERSAL Ada TEST LANGUAGE
for GENERATING SOFIWARE/SYSTENI INTEGRATION

and FAULT ISOLATION TEST PROGRAMS

by Jehuda Zieglter, Jerry MI. Grasso, Linda G. Burgermeiter, Leonard D. Mfoliod

11IT Avionics, 390 Washington Avenue, Nutley, NJ 07110-3603 (201) 284-2030

ARSTIRCT Sof'twart'system dcveIojwiwnt. acceptance. and malitenance
(regression) tes1~.. has traditionally been performed with

ITT Avionics has developd a Universal Ada Test LanSuage spcial purpotr test equipment ccntrolled by non-standard
(UATLI for writing automated itst programs to perform tes sct-nar)lngoas. The DoD) Computer Programming
extensive real time soft Artlsystem performanice testingI and Lltwi trwP~lcy directives 11 ,21 do not address it Issue of
factory production/field mainitnance fault detection/l standardizing integration test control languages.
isolation. The L'ATL was developed as a STAR-S (Software
Technolooy for Adaptable Reliable Systems) Foundation$ The LIATL. has beetn deslAned as a general muli-purpose
projec to provide support to the replacement of ATLAS. v~t language ,hmi provides a consistent framework for
BASIC, and other special porpose tst control languages with testing at all ohaists of the softwarelsystem development,
Ada. The UATI. consists or at st of portable Ada packages)rodluction, and maintenance Ife cycle. Ih supports extensive
thai provide the user with a complete complement of real time softwint integration testing at the CSCICSCI level
itanidardized reusable its functions. These functions include within a host dtveloproent processor over a tasking mailbox
an interactive metnu driven test nmager, on-line operator interface (Fig. I), and hardwarelsoftware Integration testing
controlsidisplays. real-time "closed loop" test data stiniulusl or hardware fault dtetionfisolation of it complte
response. instrument control drivers, tst data recording. and sysitmisubsyn.:rn over MIlL-STD-i5538 and IEEE 488
both ASCII and grapolcal data reduction analysis. Currently, interfaces (Fi&, 2).
the UATL supports driving a software unit-under-ts
(ULT) over internal memory. or a hardvware UUIT with a s, t Adat itnirodtt.'i the advaintatges of built-in~ multi-tasking
of stimulus and measurement instruments over IEEE 488 .411PpI. extcnsive data consistency checking, portability and
and MIL-STD-1553B interfaces. It has been designed to reusbillty or isecurring test functions, and compiled code
readily support the addition or miore reusable test control or that rns much~ faster than ATLAS.
analysis functions to the UATL "its language" library, and B)spotn xesv otneitgaintsigi h
allows the user to dt~elop any unique tst functions a1t host spotin etv software I nt(egvrtonmn te inte
Ada code level. encourages the rapid prototyping and validation of system

INTRODUMTON functions early in the development process. This greatly
reduces the number of untested functions that must be

DoD directive 3405.2 11 specifies Ada as the p~referred verified on the final system hardware where test resources
language for getnerating automated itst programs. It is not are usually very limited.
required at present because of the standardized test support
funicions currently available in ATLAS. However, the long NOrlWARK~ DkLor.%EN-rtb%T
range goal is to transition all DoD) software to Ada 121. FACILITY

The major strength of the ATLAS language has been its AAA ctrmT1.1:
specify tests that are independent or the specific test station ?v%§SI thF 1~ DAT TET.rOPATION
in use 131. The UATL instrumient control procedures have 1%,n'r. Ovfinifr uoO1ING T U-T stoN'rouisCI
been modeled after the ATLAS constructs to retain AN FC*N DATA KEUUTIONI
familiarity with this IEEEIANSI standard test language 141 1"m'ur". Ih.m ANALYSIS
and make the transition to Ada relatively straightforward and MA*3. I .K3FC
cost effective. mNTAmA

-SOP-rWANF UNIIrk TKICT1
Hovver. although ATLAS can support hardware fault -LNW UNE A A TA$KLNO
detectionlf isolation testing, it cannot be used to perform real MbODEL MAv OE ALN %%1M
time soft%%2relsystem integration testing. ATLAS is limited St IOC DLV~GOLT "I
in its support of digital testing, does not provide the real 1ADLWflS4 IKEYBOANt)
timec high data rate throughput that is necessary for _________________

integration testing, and does not contain any constructs for
data recording and reduction capabilities needed for Fig. 1. Application to software CSCICSCI testing within a
extensive software/systemi perforniance analysis. standalone host processor software development facility.

494 7th Annual National Conference on Ada Technology 1989

standardizing on the use of Ada for all the test software.
these nultiplicative efforts will be eliminated resulting in

VARIOUS TEST CONTROL both non-recurring test program developnent and recurring
DEVICESI1NSTRUMENTS Ttr CO,"2Tito. malitenance cost savings. Ada suppots the development of
CONTROLLED IN REAL iX.rrrAcr portable application test program packages that detect and

TIME OVER A TES (103 0 51 isolate faults in the uttrr to the LRLiISRU (liettshop
CONTROL BUS lEFE AIM) replaceable unit) and component level. The appropriate test

1xicgtes are then "with"ed in and used its required by the
VARIOUS test programs for each target test station.

|XLkosvACrLv The UATL was designed to provide as nmny reusa|ble test
COMIPUTER functions as possible to reduce the test gentratirn effort. but

SF. /LR S ." Ru,,, ,, it does not restrict the user from generating any unique test
cotu. ,controls at the Adi code level. Since ATLAS is an

UNDER 1.%nK9rAC#K UATL NASEO interpreted language. it restricts the user to what is defined
TEST rIlslh, TEST PROGRAM lin the language and what is supported by the ATLAS

compiler ut run time executive (interpreter) in each
Fig. 2. Application to hardwareilsoftware Intlratim and specific test station. When instrmnents with new functions
fratolrI/malItenance fault Isolation tesling over the system become available many current ATLAS implementations
contol bus and %ia digital control of various lst require the ustr to impo r compiled code (such as
dev ceslinstnmuents over the test control but. FORTRAN) to accomplish the required test tasks.

Additional UATL components have also been developed to The strong Ada data type checking can also he used to
aid test proram generation, provide on-line operator test guarantee that the test data is consistent with the UUT by
control and monitoring functions, and post-test data "with"ing in the actual Ada interface data specifications
reduction and analysis. Future extensions to support data 10 front the software-under-tst in the UATL based test
over additional interfaces, control additional test programs. the Ada compiler will automatically verify that the
instruments, or accomplish other reusable test functions are test data is consistent.
easily added to the UATL test suppor library. The faster operation kahout an order of magnitude in many

As pan of the STARS project requirements, portability of cases) of compiled Ada code compared to interpreted
the UATL software has been demonstrated by operating ATLAS. will considerably reduce system MTTR (mean time
both on a VAXstation II under VMS and on an IBM AT to repair) with its resultant recurrent timt and cost
compatible (liT XTRA286) under MS-DOS. Portability has reductions. The Ada multi-tasking capability also supports
been designed into the UATL by limiting any unique ihe noning of parallel digital and analog (when the
hardware dependent software to configuration dependent instruments are available) test functions which also improve
package bodies, "separate" procedures. or initialization data the test throughput for a given set of test station resources.
files. The performance tests written in ATLAS for intermediate

level maintenance testing of sonic of the more complex
In reality it turns out that convening ATLAS test programs LRUs on a major project at 1IT Avionics, take several hours
to run on different test stations is not a trivial process and it to run, and tens of hours to link, on the Advanced Electronic
will be just as cost effective to convert them to Ada which is Warfare Test Set (AEWTS). There is thus much room for
much more supportive of portability. An automated ATLAS improvement in this area.
to UATLIAda conversion tool can also be developed to
retain the existing large investment in ATLAS test programs. The design of the UATL has also been driven by the STARS

requirement for portability. The UATL software was
The UATL received the "Most Innovative Product" award at developed on a VAXstation II and ported to an ITT
the STARS Current Products and Fture Directions Workshop XTRAr286 (IBM AT compatible). The Ada specifications
held Nov. 28 - Dec. 2. 1988 in Arlington, VA. and all the higher level code are common to both the VAX

ADVANTAGES IN USING Ads and XTRA implementations. The unique software that was
required to interface with and control the different target

Current arguments for the suppon of ATLAS 15,61 are hardware was limited to configuration dependent package
related to the availability of readable higher level test bodies and "separate" procedures.
(station independent) commands in ATLAS. With the
development of the UATL and its reusable, standardized Adi truly lives up to its porability claims. Less than 3 of
Ada test procedures labeled with the long readable names the code had to be modified in order to port to the diTsupported by Ada. most of these argtments are removed. XTRA. mainly in ortder to interface with the different 1553

and IEEE 488 interface hardware. The only restrictions that
There are also many advantages for using Ada as the we found on rehosting the UATL software to the IT XTRA
standard test control language. In most current were in the memory management limitations of the MS-DOS
implementations, the fault detection and isolation programs operating system and in some of the optional (chapter 13)
for on-line BIT, factory production test, and for Ada language functions that were not tested by the Ada
organizational, intermediate, and depot level maintenance, validation suite. These problems will disappear when the
are rewritten independently in various languages to run on chapter 13 functions are tested and with a more robust
the actual system hardware or the different test stations. By operating system such as UNIX or PSI2.

7th Annual National Conference on Ada Technology 1989 495

Ada's portability will enable the UATL to be easily rehosttd The Digital 10 CSCs have been designed to Insure maximum
to newer, faster processors as required to meet test portability by limiting the hardware specific code to
requirements. The UATL %ill thus never become restricted configuration dependent package bodies and "stparate"
by obsolete processors that may have been built into test procedurcs. This has been demonstrated In the rehosting of
stations such as is currently the case with ATLAS. these packages from the MicroVAX and its Q-bus based

We have found that Ada also greatly improves the quality initrfact cards to the ITT- wih its PC-bus.

and productivity of the softwar englineering process. The
entire UATL effort consisting of the design, code, and V roA AT,

Integration testing of 1,044,560 bytes of generated ob ject 9IA N MV.MO V --code, including the recoding of 24,012 bytes for th.- ,.axr~ruvAvs

rehosting to the IT XTRA, was completed and M I S -t
demonstrated In a 12 month period by a team of 5 software UNIT xsI _i

engineers.I"A
In addition. many CASE (computer aided software V

enginetring) tools are commercially available, or being UU. cSC x m m.M
developed, that support software development and IKV 1 o

maitnance In Ada. 4T Ous cK

DASIC UATL FUNCTIONS "% ! cOPKNA

UATL test support functions are provided for Test Program morrALAO TASK
Generation, On-line Test Operation, Real-time Test Control, o.lNK
and Post-Test Data Reduction. The nieractive menu driven "
Test Manager helps manage the test station and test program ----- --L ANAIN91%

configuratio and provides menu driven controls for creating "TA ES CONTROLS
and runiing test and data reduction programs, The 9COI4 DATA D ,
ControlDisplay supports On-line Test Operation, and the DIATA srLi:UEf oPrRATI
Trajectory Computation functions ar used to support both US COMM=
On-line Test Operation and Post-test Data Rduction
analysis. DATA xxDVCr r

aiDUCTION1 'Xj£ OPrATO

The UATL has been designed with a building block, layered, ANLSI. "xsPOvNSs tulr w
approach. Each reusable test function is provided with a Cl o
standardized Ado interface specification to the next higher
level. The set of Ada packages for each function was also
separated into common, portable, compilation units and Fig. 3. Bask UATL components and their Interfaces. iMe
configuration/hardware dependent package "bodies" and d.silg supports d. additin of packages to andlegt
"stprate" procedures. Where practical, the UATL 10 over a di.kWs Ws faces, comM vms test
componnts were designed to be configurable via ASCII Instnmn.es, pe'form data analys, etc.
configuration files that are read during test initialization.
This allows the maximum portability of the UATL to various It should be noted that these CSCs have been designed to be
test station configurations. of general utility and can be used as standalone reusable

interface drivers by any Ada software to interface with the
As illustrated in Fig 3. the StimuluslResponse. IEEE 488 or MIL-STD-I553B buses or to other tasks within
Control/Display. Data Recording. Data Reduction, and IEEE the same processor via mailbox nessags.
488, MIL-STD-1553B, and Internal Memory Digital 110
CSCs provide a complete digital test capability and form the Data Recording Function
baseline to which the additional test functions are added.
The Stimulus/Responst. Digital 10,. and Data Recrding
functions support the real time running of the automated test The DasaReordini CSC provJds procedures for on-line
programs. The Control/Display function provides on-line recording of all, or selected, test data on disk or magnetic
operator test controls, and the Data Reduction function tape cartridge for use in detailed off-line data reduction
provides a detailed off-line analysis capability, analysis. This function is necessary in order to allow the test

program to run in real time and collect the data for detailed
DIgial 1/0 Function post test analysis. The only analysis that is required to be

accomplished in real time is what is needed to interactively
The Digital 1O function provides the ability to interface a change the test operation.
UATL basid test program to the UUT over various Sfimulus Response Function
interfaces. Curre'!y (Fig. 3) three packages are provided
with proceduresnask. for sending and receiving messages
via the MIL-STD- I553B and IEEE 488 buses, or via an The Stimulus-Response CSC provides the capability to: send
internal memory malfox interface. This can easily be stimulus messages at a specified time and rate with the
expanded to add packages for controlling 11O over other ability to vary the value of selected field(s) on ea6 output,
interfaces such as the new standard VXlbus for instruments, save and compare output responses from the UUT and

496 7th Annual National Conference on Ada Technology 1969

determine if they are received withn specified response status of a particular response is detennined by the user
timeouts, modify the test sequene by activatingldeactivating supplied comparator tasks. A "no response" timeout error
events based on received trigger responses. and detect faults condition can also be determined if no match is found for
based on the reception of Incorrect or non-reception of the expected messages. The response event also has the
expected data. capability to interrogate devices on the Interface to elicit a

As illustrated in Fl. 4. the UATL provides three basic responst controlled via the response delay timing parameter.

evetrs for controlling test operation: stimulus, response and The
trigger tasks. Multiple events can be run in parallel under the or rigger event is fineda a t list of stimulus, respons,
Ada asking model. The stimulus task sends messages to the or other trigger tasks that are tO ie activated or deactivated
UUT via tne Digital 10 interface handlers. The responst task when the triger occurs. A trigger OCCUrTensc is etecmined
receives messages from the UUT and calls the comparator by a Eatch conditOtn returned by the associated comparator
tasks as required. The trigger task is used to effect real-lime task. Each trigler task can also be set to sfe hrough a
lest sequence changes in reaction to messages received from triler list each tie the current trigger is satisfied by a
the UUT by actlvatlng/deactivating (triggering) other events. match.
Direct control of the UATL events is also provided via
procedure calls from the user test program. The block wait function is also available to halt execution of

the "main" test procedure until the group of events with a
Sspecified block name are completed. Block completion can

Ur STIMUL.US TASK be specified as the completion of all, or just the first, event
TaSr STIMULUS in the block. The UATL will shut down all events in a block

CnOOF ODt!t'r before returning control to the test procedure.
PU TAWKS MUMi PI TO

E d- i v Control/DIsplay Fuction
UATL USPONSI CAaT1NnM COM MAA"lrl

TThe Contmrol/Display function provides the operator with the
1PUNS)Ir K TASK ability to monitor and control the on-line test program

AIoPM execution. The operator can activate, deactivate, and control
CONTROL TASK IWONFACi the operation of the tests, on-line test analysis, and data

STIMUtUS COl"11101. recording. The control display function also supplies
T i Rtr subroutines which suppon the input/output of messages

f"4IPtNOV CONT11L0l.- R mwo M between the test program and the operator.

rol l T aiGO1 CoTai. I The user lest program has the option of activating the
SI.TNIGO TASK Controll Display function by calling a supplied procedure.
l"rowr Once this call is executed the initial screen with the main

• r ATV OT t"tu menu is displayed.

TASK COML.KTION , Mainv> REcording RUn STatistics TRaffic MEssage QUit
"III.OllK WAIT 14*4HOItlrA

WItOseCKAI TThe 'RUn' command will start, and 'QUit' will stop. test

execution. The 'REcording' option allows the user to
I.OCK WAIT TASK activateftenuinate data recording or modify the list of

- - IlCO- Io messages (identified by Batch ID) that will be recorded.
ROCKl' WAIT The 'STatistics' option provides a real time monitor display

Fig. 4. Stlimulus/Respoose Tasks and their ilteractions with of overall test execution. As illustrated in Fig. 5, this
the user test program and UUT. displays how nany messages for each batch ID have been

exchanged over each interface. The statistics display has a
The stimulus event is defined by a list of messages and the menu which allows the operator to scroll through all the
rate at which they are to be transmitted. Transmission of the selected batch ID's. change the list of selected nssages to
entire list can be repeated by the specified circulate count, be counted, freeze the screen update. go to the TRaffic
and restarted by the specified cycle count. A modifier task, display. or go to the MEssage Display.
which will be called to modify the message before its output,
can also be assigned to each messale. Each event can be set The 'TRaffic' option provides the real time display of the
to run freely without interrution. wait at the first cycle for t CuITent messaege traffic being exchanged with the UUT. Astrigger, or wait at the stan of every cycle for a trigger event. shown in Fig. 6 the last five messages exchanged in each
The response cvent is specified with a set of storage buffers direction are displayed at any given time. The operator has
to save received n..ssapes from the UUT. Other buffers can the option to select which messages will be displayed, freeze
be defined to ia,' the indexes which point to the saved error the screen, go to the STatistics display. or go to the MEssage
responses, i. ; ervr response receive count. The error display.

7th Annual National Conference on Ada Technology 1989 497

Message statiticts name. This creates the message count statistics print file
111"h turn mains =14U KU AL ILOCN. TOTAL~S illustrated in Fig. 7.

2 46 46 MCSSAGE STATISTICS INIKOUT
3 35 31
4 0 Test WXA 5 un :S3: lOSA
5 so is START TIME V111,11911 10:24:29.30
6 0
7 0
11 0 Batch IDsl 15535 IL9461 INTERNAL. LOCAL ITotals
9 63 63

10 14 14
11 237 237 0 1 0 0 0 1 1
14 23 15 1 3 0 0 0 5
13 120 120 11 0 316 0 315

15 0 0 23C 230
TOTALS 135 262 147 112 716 12.2 0 0 0 79 I 79
StAstetiee. NExt PPevkmg SElection Taltic Fileeze

11g. S. Sample Message Statistics Monitor ispay Scien total 1 60 316 245 to 701
EVror Statistics

Message Traffic Data
Mes~ses to U U T heiaeW* kw UU T Lost sequence numbers

frem to betvieen timesYin Bach 10 wswtaco Th,. EIMCh 00 INNISHWO

13!46:46:26 20 13:411:4716 15 INER 2 2 00:00.13.19 - 00:00:52.93
53 :101 OW 05" is c 00 owA0 7 is 00:01.10 16 - 00:02:23.4S

135 157 00:10:05.36 - 00:12:37.23
13:46:46:26 10 13:44;47:46 13 I15536 __________________________________

20 002 O4 smFig. 7. Sample Data Reduction Message Statistics Prinout
13:44:47:26 14 215S36 13:46:48,27 0 611466

5S alt 020 IAZI 21 0A02 004 0404 For a printout of the recorded message contents. the user
.3:4646,836 1 IN WTERNAL->~ 134:46 III~E44U calls the Message Printout procedlure with a control table

OW 034 50 22 0102 036A 471111 indicating thet IDs of the recording botches to be printed and
13:4".-5 12IEEE0 1:46'71S 2 IIS32 the output print file name. If an application dependent

52 02034454 12 11SS l:6:7S 2 OM 553 reduction task is not provided, then the default printout
showni in Fig. 8 of the decoded UATI. defined headers and a

Tm~im> ~lecionS~atstis FPwzehex~ dwllp of the message data is created. If an application
Traf~cu S~ectin SatiticsFf1620dependetnt reduction task is provided. then the user
Fig.6. ampe Mssae T*M ataMontorDislay dtitrinincd ASCII strings will be printed for the message

Screen ml esaeTem aiaMntr)sl data contents following the message header printouts.

The Control Display function also provides procedures which
can) be called fromt the user's test program to display MESSAGE DATA PRIXTOUT
messages to, and receive input from, the test operator. The ToJI, : wRA 5 Run .SN 105 A
Operator Miessage and Operator Alern (flashing output) START TIME , 5125/1918 01:51:12,110
procedures display it message ait the bottom of the curent MESAGE ;- Batch ID a0 Sent at: 00:00:01.57
control display screen, tund the Operator Prompt procedure sequence Number . I Data Byte Count - 26
displays a message and wa~its for an open, tor response. Interface - LOCAL

T7he 'NIEssage' option provides a real time display screen for MESSAGE '.. Batch ID -14 Sent at: 00:00:03.06
the operator display and prompt messages. The most current Sequence Number u3 Data Byte Count a I

interface -115535messages are displayed on the screen with an arrow pointing RIT - I TRANSMIT Subaddr - 17 word Count-3
to the latest. Wheni the other displays are activated, the 0401 000o 0052
operator messages are displayed at the bottom of the screen. MESSAGE ;; Batch ID - 20 Sent at: 00i00;04.08
Data ReducilonAnaiysis Function Sequence Number - 4 Data Byte Count - 21

________________________Interface - LOCAL
UATI. EVENT MESSAGE

Data Reduction provides both ASCII and graphical support Bntroce S E S Stavete H RU TriggrMd. U
functions for analyzing the recorded test data. ItraeIE48sae RN TigrMd U

MESSAGE :; Batch TD 12 Sent at: 00:00:0W76
For a tally of all the messages in the recorded file,- and an sequence Number a Data byte Count - 22
indication of whether any messages output to recording did interface -IEEE468

not get recorded, the user calls the MessageStatistics Receivers - 6
of Message Byte Count - 10procedure with a control table indicating the IDs ofthe 4C 45 56 45 4C 2D 31 32recording batches to be counted and the output print ile 30 2F 30 30 20 20 20 20

496 7th Annual National Conference on Ada Technology 1989

MESACC :; ktch ID , * . n AL O :'OO09.51 the number of curves with their color and line type. Eachsequenct Musber , I M.A byte Count , $2 plot point is associated with a selcted curve. To assist in the
Interface - LOCAL
It TST IS coMrPL tt 1 graphical analysis, curve smoothing and least sqarts fit

_ funictions are provided. The trajkctory computations pockage
Fg. 8. Sample D~ata Reduction Mvsse Data Printout ca dlso be used to perform position accuracy analysis.

For general reduction analysis the user calls the Mcssale_ INSTRUMENT CONTROL FUNCTIONS
Analysis procedure with a control table indicating the IDs or As illustrated in Fig. I1. %e have added various test
the recording batches to be analyzed. and a user supplied instrumen drivers that translate Ada procedure calls into
appliation dependent analysis task. This user task will be IEE 488 bus commands to control %arious test Instruments.
passed all the desired recording batches for analysis. The to the basic UATi. functions described above. These
user can output the results his analysis as ASCII strings that instrument drivers are supplied at sevenl levels.
will be printed or as plot data to be graphed. General ATLAS type test commands am supported by the
For graphical analysis, the UATL provides procedures to Functional Instrument Control package. This enables the
create either bar graph (Fig. 9) or multi-line x-y plots (Fig user to write test station indepenlnt proSrams at the UUT
10). The UATL procedures will creatc tlve graphs, bilt the level. The Functional Instrument Control package then
user must provide the data to label the graphs and provide converts the user commands to specific instrument controls
the plot data. The graphical output can also be saved in a bsed on test station and UUT interface device configuration
OKS Metafil, data.

TEST MESSAGES Instrument controls are provided through the InstrumentM driver packages. A standard MATE-CIIL (ModularE 0 Automated Test Equipment - Control Interface Intermediate
s 40 Language) instrument driver provides bus commands that

A will control any instrument that responds to the Air Force
E MATE standard CIIL commands. Instruments that have

additional capabilities that are not included in the CIIL
R0 10 standard can be accessed via the "altemrate" language

u command drivers. Specific instrunwt control packages amre
N 0also provided to process commands in an instrument'sT IlS53S IEEE4M INTERNAL LOCAL "native" language. Drivers are also provided to control

ITERFACE signal switching devices that are used to route stimulus and

Fig.. Sample Uar Graph Output Sree out measurement data to the appropriate instruments.

POWER READNOS VS FREOUEICY The UATL also provides a library of reusable generic test
-54.0, programs that can be used to test standard components of

various systems, such as a MIL-STD-I55B interface, an
-2.0. amplifier. etc. This provides test capabilities at a higher level

p than the ATLAS LIUT directed comnmands and facilitates te
o -50.0. development of standardized test. for similar components
W - .included in various systems. This also greatly reduces the
E test program generation effort.
R -46,0. User test programs "with" in these instrument and higher

level test control packages to control the devices on the IEEE
o -4.0 488 instrument bus. Similar packages can be developed to
M -42.0 . control instruments over other test buses, such as the new

instrument-on-a-card VXlbus standard, by modifying the-40. _ package bodies of the lowest level UATL instrument specific0 1 2 v • F drivers. The UATL instrument control specifications. and all0 1 2 3 4 5 6 ' test programs developed with them. will not have to be
FREQUENCY (} modified. It is expected that if Ada becomes the accepted

Fig. 10. Sample X,Y Plot Graphical Output Screen/Printout test language, these types of packages will in the future be
The generic BarGraph package provides procedures that provided by the instrument and test station vendors.
allow the user to create a bar graph. The Functional Instrument Controls
InitializeBar.graph procedure allows the user to specify a
title, x, y -axis labels, the number of bars, and whether the The Functional Instrument Control package provides test
bars will be vertical or horizontal. The DisplayBar Graph station independent instrument controls to the user. These
procedure allows the user to specify the size, color, and fill controls are Ada procedures which provide the functionality
shading for each bar. of ATLAS statements using the verbs apply. rcmoe. measure.

verijy and read. For more specialized instrument controls theThe generic XYPlot packages (for integer, float, and fixed user can access the UATL instrument specific packagesdata) allows the user to specify a title, x, y -axis labels, and directly. For reusable, test station and UUT independent

7th Annual National Conference on Ada Technology 1989 499

I USER GENERATED TEST PROGRAM1

TWSCONTROL
IEEEA" Ius'ROW)URIECALIS

IEE KSSZ(STANDARDIXED
UIMAETASK TES PROGRAMS

ISRMNSDIGITAL-10
1'r ULTava Tar7

POWER DR0IFU#FWA1.S CONFIG UU/
TRS tirA110FUNCTONAL LIAA CONNECTION

IMMUhwwrNT C COIIFIG FILE
SOE TIMULUS I M3L

UNE MTRRUSPONSEC ?'receWtm fr ATLAS tqpe

S%%lchias. Syachressgoqq STATION
FORM IrRI Digital. *a ~vdOct"CONFIG FILE

FREQUENCY (COMM3A1V. Nfl STRU.~iENTIC11101

FRQEC.TEST DERICES. INSTRUMENT DRIVE

F~. . ddt VNrthe IRal StnadIdTet orm, Funtoa Isrmn otos n ItuetSeii
sotar rieSEPERde ocnrlvroslsnnnsvasadr U rsei ntv or atute SanguIF e)

pri.de iioual the esab e Stndar z co tr grhish FucinlTR onstrumnt MEtrs, and Insru0nSecfi
ste m rvesapproied to thero physicul instruments thrug thedar usf NNSCOND , or scc(ateo r alerat language
and conCIIt te to scfic turatin i coSelete basedion MICROStaConD onstar nteac SeCOiDS c:-u o da0t-.
instrumentri cotesl prcedues cand deut type from the MILLISECOND constant SEENS I- .OE-3;
phystical institienht aremuseds pTh ed cina Fickure CENMINTER constant EONS :.-2.;
brels vitaHetsainidpnetcnrl hc r IOTR constant SECONS I. 30.0

the nupp t te pysialinsruent thouh te se f DANOECN constant SECONDS :m 56400.0;
an SCI tet taton oniguatin rle Seectd uncion' MICROSECON constant SEATTS :- .01-6

MILLUAR constant WATTS 3600.3 :

Package FUNCtIONALINSTRWIENT,.CONTROL _TYPES Is MILOIWATT' constant WATTS z- 1.013
.. MEGAWATT constant WATTS I- .016.

subtype METERS Is FLOAT range FLOAT'first. .FLOAT last;
subtype HERTZ Is FLOAT range TLOA~TIrst. TLOAT~Iast; MICROVOLT Constant VOLTS :- .OE-6;
subtype SECONDS is FLOAT range 0.0. .FLOAT'last; MILLIVOLT :constant VOLTS :I .OE-3;
subtype VOLTS Is FLOAT range -10O0E3. .+10.OE3; KILOVOLT constant VOLTS I" .0E3;
subtype AMPERES is FLOAT range 0.0. .l.0E3; MCOMEE cntn MEE .E8
subtype WATTS Is FLOAT range 0.0. .1O.0EG; MICLIAMPERE constant AMPERES :- .01-6:
subtype OHMS is FLOAT range 0.0. FLOAT'last; MLIME. osatAPRS: .13
subtype DBM is FLOAT range -150.0. .+200.0; MILLIOHM constant OHMS :- .01-3;

subtype RFjREQ Is HERTZ range 1.00-. 2.01:9, KXLOHM constant OHMS :- .013;
subtype MICROWAVEJrREQ is HERTZ range 2.019. .26.0E9*; MEGOOIM constant OHMS :- 1 .8
subtype LICTJREQ is HERTZ range 4.3E14. .7.51e14;

KILOHERTZ :constant HERTZ -1.003;
MEGAHERTZ :constant HERTZ :- .0E6; end FUNCTIONALIN~STRUbMT .CONTROL TY7PES;
GIGAHERTZ :constant HERTZ :- .019;

50D 7th Annual National Conference on Ad& Technology 1989

With rUWCTI0WALINSThI~NTCW10L.TYPESI ______________________

U60 IFUPCIOALINSTIMtETCONTROLTyfls.

PackageS nTCioPALiZss TNTS ooNtU. is With TWNCTIO"AL-.1~ w ECONTROL. TYPES;
use PE3lNA)5RwEtCKjR .fa

procedure GCtJe3OuCc Packago OICATVtOICS10iS.rt QUERCYSY (m:ZRTYPE Is
(ADDRESS :in ID_.TYfl;
c"ANTE : Out DOOLEAN.
HOLD In tCECIVE-CALLS WAIT. CittAtronics spvcic ranges
NOL0_TIME In DURATION :.0.0). subtype ozoA imR m UCYswEE TyPe is

HERTZ range 100.0MGANERTZ. 150OO.0'MECAm"RT
procedure ItLEAS.ReSounct gADOEs - In ZD..Th YE Suiutypi CrATREQUV=CY3WMzpST9PTPE sit

WIZ range 1.0'mEGAHERATZ.. 10000.0'mAtEitrT:procedure APPLY.ACJrawUUY subtype CGtAravcY,.oymeASUALWA TYPE Is
(USING in LOOICALODCVICt; H4rKT. range 50.0' tW*:iTZ. S,00O'AI
TrEQUENCY In HERTZ; subtype OlGA_ OUTTLEVELTYPE is

POWR :In M;t DOM range-105.50
CONWCTyIA iIn STRING su~;btype SM1 _3T9P~tOURATIO? _TYPE is
STATUS out DNIVUSTATUS I DURLATION range 0.0001. .1000,0:

procedure A14PY 3werrAcyREOUMVC
IUSIN . In LOGICALDEVICE: end GIGATRONICS 1015 FREQUENCY SYNTHSIZER TrYPES
STARTVREOUEtNCY .In HERTZ.
STOIrRtQUECY in HERTZ;
p~tQUvgCY_3TtP :in HERTZ; with TUNCTIONAk3INS RIMNT..CONTROL TYPES:

POERin DN. use rUNTIONALl INTRUW#TCONTOL _TYPES:
STZPDURATION in DMITON: with OIOATRONICSI11.YREQUVOYSYNMhSIZER TYPES;
COMWrT.YZA In STRIbo* ". w use GICATR0ONICS.1015jRQuENCY..sYitflElZRTYPES
STATUS Out DNIVVRSTATUS);

procedure w:ME tAcE.~rxtUEN package OICATROICS..IoXSJREQUENCYSYlnTHSiU Is
(USING0 .in LOGICALDEVICE.
START trEQuEocy I" HERT7; procedure GE$ERATEJIxEDJrEUENcY
STOP rEQUENtcy :In HRTZ; (BUSADR -. RDJYPT.
MEASUREOJrREQVENCY out HERTZ. FREQUWNY - IGA-,rEQiUtiiCY SWErt'TYPE;
COMMECTVYIA :In STRING ' ". PNJLEVEL GIGA..OUTUT_.VEL,_TYPE;
STATUS out DRIVERtSTATUS),; STATUS Out CRIIVERSTATUS);

procedure MEASURE..CPOWER procedure SETJOWERLEVEI.
(USING In LOGICALDEVICE; (BUS-ADR IDTYPC-;
FravouECY in HERTZ: OUT :Lt GIGAOUiTPUTLEVELTYPE,
POWER out 0mM. STATUS Out DRIVERS1TATUS):
CONNUX - IA In ST I NO .:- "";
STATUS out DRIVERSTATUS); procedure G1U1XRATE_.WEEPJRZEQUECY
proedre EAURACVLTCE(BUSAD IDTYPE;
proceure EASUE _A .VOTAGZsTARTJrEQuENcY GI0AJRQffNCY SWEEPTYPE;

(USING In LOGICALDEVICE; STOP FREQUENY OlGA FREQUENCYSWEEP TYPE;.
VOLTAGE out VOLTS; RQEC rim STEPm OGA Jr QUENCY_3W[EPTEPTYPE:
CONECHl :In STR IN Ito LOCKED0RltULOCKED WEEPTYPC :- LOCKED.
CONNECT -LO In STRING * "; ormff L OGcA OUTPUT LEVEL TYPE:
STATUS : OUL WIIVERSTATUS). SWirep-mooE SWEEPOOETYPE -.- SINGLE.;

procedure MEASUREAC CURRENT SWEEPSTEP DURATION 3WEEP..STEP!DURATIONTYPE.
(USING in LOGICAL, DEVICE: STATUS :Out DRIVER .STATUS):
CURRENT out AMPERES;
CONNECHII In MTING ;- "';
COMNECTr-LO :In STRING :- ""; end CIGATROICSJ11 FREQUENCYSYNMESIZER:.
STATUS out DRIVERSTATUS); Fig 13. Selected iostnunent specific data types and control

;-ndi OITIOIALWSUUEXO#TlOL.procedures for operating a Glgatronics frequency
end UNCION INSRI~ENT ONTOL:synthesizer.

Fig. 12. Selected Functional Instrunent Control date type$ Figure 14 presents Comparisons or ATLAS to UATLand control procedures. functional and direct instrnment level test programs. As can
Instrument Specific Controls be seen, the meaningful Variable and procedure names

sutpported by Ada make the code just as, If not more.
readable than the mnemonic type ATLAS commands.

Fig. 13 is an example of an instrument specific package for
controlling a frequency synhesizer. Note the instrument " ATLAS PROGRAM EXMPLE:
specific data typing that restricts the general physical
parameters to those supported by the instrument. Ada 200710 BEGIN. TEST-BLOCY S
provides constraint checking to ensure that the limits are not 200720 APPLY. AC SIGNAL USING 'RFSRCL.
exceeded during operation. POWER IODBM.

FREQ 1OEgHZ.
CNX VIA JS S

200730 END.TEST-BLOCK S

71h Annual National Conference on Ada Technology 1969 501

U-IATL FUNiCTIONAL RNSTXtJIWT COKTPOL TEST TORMAT: OcMtnlAX,3200.
DWC VAXSTATZO(t.

A7?Y..AC-rMLQIJV CICAThOICS1011.
IUSIPO - r tscQv.mmvit-i... GIGATMOICS3.0
TMUENCY *> 10.099. N- Z HP_3431A.
PONU "> 10.0. "MO HP..43A.
CO0XVCTVZA i~ s. HP.5345A.
STATUS -~STATUS). HP_33SSA.

HP_59307A.
IHr..SSOA.

UATL spsnftaw= srECtrc PSOCWA rOPXAT-. AM);*6
SCT.SWITCR -- To connect r~quonCyCenrator to In addition to the actual physical device to be used in the

(11US-ADOES3 %> 12. runefional Instrunrt Control call. the itst station needs to
.ETX > Al. know the address or that physicul device on the 488 bus. In

STATUS W>. STATUS)I. the IATL the IEEE-488 Idtrface softwitrt is
programmable to handle instrumntrs which itrminate with

wc wtrimr). REUT.N CR.LF or instrumnrts which use the strvice request as parn
(11U$SAD V> 15. o hi prtos loipo nsapooo oFRaGUVsc 07, MOROE. -It: o hi prtos tas mlmnsapooo o

OUTKM_.tv .0), .00. Mr~ communicating between computers hosting UATL based test
STATUS .> STATUS). programs.

Fig.14. TLA to ATI basd lot pogra coparions The mnapping between the logical and the physical resource
F~g.14.ATLS t UAI. ase let jogrsn ~atafi~ns is performedt by reading a test station configuration file at

for applying a fixed frequency, fixed powtf level, AC signal program initialization. This is performed in the 'body" of
to UUT J5. the Functional lnstrumcent Control pac Uage. The following is
Mbapplig Of Functional To lsstnal Specific Controls bit t."asnic of a UATL configumaton lilt for mapping the

logical resources to physical instrunients with a given lE!E
The signal-oriented, ULIT-level Functionil Instn"Itnt 411W address nd protocol:.
Control is mapped to the Specific lnstrnitnt Control level R)ic~tER,1 H1P,43GA 13 SOL Li'
via logical resource translation, switch sttings and Ada AtRQU=4YSSYKt3CI?.~R..1 CICAT4O#ICS,1o1 06 304 Li'

procdur cals.IMA 1 HP,,3431A 23 SMt .i
prctut als ICRTaLTOANALOGI HPSSOIA 02 30L. Li'

The user test program calls made at the Functional SPEC UMAXALYJtl Hr_15GGA 15 SOt. Li'
Instrument Control level are concerned only with the logical S"C- COS53A_352 24 SQL Li'
resources present in te test system instrumetnts themselves. The first field is the logical resouirce, the second is the atal
These logical resources represent capabilities resident in the initrument used, the third is the IEEE-488 bus address. the
tst station but do no call out the actual instrumients fourth is the protocol used (SOL It solicited, which means
themselves. The UATL gives thtse resources recognizable the unit must be addressed to talk in order to get a response.

namnes as part of u logical device list: it does not issue a service request), and the fifth Is the
type LOCICAL.DrVICE Is (DIOITM.,T0.AXALOG.1. message itrnination (linefeed for all these Instruments),

OIOITAt..TOAXALOO_.2. When this file is read the Functional Instrument Control also
ELECMO*IC,,COUKTER.,. initializes the IEEE-488 interface software to operate
ELECM OPICCOUITM _2. according to the characteristics specified for the instrumnents
FREQ4ENCYSY1ESIT.ER_2. in the test systemn.
rRQauENcY~COtvERTER~i. The switch settings required to connect the physical device to
TREWMGY..COMVERTER2. teseiidUTcncto r eemndfo nte
11553-TESTER-1. teseiidU~ oncinaedtnie rn nte
115S3.?STER_2. conlfigura~tiont file which contains inforniation about the test
)IJLTIMETR1. station switching network. The required devices nrt switched
MULTIMW:R_2. in to accomplish the Functional lnstnmient Control call.
POWERitEMr,,.
POWD_,MVTER,_2. Each operation returns a completion status. This status
SPEC-tttNAXALYZERt~l. indicates the success or failure of the requested operation.
SPEMTRW4JALYZEW2.ThUALcrntyrtrstefloigvlsfris
SWITCH-I.Th ALcretyrtrshefloigvlefris
SWITCH 2. operations:
UATL COMPUTER,)i.
UATLCOMPUTfER_2. typo ORIVEXtSTATUS 13 (SUCCEkOED.
MORdE); TAILED.

'UNTONNOTSUP'ORTED.
The actual instruments supported by a particular test station PARnMMRcsOropwdcRM.
Must also be knomi to the systemn. The UATL gives thenm INVALID-EASURDENET.
namnes as part of the physical device list: NO-.INTRUI4E!VTXSPONSE.

IXSTRUMERTNOT ON BUtS.
type PHYSICAL DEVICE is tBOlRTON,420 MASUREMEXTJJNDER RAKGE.

CDS_53A_352. MEASURtMENT..OVEHRtANCE.

502 7th Annual National Conference on Ada technology 1989

txtuniut the test results. build a itst or reduciionlanalysls
LXI &_ixA'rosRttvt. p ranl. creite reusable test packa~ts. or run any of the
COAD,1TA K~t supp4ild utility programs. The itst smnaler providts access

AMIntCUOUS.TWtAtATIONt. to the LIATL Wider tool that guides a usci' through the steps
110l11C~.Po.CRAXT11. to artei UATL test and data reduction plrograms. and to

The final stc, is malke the procedure call to the specific the trajectory editor that enables the user to crtait
lnmtrument with the aipropriate but address. The best way to simulation test trajetories. The test manager menus also
desc this is by way or exaampe. Consider the previous contalin choies to edit. campile. link, delete, enter, and
exampies of the logical resource, handling and switching as ex'traict files.
pertinent to this example and a call is mude to apply an AC Teue osntee aet ecnend~t h

signal:location of filts or their ftill names. The UATL Test
AP~tYACYSEQUtCY% Managerjranslations lmckage provides a set of fu;ntions

(USIIIO ft: T01ZUIX~YWT1SIWzRL. that will translate a short (user supplied) name Into a full file
-65U,7, ,0. name that contains the directory and file extension.

STATUS *:o SYSTVS.STATUS) U T

This call wants to place a 9 G1gahertz, -65 d~m signal from Tviit
FREQUENCY SVTHESIZER .I at the "N10 IN" pin of the Stol
UUT. The resource translation indicates that physical devict
GIGATRONICS1018 at bus address 6 will be used. The a rae .If
switching loic connects the physical device to the UUT pin Trakcgey
"VIG IN". Then a call Is made to the ilatronics 108 A1WItd

Frequency sviitheslztr package procedure to GENERATE F1"Iwt
FIXED FREQ5UENCY: Tmxj

0IcATW~aCS..Io11_TROUCYSnT)$e121 lNIal. Ct
Ct#MrAYXKOJreZtJV H pololo CYl?< E

C5US.At* "), 80S-ADOPSS. X0
TritICy .>. rttwesVCY. Rc so
OtJTPUTLVMt *>0 POW .rot
STATUS '0 STAT).

where BUS ADDRESS is equal to 6. FREQUENCY Is equal -0 we
to 9.0t9, and POWER is equal to -65.0. STAT will be the
status returned to the caller. tieToid
By desigin the Instrument level package procedure call looks rc3k
very similar to the functional level call. This allows easy
integration into the Functional Initrumnent Control scheme. N'o oflnto
This is adhered to as much as is practical, but when pe
necessary deviations occur the functional instrument package
will perform the translation from the standard functional Cel SI
level call to the unusual instrument requirements. Where tKw
possible, similar function in different instrument level "
packages will also have the same procedure profile. This e ceie ^V
standardizes the Ada instrument driver Interfaces %thich]Editor
makes instiment substitution in the UATL test set very Create. Modiff
easy. U T fd? AUpok
A further strength of this approach is that errors are trapped Uk
by the Ada exception mnechanism at the level of the specific H uie
instrument package procedure Calls. A call cannot be made
to the instrument pa.ckage with parameters that are out of ACS -cml.ln

range. T EST M A N A G ERI i r ks - c t e

The UATL Test Manager provides a menu driven Fit. 15. Interface block diagram for tb. UATh Test
environmnent in which a user can create and run UATL test Mianager.
and reductiontanalysis programs. As illustrated in Figure 1S,
it organizes and controls the test station environment and GENERATING A TEST PROGRAM
provides a portable, mnenu driven, access to all the system A plctosporme a eeaea etpormb

faciliies.writing an Ada main program procedure that uses the UATL
The test manager prompts the user to configure the system, components to initialize and control the desired test
run any test or test analysis program in the directories, operation. To simplify the process for the non-sophisticated

7th Annual National Conference on Ada Technology 1989 503

wt, a rest progrzim Ieneration tool has also been The Itn.trattd Adak test program source files are then
devloped. compiled In the following "rder. usern-supplied messages,

A VTI ase tet pogrm cnsits f ause gnerated modiritr-'corMrator procedures. modifiericomparator tasks,
A inLbo test prgramiwk cotros ohe a duer st and test p redure, The linked objct Miet result In an

functions and stciuencing. anid annioo odifier; xctbeUT ue etporm
comperaor package %hich contains tetasks invoked for Trsiory Geator
modifying stimulus or comparing response metssoges. The
UATL lest generation tool (Fig. 16) prompt s the user for the
desired tess functions and automatically getnerits the This t0ol provides a menu driven editor for creating and
.main" tst procedure and ntodirter,'comparator wk modifying flight profiks for the UU1 and other simulated
package from the user #upplid messages and modifieri untits in the test environment. Ihe flight profiles are defined
comparator prceures. by wav points to simplify trajctory plannint. aypiiws girt

defined by three dimeinsional position (x.y~z). speed. ar~l
U8410 us01 usIt turn acceleration. Two stage maneuvers are then comutd

btween wyonsconstant rate and altitude tuns heading
towards the neitt wAypoint (with coordinated roll and yaw),

UATI. ADA and constant linear acceleration to reach the Jtfined speed
MAT NA at the neXt mAypoint's position. This "Closed form"

____ (nion-itgrated) kinematic solution Is j ,td to assurt
IM repeatability of trajectory scenrio. Use of a linked list
1018111 AM ASO %%Aypoilnt data stru-.ture also supports dynamic flight profile

antTA i~lO ~changes during tst operatio.

lVoxedures ame also provided to supply computed tajectory
position. altitude, and velocity (or the UUT or any of the

IN I 11111I1 Ad T MXcu'AOIA oitr simulated units at requestd tess scena time marks
71TMAO OA* bosed on the defined test trajecories. The tst programs can

- - use this data to control the generation of itst stimuli in real
Fill. 16. Test Program Gvoma evqiwic U time *ith propgation delays and angular dispersions to

Aasumad TI. serceolepI/mdtf th tet pogrm a simulate motion in the laboratory,. This is vc.ry- important ifAusoawdToo. U canWpolmafy w lot pops atmeaningful testing for functions that depend on UL.T anidech of %be lonolkad poists init.icting: unit motion are to be verified in the laboratory.
A macro language has been creatd as a part of the Its(Thetamr ops akg a lob sdIgenerato tool to aid In writing test programs which require Tetaetr optbn akg a lob sdi
complex data structures. e.g. a list of stimulus mci$ss post-tst reduction analysis to verify the navigation accuracy
These macros simplify the specification of the stimulus of the recorded test data.
response, and response read messages, modifiriromnipmaor USING THE UATL
tA4k. tiggpe iction, and modiricampervior task
detinitios. To verify the UATL software and to Illustrate Its capabilities.

several software/systm integration and fault detectionlThe test generation tool consists of the Test Builder and the Isolation demonstrationi tests wevre developed.
Macr Preprocessor. The builder is an Interactive program
which guides the user through writing a ietu program. ntI The sofmtwaesystm initration demonstrations (ig. 17)
test procedure builder Presents valid UATL functions and included running a set of LUATL test driver programs
optis for the user to select and supply the required inpu. simulating a communication systm intracting with its host
The user Inputs are checked for proper type and value platform and other newk paricipants. In a typical system
before being accepted. The tool automatically "with"s in the the host platform sends messages to the communication
appropriate UATL rpackages for the stecttd functions systm over the 1553B bus for transmission over the PPF
Varibles of the proper type for the user-supplied names. network to other Participants, and messages received from
The builder then prompts the user for the information to other participants by the communication system are sent to
define the modifier/comparator tasks. This inforiration the host pltatform over the 1553B bus for processing and
incudes the user-defined procedures that will be called for display to the operator. The ftx~ibility in changing the
the modify/compare operation, and the data type that it w~ill interface over %hich the UATI and ULM can intract wAas
process. The output from the test bulier is a UATL tst used so easily change the test configuration as prtv d to
macro file consisting of Ada code with embe-ded macros. various stages of the developmetnt flf vS. For
The macro processor inputs the macro Ale and outputs dei'strAtion Purposes the UATL was %IV, #3 sinsilate
conipilable, correct Ada code. each of the intrfacing units in the commur... %ion system

environment. At any point in the process the realFig. 16 also illustrates the test program generation an software/system under test can be introduced and tested with
modification sequence. The user can enter the test writing the UATL simulating its environment.
process at any of the indicated points. The test program can
be created using the interactive Test Builder tool, and First software integration is Performed for all system
modified or created by editing the intermediate simplified elements running in one processor. Then by placing the
macro or Ada source files, communication system and netwovrk participaints simulators

504 7th Annual National Conference on Adfa Technology 1969

MicroVAX I or ITT XTR&VS Proeow

IUATL Pow""..L 9 6 i ?-

5 1 1

-teSCTl IYTI HemL PWM11SOAMU
two we _TO MMALS W

C. AHos Pltfou Inegrt~o Tet CofigratonS. Cons iat iton Stem netoh Tetv Confition
F~g.17.Demostrt~onof ofiwrelyste Inegraiontestn H0r41 ailocsomncto ytm TeUr eu

toU simulat th"omncto ewrtehs ltfradtecmuiainsse odIvetesfwrlyt
uDOrtsW nvroscniuain yusn h prpit nenlmmr or111LAO exenlo W53BandIE nefcs

inapoesoU otannT 1553BM1 inefci*a eue h att~ane Anc etdenntaiVlMositdo
fo teinerain esig fanatulHose plat"or UT t1tpormnnigwti a irV. orlT TA

LIUT. ~~AT For"" theL demnstatins a ALhoe et rg
configurations."ftaio I O " 11100,1

7ther AnulNainl ofrnc nAd eh oloy18 0

Ads IMPLIEMIENTATION CONSIDERATIONS conversions In a consistent mannecr. The user instantits the
Someof he ssus rlatng o te Ipieenttio ofthe generic functions for the types to be convened and the

SAow in Ade andthe reldriedtdesignidecisionsare describe UATL conversion generics .take care of enisuring that it is
below. These are rMated to the processing of test data by ~ c(ety
genraml. reusable, test pockages and application specific test -- Gneric conversion function to convert any type to
requirimnts with the strong Ada data typing and with -- an equivalently sized byte array type.
pontablity issues. gonoric

Pa Genetic Data (The t-ytt A'rmy) type UATL..SMUCC Is private;
________________________f'm4ctIOn CONNTTO Y.ARRAY

tS0tmCE ,In UAih.SOCJ1ICC1 return sYMACISAY;
One of the critical items that had to be considered in *. Gneric conversion function to convort. a byte array
designing the LIATL. %%as in providing a capability for -- to an undiscriminattd type of equal or greater size
performing the same stiiv: .us~rcsponsc functions for a
variety of application dependent data types simultaneously isonricove seera exernl itefacs. f te UTL ad ee type UATtTARME Is private;

ove seera txtrnl iterace. I th UAL hd ben function. COI(VtRT_Tr0OMIYTS ARRAV
restricitd to just concuirrent, Independent events tht UATL :tim- xRA in 8%-AtRXAYi return UATLrARqOC?:
could hawe been adequatly Implementd using generics to Uei ovrinfnto ocnetabt raInstantiate evets for the data type required. Since these to tyneri cwnterson* fnction tof oneqort grby ter
acivitiswere to be concurrent and mixed, a common siz
method of control was needed.

generic
Thus a general byte array data format was defined to pass type %JATISCRIMIICANrTTYPC Is I-0);
within the UATrL stimulusiresponst functions, type UATLTAXCCT tIDSCI .UATI..OISCRIMNAXT..TP~ll

Is private:
subtype DATA_51r is NIATURAL range 0.. 25:

function CONMTDISCRIMI)IA)0,,1
typo 1Y'flAARAY Is array CNAWl.RAI. range 0) IXARNAY in aYT!ARRAY:

Of DATA%T. 013C.1 In UATO.ISCXIMIXATVPZ_)
pragmA P'ACK 1CARtRAY1*; return UATI,_AROCT;:
type 8%Y??,ARRAVI' S access BYTEARRAY: - Generic conversion function to convert a byte array

Thebyt aray s a ucontranedarry f dta yte. Uer to a type with two discriainants of equal orThe ytearry i onuncnstaind arayof atabyts. ser greater sizedefined data objects aire converted into the byte array using
unchecked conversion. 'The general byte array form is generic
treated merely as the memory image of the user-dtfined type UA OD1IIIAXTTV0CI Is t<0);
data type. No operations are perfornied on the byte array by IYPO UATDICRRMIXA9TYPC2 IS tc>):
the UATL Other than to pass it to the appropriate destination tO C UATLRCI? IATY I
at the appropriate time. The UATL only uses the length DISC2 UATLDCISAXTYI2) is private:
attribute of the byte arrays in Its processing. This is
analogous to doing low level 110 wherein the object's address function CONVeRTDISCRtIMINATeO,2
and byte count is passed to some device to perform the 110 DCI A :In UATLD3ARRAY: TYP_
operation. When the byte array Is passed to an interface for DISC..2 in UATn.DZSCR1imiAxTTYrPE2)
transmission it is converted to a general form for that return UATh.'IARGE?;
particular interface. Messages received from a particular The use of these conversions are limited to passing data ntinterface are convened from that initeface's general formn procedure and task calls. Even though uncheckedinto the UATL gentral form of the byte rray. conversions tire used internally, if the UATL supplied
-- General message form for the 1553 interface conversion function for the correct number of discriminants
type 11553YESSAGE in the user data is used (compiler checked) then the correct

(WORDCOUNT :DATA_.WODOUXTYPE --0) Is object is obtained. Additionally, the UATL builder tools are
record

ZT _ORESS IkTYPr. constructed to make the use of these conversions very easy.
CSCBADSS S~UADDTRE. Passing User Defined Procedures (T'ask Access Objects)
02se WORDCOUNT Is

when 0 .>
rUtL MESSAGE: VOI~DARRAY (1. .32): Another problem that had to be solved in developing the

when others -> UATL wats the need to pass user supplied procedures to
14ESSAGE WORkAHRAY (1..WODSOLNT); perforni application dependent stimulus modification,

end rcase; response and trigger comparisons, and data reduction
end rcord;analysis to the general reusable LIATL test functions. Ada

The user programs process the application dependtnt data does not allow the passing of procedures as run time
and the UATL processes thc general reusable message parameters. The brute force method would be to have fixed
control headers. Whenever this data appears at the user test named procedure specifications that are called from the
level it is converted back into the user's data type. The UATL for which the tuser provides application dependent
UATL provides a set of generics to perform these bodies. This technique can run into large problems in

506 7th Annual National Conference on Ada Technology 1989

managing all the disparate Ada libraries with like-named orend MOOt TV;
user defined bodies. or etTSKCM M
A second option is to pass task wtces objcts In place of the ed exit.
proedures. They give 411 the procedural functionality ed so 10CL
required and can be passed as paameters. T1e probitm In end UATMOtiiF:RyAS9
the UATL domain becomes the need to pass dissimilar task
accss objcts to a general set of stimuluslresponse Access p"inter to general modifier task
functions. The LIATL requiremntt for concurrtnt. mixed ACioS UAT.OIt..TAoirk.A.S i
events precludes the use of Sentrics in the UATh events. Ls facs onesL eea oiirts
It was thus decided to use a task type template concept to typ UATLMOOIEr!TASKLt3T Is array
accomplish this requirement. The UATL defines a gecneral tl'OS:Tvt range 'C)) of UATUMOOiriP..TASK.ACCtSS;
form of the modifier and comparator tasks that conitAin t*O Access pointer to list of access pointers to Senoral
entry points-, one for passing atn access poinitr to the bit moifier task
array message being passed tolfrom the task, and another to type uAThooiriErXTASKLST.ACCX5S IS
terminate the task gracefully. The message parameter Is access UATMOOIFIXERTA3KLIST.
defined as "in out for the modifier task to allow its -- central comparator task type te"mte
tdiication, and as "in" for the comparison task with an task type UATL COMt'ARATCN2TASK Is
"out" parameter for the result of the comparison match prAgm axRosiv ttROiTy' lasti
operation. The template task body has the two entry points entt- :CIOMPAREAV"in a select statement encased in a lop. Included in this MTC-STA oun UATLARNAY~TCH_;A
definitkn is an access type to the general task type template. entry TASK.COWM-E

The user writes the desired moiierkomporator tasks In the n ALCMXTOS;
form of the UATL task type template and includes th teas ompra task bMARAodyA t slte
application depenident processing In the task body. The Input takboyUTICMARTRTAK i
byte array message is converted to his own object type using loop
the UATI. conversion genteis. For the modify operation the select.
user modifies the message in his Own qtyp definition, and accept COMPARE
then converts it into the byte array for passing to the UATL MtCtiST int UYERAYTR_4THTTS do
stimulus task. For the compare operation the user checks or MATCHSTAT :wMATCH;

extracts whatever fields he chooses from the message In his end COMPARE:
own type definition, and sets the returned match condition or cetTSKFMI-E
parameter to the UATL response/rigger task. The modifier/ acexit;TSCMP~
comparator * tasks can communicate values among end select;
themselves by sharing a common data area. A comparator end loop.
task can save a value fromi a UUT message field that a end UATLCOMPAXATOftTASK;
modifier task can then use to modify at, outgoing message. For the actual generation of a test program, the UATL
This provides the real time "closed loop" test data operation Builder tool relieves the user of having to define these
capability. itmplate tasks. The tool Is structured so that the user
The last step in the process is to pass the user's tasks to the SUPPlies R package Of miodify or compare procedures that he
UATL event tasks so that they can be called when required. %%"tnts to use. The specification of the modify procedures has
This is accomplished by an unchecked conversion of the one "in out" parameter of the ustes message type. The
user's modifierkomparator task access object Into the task comipare procedure has an "in" parameter of the user's
access object which the UATL events are expecting. Since mIessage type and an "out" paranmeter of the resulting match
the entry point specifications and parameter profiles are status. The UATL builder tool will automatically construct a
identical, and the task body operation similar, the UATL package of task types and task access types with the
events communicate with and control the operation of the necessary conversions to call the user procedure with the
user's task as if it were a task of the UATL general form. message that it is expecting.

-UATL Modifier/Comparator Task Templates and Typos The interactive builder tool pronipt the user for the
necessary information to construct these tasks and creates a

- ereral modifier task typo template, user-editable macro file as shown below.
trask type UAT,_OIFIRJ~tASK is

pragma PRIORITY (PRIORITY'last): -- User editable t14odifier/Comparator macro examples
entry MODIrY (Gum : in out aYTEA.RRAYyPTRI;
entry TASILCOMPLETE; --- Modifier T&A'

end UATLW'JXFIERTASK;--

-- Geeral odifer tak boy temlate -> MOVEJOSITION
Ceea iirtask body tALOOT e mplate OCALL,_PROCEDURE -> USERMOVE PROCEDURE

taskbodyuATMo~rIZJASKis PASSMESSAGETYPE -> IlS3_MSSAGE
beg in ODISCRIMINAMT TYPE ->DATAWORDCOUNT . 0

loop ---- - - - --- ----- --- - - --- - - ---- - - -
select

accept MODIFY (GUM: in out E'rIEARRAY PTR) do --- Comparator Task
null:-- -

7th Annual National Conference on Ada Technology 1969 507

#COMPARATORMAMC 0~ C)4ECK.POSITI01 function CONVERT Is new CONVET._ISCAZ)I1tATUZ..1
eCA~j'0CXVf %>* USERCEEK1OCOURE 9 OATA.WOROCOUXT . I 53.MV5AGE 3.

#PAS3_W.SACC..TYPC 0. h153.._ESACE begin
.o13sIMIAT.TYrt %> VATA_.WOXO.COUXIT . 0 loop

As shown below, the VIAT.. Slacro Processor then cum In %'MrAREMautomatically expands this micro file into compilable Ada MACHsAT ot uAz.AYTr.~id
code containing the correct modifier/comparator tasks. The tiS9R~CHECKrR0Co~mE
macros are included in the Ada code as comments. (CONVERT(0UR11.al. 0 1. MATOI.STAT):

end COMPARE.
-- Modifier Task specification or

-- Modifier Task accopt TAS.CLETIOiX.

emooinIrxNAME -> MOVE.POSITION end pa0lect.
@ - LLPR,0CEDURE *>. USERyMOVT!rNCEDtUtE tnd loop.

-- PAS3_WMSSAOCE.TYPE 0~ II$S3_M$ACV end C11ECKI OITI0NTVPZ;

0013IMIAXI-Tyr a: DAAWODCU~r. 0The user then declares the LIATL events with these
----- ----- ---- constructed tasks as the modifiericomparator tasks to be

tasktypeMOVE.rol~t~~fliE ~called. Thus the uitr never has to worry about tde general
pragma nAt! TYttRtORittT'lasL)
entry MOOIrV tCUM in Out BTEARRAY.Prjh2: LIATL modlficricomparator task form but only about the
entry TASKCOMt'tXTIOM logic Inside his own modifier/compmraor procedures.

end NMYEOSITIO$N.TYPZ;
type MOVE _O3ITIO1(_TYPC..AccEss -- UATI. Stimulus Call using the defined modifier

is access MOVE.~OtTI0N.TYPE: STIMULUS MSOCK 0~ "STIMULUS CALL ALOCK.
MOVE-OSITION : MOVE P05lToMn1FT9ACCT.SS: EVENT w> 'STIMULUS CALL EVENT.
function CONVERT Is new ixTr *>1353

W#CNEDCO#VTXSIOM (MOVE POSZTI0NTYPE..ACCESS. STIM-LIST *), U3tXSMESSACE.
UATtMOOIrzXTASKACCESSI-; CRcuLTZxr * 3.

-Modifier Task body MSCRATE -> 2.0.
task body MOVEJOSITIOMTYPE is TIMET0_00 -> 3.0.

MESSAGE ! 1553MNZsSAGE; NOW=IF -> CONVERTtMOVEOSlTION).
function CONVERT is new CONVtRTO_0TE..ARRAY CIL >CCIUOSATY

function CON'VZRT Is new COMVERTISCIMIXATJ Fniol ntunlCnrlDaaTpn
(DATAWORDOXJT . 11553MESSAGE 1.Fntoa ntIta oto aaTpn

begin
loop

select In defining the instrument control data types a tradeoff had
accept MODIrY (CUM: In out BYTE.ARRAY..YTR) do to be made between strong typing that would allow tight

MESSAGE :* COMVtRYc GtU.ll, 0- control of the legal operations on the defined types and
USEk.MOVEJ.YOCEDURE (MESSAGE I.ol ac oeposbeerr tcopl ie n h
GUM.&II !- CONVERT(MESSAGE 1:wudcthmr osbeerosa;opl ie n h

end MOO! TV: amnount of effort needed to implement this. While it is
or desirable to define all physical quantities (e.g. volts,

accept TASKCVMPLETION; amperes, watts, meters, tc.) as separate types and explicitly
end solect; e~it: define all the allowed operations on these types. it becomes

end loop: unwieldy to achieve this in practice.
end MOEOSITIoK.TYPE: While the legal operations for data types can be defined, If

-- Comparator Task specification tight control is to be achieved it is necessary to define all the
-Comparator Task osbeoeainonte.Ticnbeaduigtskfuossible operaions on them. his can be a dwiting task i

-- COMPARATOR-MAME -> CHECK-POSITION one considers all the intermediate results possible in a very
-- CALL,.PROCEDURE w> USERCHECKJRAOCWDURE complex calculation. An answer to that might be to allow a

@-PASSWSSACE..YPE *>11553.YESSAGE general type like float to be the type of those intermediate
-- O!SCRIM!NAMTPE >DATA..WORDSOUXT .0 results, but then that significantly weakens the typing for the

----------------------------- -- - --- main types defined.
task type CHECKPOSITIONJTYPE IsAdiinlyalhuhoetosbtwnoprdsfte

pragma PRIORITY(PRIORITY last): diinly.lhuhoeain ewe prnso h
entry COMPARE (CUM : in BYTEARRAY _PTR; same type are in general not valid for physical quantities

MATCtSTAT: out, UATL-MATCHsTATus). (e.g. volts * volts is undefined), they are implicitly allowed
entry TASK...COMPLETIOM;1 in Ada. Infix operator functions that would hide the implicit

tynd CHECKJPOSITION..TYPE..CCS operations would have to be written to signal some error (an
is access CHECPOSITIONTYPE: exception, perhaps) as part of their execution for invalid

CHECKJOSITION :CHECfPOSITIONJTYPE-ACCESS; operations betweecn operands of the same type.
function CONVERT is new

UNCHECKD_..ONVERSION(CHiECK.POSTIONJYPE.ACCESS. Specific infix operators would also have to be defined for all
UATL...COUdPARATOR..TASK.ACCESS):, physical types to allow their multiplication/division with

-- Comparator Task body unit-less float types. A further problem is then encountered
task body CHECKPOSITIONTYPE Is in the use of named numbers since the context resolution is

50W 7th Annual National Conference on Ada Technology 1989

ambiguous Awen using numeric lterals with overloadd ACKNOWLEDGMNENIS
operators. The literals would have to be explicitly convtned
to unit-kss float to avoid ambiguity with conversion to 4h This work~ was funded by a STARS (Software Technology for
Invalid, error producing, operation between operands of he~ Adaptable Reliable Systnms) F-oundations Contract No.
same IMp. The ramifications of strong typing seemed to N60921-87-C-02SS under the management of USAF Col.
oumwigh the benefits obtained. Josph Oreenec. Director of the STARS Joint "roram Office,

Nis. Elizabeth E. Wald. STARS Navy Deputy Director for
The UATL solution %-as to define the data types for all Ado Foundations Technology at the N~vat Research
physical units as subtypes of the portable (lot type. Laboratory. and Mr. Phillip Q. Irwang, our project COTR
Although this does no(prevent the use of physically invalid and Director of the ACSAD Computer Research Laboratory
mathematkcal operations between types. it stil separates the #t the Naval Surface Warfare Center.
definitions of atl physical units and defines them with the
proper ranges that are veifiedi by the Ada constraint RFEENE
checking. The use of descriptive nameis for variables, with I I I)DlD Directive 3403.2. Use tf Ado in Illuons Sivesc.s
the physical subtype name at the end, e.g. POWERJ.EVEL March 30. 1987.
DOM also helps minimize data typing error.

Rtbotisg Isues121 DoD Directive 3405.1. Composter J'ogrssmotng n ugiup
RdW4IIU ssu~Poicyrv April 2. 1987.

TheUAT wa deeloed n aVA~taton I ad fien 131 Roy T. Oishl. "ATL.AS EXTEND. Its Effect on ATETheUAT %i deeloed n aVA.staion11 nd htn Systcnm Softwire". in AUTO TESICON 'Sy Stvmsilsmlported to the ITT XTrI286. In general, Ada's portability crdq IEEPes198(C125-)
enabled us to rehost the U.%TL with a tminimum of host wednsIEEPs.1988CI27-)
processor unique code. 141 ANSIJIEEE Standard ATLAS Test Language 416-1984

Prolem wee ecouterd wth he S-Ds 60K ($1109696), and ANSIJIEEE C/ATLAS Test Language
memory managlement limitations. Part of the problem 71-9%(-A03)sIE opue oieyPes
solved by using the Alsys compiler which wa-s able to create 151 A. Bunsen. Investigation of Programming Languages for
extcutables that can run in protectetmended metmory Automatic Testing Applications, in Procedings of
mode. flowever this could not be done when interfacing with AWJOTESTCON '87. IEEE Press. 1987 (87CII2510-6).
the IEEE 488 bus because the interface driver supplied byFoe nad .GodouhAdAdreHnbo&
National Instruments only operated in real mode. 101 J. ocaanJ.C d-ouhoaAoltnHnbok

A Program .tanuaters Gidik, Technical Report SEI-87-TR-9,
The UATL uses unchecked conversions but not all Software Engineering Institute, May. 1987. pg. 45.
compilers perform the conversion in the same manner.
Problms wevre encountered with the unchecked conversion
of variant records in the Meridian 2.1 compiler. Because the
Meridian compiler stores variant records as a set of fixed
fields with a pointer to the variant portion. When an
unchecked conversion is performed the user gets the address
of the variant field instead of the actual data within the field.
Special conversion packages were written to extract the
desired data. The results of an unchecked conversion on the
Alsys and DEC compilers do provide the same expected data
and so the same generic conversion package can be used.

7th Annual National Conference on Ada Technology 1989 509

IZIOGRAlifIES

All the autrsM are memtbrs of the Soft*Are Ngineetring
staff at IlT Avknkic. liT Defense Technology Corporation,
13" Washington Avenue. Nutley. NJ 07110.

Jerry M. Grusso Is a Principal Member of the Technical Staff
resposibe for the technical leadership of the STARS
Foundation Area prject to develop a Universal Ada Test
Longuage (UATL). Mr. Grasso received a BA In
Mathe ics from the State University of New York. Stony
Boo In 1978 and has several years of experience in Ada

Leor D. Mollod Is the Director of Ekctronic Dtfense software development.
Softwame Engineering at 1iT Avionics. li Is responsibk fo
the software In tiTs electronic coumenmea$urs and He impkemetd the CNI Rapid Tumwound Suppor Systm
electro-optics product lines, and also directs the Advanced for analyzing the effectiveness of threats aaitnst several CNI
Ads Technologies an sensor fusWon IRiD effons. Pror systems, and several interface routines for hosting an Ada
respotibilitles have included the manamement of the ITTs Distributed Multiprocessor Executive on Motorola 68010's.
integrated communications - navigation - And idttification On the ICNIA project. he completed the developmet, rapid
projes including ICNIA And TIDS. Mr. Mollod has been praottping. and Integration of the JTIDS TDMA software
awarded three U.S. patents and received the M.E.E. and in Ada.
B.E.E. from the City Colle of the City University of New Prviously he successfully lead the Integration team in the

completion of the softare qualification tests for the Navy
JTIDS FSD project, And was also responsible for the
Executive. PPU data link control. and relative navigation
functions.

Jehuda Ziegler is a Senior Technical Consultant responsible
for the Advanced Ada Software Technologies group. This
includes the management of the STARS Ada Foundations
project to develop the Universal Ada Test Language, the Linda 0. Burgerneister is a Member of the Technical Staff
prototype ASPJ WRA-3 UATL/Ada production tester responsible for developing much of the software on the
project. and several Ada IRID projects. Dr. Ziegler received UATL project. Ms. Burgemieister received an MS in
a PhD and MS in Physics from New York University in 1975 Computer Science in 1988, and a BE in Chemical
and 1971, a BS, Magna Cum Laude with Honors in Physics, Engineering in 1983 from the Stevens Institute of
from Brooklyn College in 1969, and was elected to Phi Beta Technology and has several years of experience in Ada
Kappa and AII .Sigma Lambda Honor Societies. softwave development.

Previously he was the Software Project Leader for the ICNIA Ms. Burgermeister implemented the UATL test manager,
ADM and JTIDS DTDMA FSD projects, and has data recording, ASCII and Graphical data reduction, and
successfully led them through all phases of the software intermal nmilbox communication functions. She is also
development process; from requirements definition through responsible for the UATL configuration management and
design, code, integration, and qualification testing. He has has helped develop the UATL docunentation. Previously,
proposed and defined software design/development tools and Ms. Burgermeister has developed real-time embedded
methods to increase the productivity and quality of the software for ASPJ (Airborne Self-Protection Jammer), and
software development process. the VHF/UHF communication software in Ada for ICNIA.

510 7th Annual National Conference on Ada Technology 198g

A DIANA Q*er Laisgua for IM Analysis or A4%a Softwart

chdrlopht- Dyns

nTh WM E Conwoalous

form suh at DIANA imatel the need for the*r anal j* tooks 10
parse and check for semantic cor~ectne*4; tools, thatbild DIANA

ADSTRACF ifte per form thii 6tsta. DQL and Its took allow the qotrying
ABTR~rof DIANA It"*e bated an Ada tanguape cotnrct. OQI. does not

require familiarity with DIANA and hI model of connected node#
The Descriptive Irntmediame Attributed NoAtion for Ada and classes: it merely requifes famlritry waith the Ada language

(DIANA) Query Language (DOL) Is a we of primtiv search op- and its constrocts as defined In tht Ada Language feec In
eraslong and combining oprators for querying the DIANA Intr- thl (DOD113).
mediate form of Ada source code. w-ich like a convntonal Infor*
mation systm data base can be querid. DOI. can be weid by an
analys to detmine how well the Ada stae conforms to detlifn 2 PROB LEMS BEING ADDRESSED BY DQL
standlards, to comut metrics based on the software's structure.
and to browse thtough the software. DQL can a&W be wed as in
twastlon layer on which new and existing tools may be Imple. 2.1 ANALYSIS OF SOFTWARE WRnTt.%N IN ADA
merited to esrac relevant Information about Ads source code.
001.is being Implemented on a network of Son 341 workstations as Ant Ifiport mo tp in the analpsi of Ada softwarc systenw it
an Electronics Systems Divisiont (ESD) Acquisition Support Envl- the checkin of that sohwtr against criteria that define the re*
mooment (EASE) utility using a bit-atapped. windowed ustr Inttr- quitements for the ieliability. m&alntA~bility. and other aipects of
face and a trsr-based DIANA tit*c manager to allovt Interactilv %oe system. The Ada languae standad (MIL-STD-1515A) and
analysis of the Ada source. compilers validated against that standard pro"id automatic check-

Ing (such as strong type checking) not found in earlier languages
Sut, there Is a need for analy*t capabti~vet that are outid the

I INTRODUCTON TO THE DIANA QUERY Ada standard and the compiler.
LANGUAGEEach Ada application program It subject, to Its own set of

criteria that defines the standards for how well written the software
1.1 DIANA is. A developmet organization's project mnagment approach.

the sofware design methodology, the Particular applcsslons
The Descriptive I.-termediate Attributed Notation for Ada needs, and the preferences of the developers all combine to delfin

(DIANA) it a public standard (Evan$3) for defining a tree tOen criteria. Some criteria can be expressed as expicily defined
stnicwret that captures all the semantic Information in Ada source deIn and coding rules; others are heuristis based on previous
code. Semantic tree structures such as DIANA are often experience. Checking any large colection, Of software agait a
produced by the front end of a compiler, allowing different variety of rules is difficult. especially given the limited amount of
complier back ends to be customized for a particular target time generally allocated to quality analysis- Automated support for
comptuter. In DIANA's case the trees become the metchanism by such checking Is needd and fortunately it Is possible because
which the Ads compiler 'browses" the source code during Ada's notations allow more of the Information about the software
activities such as code generation. The creators of DIANA to be captured.
recognized that such an Intermediate form would be useful to tools
other than the compiler. The DIANA standard It an attempt to 2.2 CHECKING CONFORMANCE TO DESIGN RULES
encourage compiler writers to generate Information that could be
used by tool developers. Mlany application areas and design methods hav formally

defined design rules that can be mechanically applied to software.
1.2 THE DIANA QUERY LANGUAGE Exznvpies Include the Normal Form rules for data bates (Dattl12).

the starvation and deadlock guidelines for communicating sequen-
The DIANA Qaery Language (DOt.) and Its associated tools dial processes (PoarSlS). and the equivalenicy rules for data flow

are a mechanism to analyze Ada source code (or Ada used as a decomposition% (Ward8S). Some of these design rules are very
Program Design Language) by searching through tht Ada source specific to Ada. such as exceptions not outliving their names or
for language constructs of Interest. Using an Ada Intermtdiatt erroneous" assumptions (Soft82). These design rules Involve

checking the Ada code againt itself and againt other develop-
0 Sun 3 is a ruadeumak of Sun Mictsoictms. lot. ment products, such as a requirements specification.

7th Annual National Conference on Ada Technology 1989 511

'The process of defin aln the design rules (cominig from sev. 2.1 ACCESS TO SOF7WARE OWNR A NE:TWORK
etAl diferentata) at they apply to MA Is a major actity. Ap-
pl"n all these deoi* nues to the Ads source code It also a major The community of software engier wishing to analyse a
activity. Scajasg of thie Imotac a(te rules in ddmtinlng usculsf piece of Ada software may be large. in addition to
oftrall softwire quality. a arge softwar development nratlot ~ SQA, Individuial pt0#eMftWW, maintaners and man"19r will
may we an WIndpendent Software Quliy Amsuance (SQA) Vpoo- Wat to apply design rules and browse the code. Ada pratramrts
to enoure sheow uls Ste applie before the software is reveasevj. make heavy use of an Ada compiler as a quick measure of code
Manua applic"tio of design ruwe to software can be ltdious that was jugt written. When available. atomaied design rule
(*Knc much of it is mechanical), so automated support WOul Oid checkets used by programmers. marnperl and SQA wi l o 4 e't
SOA In Its work, come fsequetnly used tools. This will Introduce the uoual problems

of multiple accest across a network, and maintaining conswsedlcY
DQL allows dosln rules to be formally gtated as a DQL amongt software gtored at several different locations. Programerl

query. Thte rules can frpresn generaly pood sohftr ni- browsing through Ada code would lke the ttanilont betrseen rues
nesingi praces or they can be specific to an application domain. and neworks to be at smooth as possible.
These querke can then be applied to the softwart to MWn thoie
Ada code sections that conform to or violate these design rules. The DQL tool we sepwaaes the activity of searchn (U(P)

DIANA trees with a DQL query from the display of any results;
2.3 $RO%3SING TIhROUGH ADA SOFTWARE from that query. IT lerge amount of work associated with man-

agin DIANA tsI kIsolated In a few DIANA tre serers, which
In aditon o aalps wih rspet t th forall deine ar accessed by weas at woorkstatios on a loca area network.

dIn ruleos. Ma sotarey "h stumpe to heraalys dewo DIANA itee serma allow usets to share query restsA withou forc-
heuristic analysis is frequently applWe by having someone read the lgeahuetorom teah Lqeyonterwnorsa
Ada softar. looking for certainarcrstc or paittrn. This 11011.
can he difficult to do. WKins a well-modularl~d Ada sygotem the
Infomatio needed may be spread throughout many source likie,
and in seveal places within a given source file. The anals" wil 3 SIb1IIAR WORK ADDRESSING THE PROOLD11
wan to -brow"' w~ouc stpecification and bodi, patent and OF ADA ANALYSIS
s*MUblu caller and tallest type declaratn and Vwet etc. Try-
log to brows manually throgh a large Ada system can be diffclt, 3.1 EXISTING DIANA ACCESS METHODS
time conouming. and errM prone.

Drowsing ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~o inMAsfrhrcopiad yoeloddnms Na complers that wet an Iwnvomedae form lite DI-
Scoe and dsibkyruler ncrnmingcaate y*tos, rit N (or somethingi simila to It) have define a mithod (ar ac-

scoe m viiblit rues an reamig eclraton. Bowsng csag nodes in the ite. Unfortunately mws compler wenor
reqire looking at the semantic meaning of an Identifier. not ki treat these access methods as proprietary, preventing other pro-
Its tnsactic appearance In the source code. Without semantic- liun. suh as anlysit tools. from tak~ing advantage of the DIANA
based browsing, accurately reading A source code can be teI" tree$. A few vendors allow Partial acest methods, Such a' the
ous. VOL alows semantic browsing by allowing an analyst to lot Intermem Program Library Access Package (FLAP) (oWdS)
low the connections beten A source contucts (by -walkln' an the Rmot Deig Failt (Dacuhl?). but those are oriented
the aswsotd DIANA treet). towar olffine report generaton and nox onlin browsing. Some

DIANA acces t Isprovided on Raional's R10004 environment. but
2.4 PORTANILmT or ANALYSIS ACROSS HOST SYSTEMS there Is no vendor-Independent DIANA tool.

Since the Ada language was designed to maximize portability 3.2 EXISTING ADA ANALYSIS TOOLS
acroenvironments, the formal and heuristic design ruls that can
he applied to Ada must also be portable. There exist som forml Current APSES may contain tool that provide: some Informa-
rule checkers (such as welusag analyzers) and texstual browsers tio useful tu an analyst. Some. documentation tools such as
(such as regular expression searchers) that can be useful for Ada. Byrone (OordI13) and the Ada-based Design And Documentation
but many of these are specific to a particular host environment or a Language (ADADL) provide Government standard deliverables
specific Adc Programming Support Environment (APSE). Proper and reference reports that have some wse. but thete are batch orl.
application of design mkls may invoke, comparative analysis of ented. and itIs isdifficult to correlate mulple batch-generated re-
A software residing on different APSES (e.g.. for reusability or ports together while checking the satisfaction of a design rule.

Interface checks). Analysis would like to do their work without Other tools allow the computation of complexity mesuswi and
having to learn the indviduial Ada source code browsing proce. other metrics (PerkS?1), but often these mettics are hard-coded to
dume of several different host or APSEs. a particular formula and thus difficult to customize to a specific

VOL provides an abstract interface to the DIANA Intermedi. appliton' needs.

ait forms that can he created by a variety of host environments
and APSEs. Tite same VOL query and design nile checking can
be used across different DIANA Implementations. DOL and its
tools also allow queries that span DIANA trees so the Ada con-
structs In two different APSEs and/or host can he checked. * Ulo an R1000 are utad~tmarks of Radoest. lag.

0 syto. Is a tuadeuatit of Iamiwrmtis, Inc.

512 7th Annual National Conference on Ada Technology 19

3.3 EXISTING ADA DESIGN RULES 4.5 StNTS4ESIZER GENERATOR

The Ada literature conAin many examplet of desin rults. The Synthes ar Generator (R" 4) peovides a sematic
Ads-,-dk design methodologies such M Duh'S SysOm Dein data ba that Is interated with a sxce co& tdeding sytem for a
with Ads (IuWh4) nd COwy's hoces Abration Method fof variety of comper nages. The Symhbeler Gehneator doe
Embedded arge Application (PAMIt.A) (CherS6). defin foe- not "Prate the functions of creating the whtwre from anallsint
mel and heurlati rules to be applied by the oosoonrr Other *wit the sohfte for semantic coftrtut this makes it a usefu tool
(l4114) defines rule "hat new to Ada Or afe oillcAoto'n during source code crtion and ediig. ibis wnsepaslon of edit.
traditoal rules. The undkryg methodology nectsry to p- In an analysis Is very tight. mtakng It difficu to perform)ut the
port Ada analyIr K Irl Place, what Is needed Is the technoloY 10 3Iraly*i functions withou wo'kw't through the e#&om &I well.
do It.

S DQ.L IMPLIMNF.KTATION APPROACH
4 SIMILAR TECHNOLOGY FROM OTHER FIELDS $.1 DIANA TREES AS DATA RASES

4.1 RELATIONAL INFORMATION SYSTVI.MS DATA ASKS DQL allows Ada ource codk (through Its uderlying DIANA
epI) to be treated hk a data ba4 by defining a qurty l, a

Thepfo4MACA uppnio a Avdai ba serchs, ew that operaes on that dat base. DOL has an advantage over query
types of rpor. ad checks on dait bae cofrcirne are not otw anguage for Information systm data bate in thm the data del.
to the Information smms, communiy. They havt dteltk d data nkilon laqnuage for Ad (DIANA) Is a fixed stadard. so thert I
be form such at relational data baks (D I)4 Eity it need to suppor oe-deflned dai base schema DQL could
Relatioohip Attribute (ERA) modt (Chen76), &W.d sieant be extended to handle I-clefined exten.OM to DIANA such as
d newoks (Iammil) to ssnsure their data in a way to the trfuctied Ada cirmnwnu ued by ANNA (Luckl4) and Byron
*pon a vrady of data access methods and reports. With the (0ord)).

types Of reports upoed purpsly lftk open-tnded, a dats base
a l rt can create ways to search for a w rwy of Informatlon S1 INTERACTIVE QUERY AND RESPONSE
Patterns thet IV* new Insight About some eterptie "The DOL meamnat under devlopme & MITTRE Is

4.1 RELATIONAL ALGEURA designed to protide (amot) Immediate reonse to an Ada am.
lys's query. on-line bosn of Ada ox ce rfe es that the
Uaer not be fritrat d by Wl delays before an answer, otherwise a

D6A 15404 MWYM are aided by A g rd set Of WthfMtl! train of thought may get log. If the cog (in rpon tlime) for
Cal methods that defrne what the attriwtes of the dat base are. applying design n&e I small. an Ads prgram:r will be encow.
and how thos attribuies can be quetred and combined, For re-. aged to apply these r frequently and as a res, problems will
lonal da bas. a relational algebra has been defined that de: be CaUgh closer to the ime when they are created.
scribes how queries can e formed. combined. ntsted, and stored.
From the e of low-leve operations pcoided by the relational S.3 EXAMPLES OF QUERIES
algiba. an analyt can bul a query that return% some apect of
the datA base. A DOL query is Wkl up from approximately 350 primitive

querks (one for each .Ajor type of DIANA nod and attribute
4.3 STRUCTURED QUERY LANGUAGE (SOL) repreenting Ada source). In the exanls below, bald Indites a

rtsrved DQL keyword or character and Italics Indicates a
For relational data bases. a standard method has been cit- placcholder for an Idenlfier or a query. A primith-v query Is of

ased to allow applictkion programs to query a data base sWing a the form
relational algebra. The Structured Qutry Language (SOL)
(Dare$2) is a standard that dtfines the data types and tie opera. sea r operator trier:
sOr that Implement the algebra. If a data bi nlyt cln crea e X- aDQL has Ada-kle comments
query In the relational algebra that checks some nule. then an ap.
plications program that automatically performs the rule check can where ea names the entities to search for. target defines Where
be written, to find entitles, and primitiveopprator defines the type of entiy

(DIANA node type) to search for. Stach and trtuger can be
character strings (to match Ada Identifiers), the keyword all (to4.4 ABSTRACTING IMPLEMENTATION DETAILS AWAY match anything), source file ranges, named DIANA nodes, named

FRO.1 TilE USER results, or another subquery whose results become the operand.

One goal of a data base query language Is to abstract away the For example, the following query
imptomentation details of the underlying data base. QCerits can all exceptlons.ralsed In <DIANA node>.
be formed directly from the algebra (as In the natural languat - node Identifies specific place
query forms), or from applications programs (such as those using
SOL) without regard for how the data is stored on a disk or how It would return the DIANA node names which uniquely Identify the
Is distributed around a network. Ada analysts working with source name of any exception which Is raised In the given DIANA node or
code would similarly like to browse without regard for directories, In any node that Is enclosed tithin that node's scope. A nested
file positions, and network paths. query would look like

7th Annual National Conference on Ada Technology 1989 513

CIfar4ch eptraterJ Iawrr ept.fW0 corst whent crossing Ada library and~ source directory boundaisW are
tr&aVspren to OureUser. At the top-most levol the qury rturns a

where. the 4uery w"ti the p ethelI Mi calld a sskqoery. Anl 1trea ofC DIANA nodes (including source potlit) s te
eaample of this is teitA-e developmen environent tooks can scroll editors, high.

(all e s.deftne~e neJ,~ NM lhtem. of jiWt UKe resu A neeed.
easpaledj (DANA twit 13,: S.5 SCRVEtR AIRCH11ICTIJIE TO PROMOTE PORTABILITY

- query *pAn"n two line

Ohich Would again rturn etteplons raised in the go"E of "Jod I. e DIANA tres are handled *%thn OL "ersrs, ish at central-
M het oly hou tu"WAtha aftdelntdin tt cop of Weddata bse keeping track ati which Ites act handled by which

bWt ht would bhe ee, Ion ta Mqor deine asaqaiimrt eer. Ahen A query Cause DIANA Ite boundaries to be
IN oerad be reted - e uy er A ct a 4 a uai e of he , thi ma ru Inho prow w boundaries, being cmro d

the 330 opernd fte oe query. A h atl~ePrd~ as *elo, Thefe different host pW#*6mor misy be dlIternt comput.
the 50 rserbd isywod quriessuchas b~ecdefledj011r, running different operating systeco. and so have diffen vet.
~cese..e andes~ty..ctls.w aons of the DOL server.- DQL supports poraeulhsy by using a son.

In addii to the gobquery conasnsi, DOL quei can be dard Remote Procedure Call (ItiC Intefa*ce that Allows quetls
combined by Vwin u~sy and binary oTeratoary (and result wtam) to cros arbitrary host boundaries.
operawnt are applied with C4t.~rae "tary). The seven
unary operators inclode wseq. which removs dupliate noes and 4IPE ETTO O CR'only. which lmit the seachin of a scope to onliy ki topmostKM LM NAtNCNFIN
level For exsample. the quety

wosi (al 01NIA odf))-,4.1 SIzE oF DIANA TIMES

Our DOL Implenentation uses the Insermetus Ada Compi.would rtuwrn the nodes that Identify a call to any P ntgram. Wa40" System (ACS) front end (lnseS) ats the source of pecpant;.
any duplicate results that called Ohe snt rubpngra *OUl be sally complet DIAN'A tre. Like most comrplte DIANA trees.elimninated by tslql The binary operators art applied with (querly the ACS'S Wnedlate form has a very large expansion factor (upb~dyoj~ratoe jasrry). The OxE binary operators kktld vSuboo. to 20:1) from the or1g6na Ada source. Such taroe trwe are time
whidti Jins the results of two queries, and 41M. vshich renosee consmInga to create and too large to allow eath ufer to have his
results prenti an both the khf and riht sids. For example. the her owns copy. The Motivation for having OQL servers wat to al.qulery low these trees to be created once and then shared amon all us.

en$. Figure I below Owm a Buthr notation example of&a query that
(Cal sesprosam~adnisa (~unC ,'~*0) ~l~was Inkitaly handled by Tme Servr #I rurn" in Server al. but

(altl *ttryaddret 4Source tago):esnsaly Involved Cthe Tret Servrs (92 and 83). ronnIng on
another server. In the computation of the reWsus fot the use aswill return the nodes that Identify any place In the givn soure Worksuaton fl.

rans? %heft the 'ADDRESS attribute Is referenced lot ier a
subprogramn or a tas entry. 9.2 DQL QUERIES CANt Or VrRxOSE

Both query results and cursors (iymb~oli names for a gItn ADLqeyta hcsltapriua einrl a
DIANAnode canhe naed I theformbecome very Corriplex. Inv"vine man, subquerles. Juit as Wnoe.

result :a qwtty; cusrsor :m (DANA .oJotx rnatiOn Systems Users have trouble Instantily treating semantically
- result A cw- definition corect SQL queries. Ads analysts may hive trouble creating corn.plex DQL queries by Just typing them Int by hand. A menuing

with later queries able to use those names. Query names (that act system that provides an analyst with somet guidanice it being devel.
as mtwosl art defined in the form oped. DQL also alows Individual queries to be stored by name:this allows a complexs query to be bulls up gradually from Its com-

nA41e Is queary: -- query name definition ponents and to be reused easily.

uwitre current positions art used to replace placeholders In query. 6.3 BROWSING THROUGH INTERMEDIATE RESULTS
QuerIes 31e sirongly typed so the user Is warned when ma~nti
DOL errors art made. In addition to starching for nodes. the Once tile query results have been computed. the analyst will
count unary operator and dt four standard mathen-atical func- *Wi to browse through them and the source code that they repee.
tions (binary operators 1.-) can be used to compute metrics, sent. The applications program that caOr S the highest level rt.

suit strcat Wid displays It on a -Aorkstation screen is integrated
$.A INTERtMEIIATE RESULTS AS STREAMS Ino EASE, an Ada analysis environment (B)rnS 5) running on Sun

3 workstatiorts that allows multiple windows of Information to be
Each query (including each subquery witin a igher level ceated and managed. 'nht DOL programs heco.me just another

quet)s produces a stream of results. Thetse streams can be bul type of analysis tool supported by EASE.
and combined dynamically. Any additional connections needed

514 7th Annual National Conference on Ada Technology 1989

Plat I tow a DQL Query Nea.ob taok (program) that *Wi towk tranafets of resul to a iockutiton are done only %.hen tOw
dimplay rauiw (44 ASCII Wes) a# they aWe received Ior Om 1e *eRv user explicitly reqlueats them with the unaty 41splay (louiy) Iic-
of. 'The Wet on n a int w thew t at soo as they art liont. 'Thet viotkatlim can be dedicated to the ukr Into fact. whli
receWwd; thete k no need to wait Wo the query to be comlettd. the servwrs hardwart can be as ,owerfu at war y to act as a
The UW could request An diO&W (MIftan at the line containing a DIANA data balt mchne.
patilula itode) or stan a new *qy based on a paniculr rcwul
or ant entire mtrar (using It si the sowier or targ"). 6.5 MIA14AGEM4VT or EARLIER QUERY RESULTS AND

DIFINITONS
9.4 CONCUARNT ACCESS BlY MULTIPLC USCUS

As an anal), uwe OL. many query defintlO~t Curto
Seweal differemnt uwe may *Mr to anslym the mem DIANA flnw'e. and qury fesAlt may be Crested. In addition, predefined

tree am the taetm.forcing soe of thef to waituntil an eas - query 4k(MW and ftk (capturing ar3n analn gtWnd
Met uw hat Iin&We winlt the tre aigul troduc woceptible design rules) maoybe wed. To mnagsle asl thk information. "weiai
rto"w tioe dtayi ft DQL servr ment~wratitm uw dy- WAE stati W10410" (0on the tsefs WWWOttto streen) are UP-
nauticaly created Ads task$s to do eah Of the queries. Figure dated at new DQL tewit ate crettd.
2beloow hOww how an exmple query In a sevvr might connect Mw

Ntbquerle. The conceaors om bine Individual Woaqueles Into Figute I shows Ouret and Remuls taikt roarnin In a ".ok-
& tinA stream Of recm~t. Another wtet's query would introduce gtallon: at each new query it defined or tesult it requested, these
new %A$~. but the erVer would WlOW all Of them11 to run Concur* %indo t e updated. LAS Italot the we tio brwthrough t
reniy. WtnOW4 holding query retsk "ith standard mow*e powners and

pop-up metnui. EASE mnains connecionsW bete ndoeS.
Nte that the co ectivily between result streas is done aI- mo a ute can Istis conmmnds to ofe wsindow by running a rn-

most totally writhin a DIAN'A tree sevr. Mm~ new queries wil be nUnd In another windoaw.
refinements of prtevious restus: dynamically added qlueries can
reuse existing subquerle and results. Potentially expensive net-

FTgre .Qeyl"IigMlil Servers

Tree Annual NainlCneec nAd3ehooy18 1

* D

Fitu" 2. Example of Subqwary Tasks

i CAcINGm or INTERMEDIATE RESULTS 7.3 DIANA STANDARD IN FLUX

The Intiermeiate results of a subquery (both named an n The DIANA Ites used by DOL art those built by the ACS.
named) may bit tilt sanm reuis needed for some later qury ". %hkch uses a varian of the 1913 DIANA standard. Slse thesIblY for Another user. Figure 2 show how some resut ani be orignal DIANA definition, there have been other DIANA man-CaPtured AS Indlependent query itu collenstlq for lae rue dsfds pcopased. Its addition. each Ada cowpiler vendor has%li~en a Later (sub)query Is Issud tha mace i xitn t added Its own emtnsions and modifications to DIANA. WAkI(W4
collection, that collection can be read instead of recreted. Not truly portable DIANA-based tools difficult to develop. We have
that m110e than One query can read from a collection &Ith Mm tried to aberract the DOL primniti "&e$e from the details e~ Atime to Increase concurrency. pankular DIANA Implementation. but there is no guara'*t that

DQL sw cover every vendor's Intermediate DlANA-ak % form.

7 CURRENT LISMATI1ONS 7.3 EXTENSIONS TO DIANA

7.1 DIANA TREES JMUST BE STATIC In addition to the complier-specific variations In DIANA [im-
pennations. some Ada toot devloprs have greatly extended

The IAN tres hatDQLwors 'sth ustbe ematicfly the amount of Information that Is ca~xurtd In an Intermediate form
Correct Ada and they may not Change while the trees are thbeidalnugnetngns xmls nid tesseanalyzed. Parlafly correct trees are not usable. While tIs en tured commens conventions used for project management Informs-his 1ilts. tion (as In Byron and ADADL) or formal specification (as Intion does not affect a user that analyses the Ad& source only after ANNA (Luck54) and TSL (Luck87)). To help with the analysisIt has been released by the programmers, Ada dev!opers may find of Ada software using these notations. both the DIANA trot serv-DOL hard to use *hile writing code. ers and thet DQL language would have to be extended with addi-

tional primitive queries.

516 7th Annual National Conference on Ada Technology 19619

7.4 VORTAIUTry TO 0O13911 WORKSTATIOI1 ACKNOWLIEDGEMNI&T
Ifs"11OI4MEKTS

The current OQ (anad EASE) w~ntemmioo runs ont Su The ahor *Wwhe to thantk 0aid Emetr for his woqk itt
w~ktalois uniptheSon io"f~crase Efotgtritps ot tting the iteeN.e ens to wrk, The atr also wishecs so thhk

Mmkoee ItaiE. Richard 114441d. and Sen LIniCh*4k fort
Wouscine(SnVEW)."oh EASE and 001 imoio be asai*. thi "4or and commnt n urn twit th eiqopent of DOL.

abl to a broade dast of user if they ran uider a w.oksurtiot,
1404tqwwet that %*A An emrgin Indusry irandxrd. Both the IX

an.1 Soot 84tork aetstbl windowing Srtem (SunVeW5) eft. PYMEUIC
titomet *A OLd be potaibl hone for fusie erwowi of the Work.
A0"n ltfatt took.~ (114617) 5Ahnt. Destn Atomation for Ada

* ru~ua~ wo~x of the 194 ACM4S1CAd4 Iiei4 Ctl0fdeeCe

3917.
0.1 CURRENT STATUS NM4 14. l JA. se tOwih4.Noce

001 14 be*ng WIplemented In phais. The inina pthas coo-Hl. 94
lI*te of thee paru. a rehosting of the ACS ftamt end to Sun kee.
erl, as % Wouce foW DIANA itee' ceraing A OI query WV4# (1119NIA) 0ohr. It, J. A.. et. at.. CAEDE 1. Vief$ "A rs.
promo that conwnen a qury (i ASCII text) Into a kmwkcaUy Trithiicz RevertNO. SCE-14-I I. C311etn
correct Set of callM so a DIANA tee eriern and Imspiementing a %J4*"r 196
DIANA te# Wete f1W the cttalt and whaagement of VjburleA
and Witrmedit tejuks. Later phases ill pro'ide a -nux" sli (11101l) %ti. C.. "ISO AcquiSon Suppot Enuiitent

tmfor the creat of quele and! fNl suppo of querie .wk (EASE).' Prootevdjs of rt Slixth Naioeta
cC044 setter boundaries. Each phase will alho prolidt iandoad Crofvet*C? @a AA TreluswJy. 191A.
queris that Ad& anayst can wse at an intodocion to btosew"Ce7)Cei . h nlt-eal~hp~tdI-Twr
tough Ada softwatCn,)Ce" . TeMoe ol

Unjififed %Ie* of Data.' ACM T:dcrwo. im

1.2 VQL AS A LAYER FOR FUTURE TOOLS ! ds S'jilms Vol. 1. No. 1. NIar. 1974.

The EASE eionent it Intended as a layer on which toki (Chef 4) herryo0. . loc. 191k. s ~aA'#S
such as 001 co"l be bult, 001s tookc ptoides a varsety 0fTwtTne n. 9~
Imetefs that ocher tookc can we to ptatide their Ada Informs.- (OaieI2) Date. C. J.. An troduesowto Nw h~asie $rte.
;ion Exampls of theie Itrfawe Includ the DIANA Itr fqen Adduon-Wesly. 1912.
ers. the DQL query paners. and the icrollable 001 query result
taindows. (DODDl) Dtpartment of Defterse. Ada inle IOV3m Olffic.

Ada iiangeg p f:nc VisJ
An examcple oz a oo that could wfe DQL It an *Nper t~em ANXSIIMIL-STO-IISA-1993. 1963

that needs Inormations atowt Ada swucet to populate Its know ledge
base. Somnetimes proper checking of a deopg rule may involve (CVanI) Eirans. A.. and K, J. Butler. Descrittve
complex fomwad chairin rul or complicated patrn trcogni. Intitermrdia Atriht~bed X041aMR for Add R4efiiet
tin. Such design rules could be capturedl in an expert sysem. lmw.T4-.TnnLN 93
wish RPC calls to DIANA seVer s ed as part of the itfertrnCint Vusa.T-3J.Tra as 93
snech,%An. (GordiS) 0ordon. SI.. -The Bkyron Progrm DOck-nent

La4nguage.' Joutmal of PASCAL. and Adj. J4n"
8.3 CONVERSIONS or EXISTING TOOL.S 1953,

Exising tools w-ill he modified to take advantage of the Intfr. (Ilarnmll) liamnert. M. a3W D). McLeod. 'Dasabs
macion that can he provided by DOL queries. For example. tire Descr~tIoln with SDMI~ A Semantic DMAtbsle
C-Arleton Embtdtd Sysem Design Environrment (CAEDE) Buhr Slodel.' AC.'I 7' ntacrloit an Dorabale Systems.
diagram editing toolk (D1uhr36). running on Sun workstations. Vol 6. No. 5. Sept. 3911.
could he modifid so diagrams could he creattd from Ads source
code at well as CAEOE currently creates the source code from the (IfoarSS) Hlome. C. A. lt.. Counmunictilrpt Se'quential
Buhr diagrams. This would he done by querying to determine 11- Proesses. prenlece-1hil. 191S.
brary units and the tasks wsithin them, and then seeing how the
units call each other. Such modified tools would allow the Ada (InttS6) Intrmcitics. Inc.. ACS Compiter System tUser':
source's design to he presented in 3 fotrm (such as the Bltr no':. Manual. IR-NMA-764. 1916.
tson) that is familiar to a particular analyt.

0 SuaVItiW and SallWS are trademark% of Sun 161kuoiplemi. tAr.

7th Annual National Conference on Ada Technology 1989 517

(Ltuck14) Luckhwn. 0. C.. *% aI. ANNA., A 1.A'4pq b'
AaotkqM Aidd Ptw.Vi Tethr*A Nq~oei No.
14-:61, StAnld Upfvmr. 1914

(Lauch57) Lockham,. D.'". fn 34. Tgz& S.100CIq tAnsmqt
be Sp'@clh Mt ~tilweJ Aud Spoovm. Tochnoca)
0"*"e sa. CSL-TA-17-334. Swamced UmwstIty.

(,%I4) Xin. i. aMd P. Wals. t@orl"Jk 4*4 Si1Ik in
Aid. CaMbeldO UMwta0ty Piti*. 1954.

(retkil) NsthW, J. A. "n PL. S. Gorae. -Exiotlefie UAnj
an Atomated M.et4o Fvainevock to impiow the
OL41ty Of Ad* SO1wae.' PrOCOtMM 1 f th F~
Ndelomd CkfaccI. 04 Ad Tecftol. 3957.

("1pi4) "-p. r. Wn T. Teksemow, 'The Symeow,4e
Oeneeatve.' PI-OW44# 1 1 AC4 SJCSOFTl

1914.

(S6M)S Sateh. Inc.. Ad* $ Iftweec OAMe ~i~.
F.VeMW.IM: Cae $1awII$ xqtwt. Uf~td Stmet
Army CownvwWAto DectoaAO Cooman. 19112.

(td"s) Wald, P. T. and S& i. 14.*eWe SeacsartI
ODtvd.'pvsell b~r &41-770fe S)*1emI. YQWd~n hV0wu

RIOGRAMHY

Chetowhr Ulyinet ita Mtember of the Tochrical Staff .t the
Softwuee Coete at The MITRE~ Coqw~atoo H* rwtelrd bli
$.A. Im NTeh Umirany in 1976. hk R.S. (m~m the Unb~e,~y of
Lowel In 1910. and hUM~..S.E. IrMM the Wbf4 Iffltut of C0da
ate Studis in 1914. Ilk Wnetesu inchidt whfware dairelpmnt
methods. analss of desoe peoducu. and the Ads prolernmnq
lanuag. Ilks mallng addfym Ws: The NOTRE Corporationt. Nor.
*Wnon Road. MIIS A154. Sedford-Stais. 01730, He can ahao b
teached at 66mttue.ott (lnsete) and at
...tde'K1w~mbuntcb (UUJCP)

518 7th Annual National Conference on Ada Technology 1969

ADA PORTANILITY ANONG HR R OTINIOUS SYSTINS

NASSIR BAZZI and 510JAMIN CASAZ'O

Advaned Seftware Teehnlegy CiCO

In their book. ep hi.r lw And

$...1. ;o. i sa. (1], John Nissen and Peter

NSRVailia, state the tact that -A perfectly
.Wt govrMntk (trsL4 are dev|elJ portable Ada program would, without any

by many e trectrs who ofw n utili:e ir change, be comp' lable by any valid Ada
compiler'. Fur\'hermore, they proposedWn Wr eesc,} o prfo m their ss m td txk. the equation belo w to e sure the

of intration If different rrle s a he portability of any given Ada code.
been used. Therefore, "Inrs, or poevibly
0ultantx. ms. tW utill-d to solve the (Coat of re-implementation on
Incovtibility problem. This proms is not the net target)
only Inefficient but Qften ccstly to both the I
coajiny nd the government in terms of money (Cost of original implementation)
and tim.

ign-in4 on Ada utility package, which
is Lidependent of the operating system. is a
feeiblo solution to the portability problem I there is no re-implementation
since cheoens to the source code are now c the formula will yield the
going to be carritd out by the utility rather original Implementation cost.
then the user. This is accomplished by usirg
fixed specificationa slong with one of An Intermediate layer which helps
several bodies. The body choen dqpeds in creating different images out of the
directly on the operating syntm in use. name source code, depending on the

environment, relieves the user from
having to make the changes to the source
code himself. This will set the re-
implementation cost to zerc and the cost
of the development will not be affected
by any overhead due to the new code.
The layer, which sits between the user's

INTRODUCTION program and the operating system. will
have to perform the operating system

Heterogenaous systems are inoompat- dependent calls. In addition to its
ible systems because of dissimilarities needed routines, the laye- can expand
it both their properties and character- the capabilities of the language by
Istics. These differences are most including other Ozer needed routines.
evident in their keyboard interfaces,
file management system support functions Since a concept rather than a tool
and I routines, and communications, is being proposed, the File Management

System (FHS) layer is being focused
An Ada source program, which is upon, as an example, since the same

compiled using a particular compiler and procedure can be followed for the other
operating system, will not be able to layers.
run under a different operating system,
even if the same compiler is used, After designing and implementing
unless changes are made to the source this project, a driver was written to
code. Haking these changes to the source test all of the operating system's
code in undesirable, especially if the dependent features on the layer. This
program has to run on many different driver was successfully compiled and
systems, since this process is both time executed in both DOS and UNIX, without
consuming and expensive, requiring any changes or modifications.

7th Annual National Conference on Ada Technology 1989 519

APPROACH DESIGN

The following steps ware followed The specifications for the FMS
to create the intermediate layer. As package were baned on the text-io pack-
stated in Figure 1. the layer can be age specifications from the Ads Language
broken into three maJor section# Reference Manual (21. In addition to
aiiordinj to the types of services each the routines already contained in
section la to provided. textio, additional routines were added

to the new package specificationx inSection 1. the Communications order to handle directory related calls.
Section. will allow an Ads file to be The result of this was a package called
transferred between different machines. PortableTextlo.
It may also add the features needed for
the compilation or code on a distributed In order to facilitate the use of
system, the new package, it was imperative that

the PortableTextIo package ran exacltySection 2. the File Management as did the textio package. Generic
System and 1/0 Section. will provide the instantiations of the generic packages
interfaces from the user's program to inside the text.io specifications were
the lower input and Output application also Included in PortableText.Io. In
calls of the operating system, order to accomplish this abstract view

the specifications of the genericSection 3, the Keyboard Interface modules in the new package included a
Section. will provide a compatible input type that was generic not only to the
interface regardless of the system's module beign developed, but also to the
keyboard, module inside text.io.

After the set of specifications was
developed, two package bodies, one for
the DOS calls and one for the UnixComm. Ads Keyboard calls, were developed. The package bodySection Programs Section that handled the DOS dependent calls

contained the pragma interface to DOS to
File Manngement perform the requested call. On theSystem other hand, the Unix dependent calls

were handled by routines written in C,
and utilized pragms interface to the C
language.

Operating System In Figure 2 we can see how the call

generated at the user layer will
propagate to the operating system layer.

Figure I

Ada calls for servicePrograms

An stated in the introduction only
the FMS layer will be developed Portable-
completely in this exercise. The Text-Io
operating systems used were Unix and DOS. (Specs)

The FMS layer can be represented.
using the Ada language as the designing Portable
tool, as an Ada package. TextIo DOS Unix

This package will contain a set of (Body) version version
specificetions that is common to both of Textjio
the operating systems in use. The
specifications were designed using the
Unix operating system semantics as the Operating DOS Unix
building block. Unix was chosen rather System
than DOS simply because the government
prefers that operating system.

Figure 2

520 7th Annual Nationa Conference on Ada Technology 1989

CONCLUSION ACKNOWLEDQENEWTS

The Department of Detente is now.,
more then ever.requirin contractors to Sperial thanks to Dr. Thomas J.
use the Ads programming language to Wheeler for sharing his knowledge and
develop their contracts. In order tor vxper ise concerning this concept.
the contractor to fully satisfy the Thank to Mr. Lee Van Lan who was one of
required specifications of the contract, the original developers of the Thesit
he will xssign different parts or the Work at Monmouth College. and to Misn
contract to various developers. These Karin Cotkley for her contribution edit-
developers in turn may use different ing the paper.
systems to complete their individual
task. Once the separate parts are
completed. the next step It to integrate
them on to the target computer. REFERENCES

The use of the PortableText.jo (1) John His:en and Peter Wallis,
package will allow the user to run zX.w . IJtiX and. X.Y.X, j UA.
his system on two different Cambridge University Press, 1084.
environments, namely the IBM PC-AT andthe SUH3 workstation. C21 Anns / Mil-Std 1015A.

Language Referenee Manual

The purpoce of this project was to
set an example of how to develop and (33 J.G.P.Barnes
implement such a luyer. This ues done elto JalL ln.01
by using two characteristically Addison-Neuley Publishing Company
differqnt machines, the IBM PC-AT and
the StIN 3 uwrkstation, running DOS and (4) Putnam P. Texel
Unix respe#,rlv4y. TAtradua Mtsd.

Wadsworth Publishing Company

(5) Richard Wiener and Richard Sincovec
Sottyarxe EnginAeXIAL With. Kna" -Z &nd.
Ad.
John Wiley and Sons.

(6) Edmund R. Matthews
"Observations on the Portability of Ads
I/0"
Ada Letters, Vol. VII Hum. 5 Sept. 1987

7th Annual National Conference on Ada Technology 1989 521

Ada Compiler Validation: Purpose and Practice

Rosa Williams and Phil Brashear
SofTech, Inc., Firborn OH

Sove Wilson
Wright-Patterson AF5 OH

if we assume that validation guarantees that
compilers adhere strictly to all the syntactic and
semantic specifications of the LIM.

Abstract
- In other cases, the LIM Cails to completely

The real meaning of the term "validated specify some semantic behavior without explicitly
Ad& copiler" is often misunderstood. One saying so. For exaple, LM 5.5/6 says that the

cemo inference is that the validated parameter of a FOR loop "is an object whos* type
compiler Is bg-free; a second Is that the is the base type of the discrete range." If a loop

eompler behaves precisely as specified by parameter is used in a CASE statment, It is

the Ads Language Reference Manual (LI)l important to know the subtype of the parameter (in
still another perception Is that a validated particular, whether the subtype is static). To

compiler supports every feature described In illustrate this, consider the following code:

the .RA and is judged to be a "good"
compiler. By examining the validation for INDEX In I .. 100 loop

process and the test suite on which case INDEX Is

validation is based, we hope to correct some when 1..50 a) ...

of these misunderstanding
s . when 51 .. 100 > ...

end ase;
end loop;

If the subtype of INDEX is the static subtype I

100, then the CASE statement is legal; but if the
subtype of INDEX is the base type, Integer, then
the CASM statement Is illegal because no OTHERS

1w Unattainable Coal Of Validation clause is given. Which is correct? The LIM does

not completely specify the semantics of the
The theoretical goal of Ads compiler situation, so, again, two validated compilers

validation Is to ensure that a translation systM could produce different behavior (one rejecting

purchased as an Ads compiler obeys the syntax and the program, the other accepting it).

semantics specifiedL by ANSI-MIL-STD-1815A,
9forno.e Manual for the Ada Programming Language (Actually, in the case of the loop parameter,
MPH). If I we assume that this goal is achieved, the standard is now Interpreted to specify that

then we would expect that an Ada program would the subtype of INDEX is determined by the discrete
exhibit the same behavior when processed by any range. 7he case is covered by AI-00006, a Binding

validated compiler and executed on that compiler's Interpretation of the standard, approved by the
target system. However, there are at least two International Standards Organization's Working

points on which this expectation fails. Group 9 (19) and the Ada Joint Program Office
(AJPO) in July of 19856.)

Incomplete Specification

In some cases, the LR explicitly leaves Incomplete Testing

choices to the implementation, as in LR4 3.6.1/11: Even if the standard were perfect, it would

"For the elaboration of an index constraint, the not be possible to verify absolute conformity. It

discrete ranges are evaluated in some order that is well known that, for a program with any sizable

is not defined by the language." If the bounds of data space, exhaustive testing of the program is

the discrete ranges in an index constraint are impractical. In the case of a compiler, the data

given by functions with side effects, then the LEN space is the set of all collections of text files

does not completely specify the effect of the that are not too large to be processed by the

program. It is quite likely that two validated compiler. To guarantee absolute adherence to a

compilers would produce code whose execution would standard would require that every such collect!.on

exhibit different behavior in this situation, even be submitted to the compiler, with the criteria

522 7th Annual National Conference on Ada Technology 1989

that every collection not representing a legal report. Finally, the implementer has attested
program be rejected and that every collection that no extensions to the language have been
representing a lelal program exhibit the expected knouingly implemented. Those characteristics of
behavior. 3uch exhaustive testing is simply not an Ada compiler should give the Ada user assurance
feasible, that the best possible effort has been made, by

all parties, to see that the compiler conferms as
closely as possible to the Ad% language standard.

The feallty ot Validation

In reality, Ada compiler validation depends The Validation Process
on the completeness and correctness of the Ada
Compiler Validation Capability (ACYC). This set The purpose, in theory, or Ads compiler
of test programs and support software has evolved validation testing is to verity the conformity or
with the Ads effort. It is not complete (in the an Implementation with the Standard, til-3tsndard
exhaustive sse), nor will it ever be complete. 1515A. As may be apparent from this stated
The current version, ACVC 1.10, contains over 3700 purpose, "compiler" validation testing is actually

test programs, but important areas of the language a faisnomer. In fact, the entire implementation,
are not yet tested. Thus, an Ad% compiler can be including the compiler and the host and target
tested and validated without correctly supporting computers and operating systems, is really tested
the very feature that a particular program might because a change to any part of the implementation
depend on. can affect compilation results. According to KIL-

STO-1815A, also known as the Ada Language
Zn addition to its being forever Incomplete, Reference Manual (LN4), an Implementation conforms

the ACYC will always be subject to error. The to the Standard if and only if it satisfies each
tests are written carefully, with constant review, of the following six requirements:
but there are many subtle points of the language
that do not come to light until someone tries to 1. It correctly translates and executes
use them. For exasple, a test may make legal Ada program units that do not
assumptions that are valid for every known exceed the capacity of the
implementation because of the existence of iplementation.
standard implementation techniques. Yet, an
implementer who is an independent thinker may use 2. It rejects all program units that exceed
a non-standard technique that is permitted by the the implementation's capacity.
standard, but that has a totally unexpected impact
on the test's behavior. This situation happens 3. It rejects all program units containing
frequently, and will continue to do so as compiler errors that the LR4 requires are to be
technology beoomes more sophisticated. detected.

Thus, the fact that an Ada compiler is 4. It supplies all predofned program units
validated does not guarantee that it adheres that the Standard requires.
precisely to the standard, for such a guarantee is
impossible. It most certainly does not guarantee 5. It contains no variations except as
that the compiler contains no "bugs," for the test allowed by the Standard.
suite As not designed for debugging (although
implementers do often find bugs when running the 6. It specifies variations permitted by the
ACVC). Validation does not ensure that compilers Standard.
are efficient, either in terms of time or memory
usage, for there are no tests for efficiency in A true all-inclusive conformity verification needs
the suite. It does not guarantee that large, to cover all six requirements and thus ensure that
complex programs can be handled correctly, for the the implementation is neither a "subset" nor a
test suite consists of many small programs, "superset" of the Ad& language.
designed to test specific language features.

It is impra tical, if not impossible, to
verify an implementation's conformity to the
Standard. For example, to check that the

What, then, is the meaning of validation? implementation rejects all program units
What can we assume about a validated Ada compiler? containing errors mould require that all possible
First, a validated Ada compiler has correctly errors be identiied and a test be written for
processed the most widely portable body of Ada each une, an endless exercise.
software in existence. Second, it has done so
under the supervision of an impartial validation
team, and the validation report produced by that What can and has been done, however, is to
team has been scrutinized by the vendor and by develop a measuring stick of conformity. This
another impartial validation agency. Third, any measuring stick is called the Ada Compiler
behavior not 3trictly in accordance with the Validation Capability (ACVC). As a first step in
expectations of the test suite has been rulod developing the ACVC test suite, the 14H was broken
justifiable by the validation agencies ,nd has into discrete test objectives. The resulting
been thoroughly documented in the validation document Was the ACVC Implementers' Guide (AIG).

7th Annual National Conference on Ada Technology 1969 523

To obtain a bese validated compiler, an The VS highlights several validation
Impleter must contract with one or five Ada shortcomings. An implementation is tested for a
Validation Facilities (AVFs) to perform the specific compiler, host, target, operating system,
validation. The implementer obtains a copy of the and set of switch settings Including optimixation.
ACrC test suite. It is quite possible for ACYC test results to

ditftr, if even one component of the

implementation is only slightly changed.

Prvaltdatlon An implementer typically validates under one

set of switch settings and sells the compiler, as
Once the implemnter has run the ACYC tests a validated Ads compiler, under a different set --

on his implementation and believes that he has a one that provides better performance. But the
complete and correct set or test results, he compiler cannot necessarily be expected to pass
submits these results, called prevalidation the same set of ACYC tests when the switches have
results, to his AVf for analysis. If the been changed. The dilema has been discussed by
implementer finds tests he believes Incorrectly the Ada Certification Body and to some extent
Showed that the compiler failed these tests, he resolved. The Validation Certificate does not,
submits arguments to the AYF disputing those due to space limitations, list all switch settings
teats. The AVF forwards the arguments to the Ads used In the validation. Only the VS liots the
Validation Organization (AVO) which handles test validated switch settings used in the validation
disputes sent them from all AVFs. For each test, and for which the ACVC test results apply. Thus,
the AVO decides either that the lmplemnter must the V3R serves as the authoritative and complete
change his compiler to pass the test or that the validation documentation supporting the validation
test may be declared not applicable for the certificate.
subject implementation. When the AVF has received
from the implementer all ACVC test results and has
graded each teat as either "passed" or "not
applicable", prevalidation is complete. Failed Derived Implementations
tests must be resolved before prevalidation is
considered complete. Implemnters have effectively argued that to

require that a base-validation be performed for

every possible compiler on every possible

host/target configuration is both impractical and
On Site Testing unnecessary. To validate for every variation or

host, target, compiler maintenance update and
Once prevalidation is completed, an AVF test every combination of all three would create sore

team travels to the implementer'S site on a base-validations than could reasonably be expected
prearranged date and takes with them the ACVC test to be completed. Furthermore, there exist many
suite, customized for the Implementation under implementations slightly different than a base-

test. On site, the test team loads the ACVC onto validated implementation that would reasonably be
the implementation under test and verifies that expected to conform exactly as the base does. For
on-site results match the previous prevalidation example, it is completely reasonable to expect
results. that a compiler will behave similarly on any VAX

within the entire VAX family, and there are many
Once the implementer has successFully minor upgrades to compilers to improve performance

completed on-site testing and has signed a that do not in any way affect conformance.
Declaration or Conformance, arFirming compliance
to the LYM as measured by the ACVC, the AVF sends To accommodate those instances when an
a notice oF completion oF on-site testing to the implementation is so similar to a base-validated
AVO. When the AVO determines that the validation implementation that it would reasonably be
attempt . ucessFul, they direct that a expected to perform exactly as the base, the
Validation Cerificate, listing both the Certification Body has permitted such
isplementer and implementation, be sent to the implementations to be registered as derived
validation customer. A copy of the validation compilers. Derived compilers are validated
certificate is maintained by the AVO and serves as compilers. The basis for the validation status
the permanent validation record. lies only with the compiler's documented

similarity to a base-validated compiler. To

The Validation Summary Report register an implementation as a derived
implementation, an implezenter submits a request

Following on-site testing, the AVF prepares a to the AVF that performed the base-validation.

Validation Summary Report (VSR) which describes The implementer provides his rationale for the

the implementation tested, the detailed procedures derivation, documentation supporting that

used in the validation, and the tests declared not rationale, and a signed Declaration of Conformance

applicable. All compiler switch settings used in listing the base and candidate derived

the validation are recorded in the VSR. One configurations. 7le AVF reviews the rationale and

purpose of the VSR is to allow the validation to supporting documentation and, if derivability

be completely reproduced. This capability could scems plausible, recomends to the AVO that the
become extremely important if a compiler's derivation be accepted. When the AVO concurs with
conformance is challenged. the opinion or the AVF, they direct that the now-

524 7th Annual National Conference on Ada Technology 1989

derived compiler be added to the validated Classes of Tests
compiler lit. The tests of the ACYC are dvided into six

Users should be aware that, although a classes, A tests, 5 teats, C tests, 0 teats, t
derived Implementation is validated, it has not tests, end L tests. Class A tests check hat a
been tested against the ACVC by an independent compiler does accept certain legal Ada langoage
teat orgonization. Consequently, the conformance features. for example, there is an A test which
depends to a much greater degree than a bta- checks that compilers accept en enumeration type
valllzl on the affirmation of the compiler definition which contains a single enumeration
implementer. literal. Class 3 tests check that compilers

reject constructs which are not leg*l Ad& language
feaures. For example, there 16. - test which
chenkz that a compiler rejects an enumeration type

Confotmanee TestinM definition which consists or empty perentheses,
i.e., which contains no enumeration literals.

Validation deals only With conformance Class C test check that a compiler not only
testing. It does not test the efficiency or the accepts legal Ads code, but also that the code Is
performance of the compiler. Since efficiency and executed correctly. For instance, a C teat might
performance are Important In evaluating the check that not on!y are logical operators for
utility or a compiler, validation cannot possihly arrays of Boolean elem nts accepted, but also that
indicate how "good" the compiler L3, where "gae4" such operations yield a correct result. Class D
refers to the compiler's performance and tests check compiler capability. There in a D
efficiency. test which determines the number of nested block

statements that a compiler can support.
Validation is limited in its test of

conformity by practical limitations and procedures A compiler's performance on A, C, and D tests
established by the Ada Certification Body ani by is usually judged by whether the successful
limitations of the ACVC itself. The ACVC is a compilation, linking, and execution of the test
measure and not a litmus test of the conformity of results auses a message containing the word
an Ada compiler. To understand both the value and "PASSEO" to be printed. For class 5 tests, a
limitations of the ACVC, it is important to know compiler's performance is judged by the compiler's
how the test suite is structured. finding an error at those places indicated in the

test. Class E is for tests the performance of
which cannot be judged by either of the above
methods. For example, some class t tests
determine whether prava LIST and prase PAGE

The Ada Compiler Validation Capability (ACVC) behave correctly. These tests must not only
compile, link, and execute correctly, but must

The ACVC is a changing body of tests. Up also produce correct listing files. The final
until now, a new version has been released every class, class L, Consists of tests that should
year. As of the writing of this paper, the compile correctly but which must fail at link
current version is ACVC 1.10 which was released as time. An example of such a test would be one
a pre-release version on 1 December 1957; it was which consists or a main program for which a
released as a final version on I Kay 1988 and necessary subunit is Missing from the program
beca.e the official version for use In validations library.
on I June 1988.

By convention, the name or a test indicates
The tests in the suite are based upon the the class of the test and the chapter, section,

LIM, as interpreted by the ACVC Implemnters' and subsection of the LIM to which the test
Guide (AIG). 3asically, the AIG follows the pertains, and the number of the test objective in
chapter, section, and subsection structure and the AIG. For example, if the name of a test is
nLabering or the L.M. The AIG lists test "A35101B", then the first character indicates that
objectives for each subsection. Each objective is this is a class A test. The second through fourth
designed to cover one atomic feature or the Ada characters indicates that the tests covers an
Language. The tests are also written atomically; objective taken from subsection 3.5.1 of the LRM.
one language feature is covered per test. The last three characters indicate that the test

is based upon the second part (part B) of the
Each of the tests in the suite is a short Ada first test objective in that subsection.

language program. Most of these are executable,
and, ir executed properly, will write the test
name followed by the word "PASSED" to standard
output. There are, however, tests which are not Version 1.10 of the ACVC
meant to execute. These test programs contain
intentional semantic or syntactic errors and were Version 1.10 of the test suite consists of
written for the purpose of determining whether a 3717 tests, an increase of 621 tests over version
compiler can detect these errors. 1.9. The major portion of new tests covers issues

from Chapter 13 of the LRM, "Representation
Clauses and Implementation Dependent Features." In
writing these tests the attempt was made to

7th Annual National Conference on Ada Technology 1989 525

Include not only those constructs which night be the language? Although it is leal to put an
almost universally implemented, but also aJdress clause for an object declared inside of a
onstructs which, althouh supported by the subprogram or even Inside or a nested 3ubprogrx,
lanuage, art not usually supported by does it really sake sense to refer to the aJdresa
implmnters. An example of the for*er Is a test of such a local object? Can an iXplemntation
which might make use of a size clause, spocifing lesktimately return the save value (a value of
an a sin equal to IKSOZR'SIZZ divided by two and ero, for example) for all label names and block
applied to a mall integer type. Examples of the nams? A,! of today, most of the issues Involving
latter can be found in tests which provide address Chapter 13 teats are yet to be resolved. The
specification clauses for subprograms and task debate continues.
units. Another example of the latter can be found
In teats which first declare a floating point
type, FLOATS, with precision five and then specify
that the sle of FLOATI, a floatlng point type of Untestablb Obiectives
precision one, ahould be LOATSS3IZ dividqd by
two. Although the goal of the ACVC Is to provided

a- thorough coverage of the language &a possible,
H-4ch of the controversy surrounding; the there are some tests which implementers should notChapter 13 teats stems from the fact that up until *xpect to see in any or the upcominq versions.

now, little or no efa'ort has been made to Most of these my be round in Chapter 1% of the
establish a uniform interpretation of the issues for sample, there are no tests upcoming
in Chapter 13. Although the tests in the suite which involvt low level inpt and output. Sin*
are not intended to resolve the Issues, the tests the procedures (nludin the prutp eterS)
have caused may questions to be raised. For thecfred i n the parmet
instanc4, concerning the size of a type the LM totally up to the Implcetn•tionL there le no
clearly statest 0X'3IZ ... Applied to a type or practical way to ascertain that they behave
subtype, yields the mLnLam number of bits that is
needed by the implementation to hold any possible 13 A ty thetes that is othe exception
object of this type or subtype." If DOLENSIU IC a tt t a c s that the 1ceptio
for a Liven implementation is one bit, does this I., -when there ais a malfnction o theh
mean that any object of type BOOLEANq casi fit Into iderly heyntem. The rltin o of this teet 3one bit? It seems as it" the answr tO this udryn ytm h rtn fti etiawaiting the discovery of a harmless way to causequstion should be MES." Yet, it is not uncommon A SYt#m to mlfuntion.
for an implementation which reports a si e of one
bit for type M00,EAN to require four bits or eight
bits to hold a DOOLEAt object which is an array or
a record component. If B is an object of type Future ot the ACVC
DOOLZAN, then what is the relationship between ot

B'SIZE and OOLEAN'SIZE? Is there necessarily any The future of the ACVC is unclear at this
relationship? time. Version 1.11 Is in the developent stage.

Another item upon which there in ame It will be in many ways like version 1.!0. The
disagreement Is the relationship between a major blocks of new tests will come from Chapter 8
STOAOE 3IZE clause and the STORAGE SIZE o the LYM (tests dealing with visibility and
attribut*e. It a STORAGE SIZE clause specifies a rentaing), Chapter 13 (tests dealing with more of
collection size of 1024 storage units for an the same issues as those Chapter 13 tests in
access type T, then can an implementation version 1.10), and from Chapter % (tests dealing
legitimately reserve more space for the collection mainly with type conversions and with real
than specified? Furthermore, what value should be arithmetic). What happens to the suite after
returned by the attribute T'STORAGE SIZE? If more version 1.11 is 3till "up in the air." One
space is reserved than the amount specified, then proposal is that the suite be "frozen" at version
must the T'STORAGE SIZE attribute return the 1.11 and that although revisions to existing tests
actual amount of space reserved, or should the will be allowed, there will be no new tests
attribute merely return the number of units written. Another idea is to produce a version
specified? Does it matter what value the 1.12 of the suite in the same way as previous
attribute returns? or what use is the value versions have been produced. A third proposal is
returned by the attribute? Should an that the philosophy behind the ACYC and its use be
implementation be judged to be in error if the changed. A new suite of teats would be produced
value or the attribute does not reflect exactly in which each test will check combinations of
the amount of storage reserved? If no featuIes rather than A single feature. Whether
representation clause is given for T, then the test suite Will take one of these three
although a compiler cannot reject the expression directions or some other direction must await the
T'STORAOE SIZE, what value does this expression decision of the Ada aintenance Organization (AND)
have? with the approval of the Ads Joint Program Office(AJPO).

No discussion of Chapter 13 Issues would be

complete without a word about addresses and
address clauses. It appears that few, if any,
implementations support address clauses for
subprograms, tasks, or packages. However, is it
totally impractical for an implementation to
support such address clauses for program units?
If so, then why are such constructs supported by

526 7th Annual National Conference on Ada Technology 1969

Referene*a

A. 99rornet Manual ror the Ad, Prorammin
IAur F1IML36_r57 ebruiry195Ta 130 5652.-1957.

2. A Co 1 r Validatin CApability
I314 z!15rs, OUld., SofT4eh, Ine.,
December 1956.

3teve Wilson received his hehelor of Science
Degree In Mthematics from South Dakota State
University in Hey 72. He later received a Masters
obf e lenDe in athwatics from theAbout the Auth~irs University of Nebraska in Lincoln in August 74.

Mr. Wilson worked as an Associate Systems
Analyst for Borrough Corp. In Detroit in 1975.
In December 75, he began work as a data analyst

Wing, TFTA, 1Wright-httrso 1 ATS, Ohio. In August
1956, Mr. Wilson Joined the XAe progr amt the
Ada Task Leader at ASO/3E U rliht-hottersont Anrl.
No Is currently the Technical. Director of' both the

Ada Validation Facility and the ACYC MaintenanceI OrgsnITstion.

Rosa Williams received the A.B. In Rosa Williams and Phil Brashear may be
Mathematics from Spelman College, Atlanta, Georgia contacted att
and the .3. in Computer Science from Wright
State Uriversityo Dayton, Ohio. Presently, she is SoTTech, Inc.
employed by SotTeoch, Inc. where she serves as the 3100 Presidential Drive
Senior Test Revi eer for the ACVC test suite. Fairborn, OH

%5324-2039

Steve Wilson may be contacted at:

Aeronautical Systems Division

building 676, Area B
Wright-Patterson AFB OH 45433

Phil B-ashear received the A.B. in
Education/Mathematics from the University of
Kentucky In 1962 and the N.A. in Mathematics Trou
Northwestern University (Evanston, Illinois) in
1965. Presently, he serves as the Ada language
expert on the SofTech, Inc. contract to operate
the Ada Validation Facility at Wright-Patterson
Air Foroe baso. His duties include analysis or
Ada validation results and managing the ACVC
maintenance/development effort. From 1965 through
1985 he Was a member or the faculty or the
Department or Mathematics, Statistics, and
Computer Science at Eastern Kentucky University.

7th Annual National Conference on Ada Technology 1989 527

by Do-While Jones

Integers on k 16-bit machine. Even if both
ihines use the same number of bytes per

TF.7..IO is the standard Ada paCkage for integer, one might store the higi byte
Input and output of character data. It is first while another might store the loV
commonly used to transfer data between byte first. Floating point numbers are
devices and files. Unfortunately, its even less portable because there are so
specification Is inconsistent and loose mny different ways to represent them.
enough that vendors have Implemvtet it (%YA./VMSI uses 4 different internal forms
differently, resulting In portabllity for real numbers.) Different computers
problems and surprising quirks. These generally use different numbers of bits
surprises make 10 annoying and frustrating for the mantissa and exponent. You are
to most Ada beginners, and even to A few asking for trouble if you try to transfer
seasoned veterans. To make matters worse, files in binary format.
TVrETJ1O was designed to be a file You might think yoU can avoid all
Interface, but it Is often pressed into those problems by using TF-VITO to convert
service as a user Interface. It doesn. do the numbers to character strings in A text
this Job very well, so application file, and then transfer the text file from
programs that use TXT.jO for a user one machine to the other. Well, it's not
interface tend to make users unhappy. that simple. You may discover that files

written by one machine will raise
-d n CO.VSTRAIT.ERROR or DATA4.RROR when read

This paper describes some of the on another machine. That's not so bad,
because at least you know there Is a

portability problems you are likely to problem. Sometimes your data will be
have if you use Tr.XT. O, It tells why a skewed forward or backward one location in
file written by TEXT.IO on one machine the file, causing the data to be read Into
might not be read correctly on a second the wrong variables. (That is, the value
machine, and why a program that works for the third element of an array may end
properly on one machine puts a blank line up in the second or fourth element.) When
between user prompts (or writes prompts on this happens, there may not be an error
top of each other) when transferred to message.
another machine.

You will also find out why quirks In .lvtn q _
TET..1O cause some programs to seem to

skip over user inputs without processing TEXTIO makes a terrible uer interface.
them. I'll show you how to write numbers It treats the user's terminal Just like a
and enumeration types In ASCII format file and lacks features thot humans need.
ithout Instantilating a generic 10 Files never make mistakes, so they don't

package. Finally, I'll suggest some other need a rub out key. Files never enter
user Interfaces that eliminate the need passwords which shouldn't be echoed to the
for TEX._IO entirely, screen. Files never want to Insert or

delete text. Files never need help, or
PREoblesthal W-1 Q 1-mt want to enter the default response. Files

F-im.J-kuJ-A- Probems never want to clear a screen or move a
cursor. Files never realize the program

Suppose you have a data file (containing has run amok and try to send an
numbes, ot htext) tata youe wntainiunsolicited CTRL-C to stop the process.
numbers, not text) that you Yant to Files never want to press a special
transfer to a second computer. You know function key. Users often want t. uo all
better than to try to transfer binary these things, but TE.VT3_O won't let them
files. The two machines might use a because it wasn't designed to support
different number of bits to represent people.
integers, so each integer written by a 32-
bit machine would get "unpacked" into two

528 7th Annual National Conference on Ada Technology 1989

V~rJ~rf a~t ikjrrkoei IooflatIon

The Get and 0etl.[ne procedures don't TE£.V.I0 leaves some Important details
work the way most people seem to expect unspecified. Here are two troublesome
them to. How many people have tried to use passOgCs in the LKH:
TiXT.O.Get(C : character) to try to build
a line editor, only to discover that no "The actual nature of terminators Is
matter what you do, it won't respond to a not defined by the language and
carriage return? How many people have hence depends on the Implementation.
written programs with a mixture of Get and Although ttrminators are recognized
Get_ULne procedures that seemed to hang or generated by certain of the
forever, or take data before the user procedures that follow, they are not
entered it Practically every Ada necessarily implemtnted as
programmer, I bet. characters or as sequences of

When tht hAppens, don't blame the characters. Whether they are
compiler vendor. There's nothing wrong characters (and If so which ones) in
with the compiler. It's Just conforming to any particular Implementation need
the specification. You'll see why after we not concerti a user who neither
examine some of the strange passagea In explicitly outputs nor explicitly
the Ada Language Reference Manual (1,RM). Inputs control characters. The

effect of Input or output of control
Ws x' Iner'., e.oj characters (other than horizontal

tabulation) Is not defined by the
Since Input data editing might not be language." LRM section 14.3

done by the operating system service paragraph 7
called by the et procedure, you never can
tell if CTRI.-X will erase a whole line, or "A il 31e terminator is Always skipped
if backspace will be the same as delete. whenever the preceding line
You might also discover that a program terminator Is skipped. An
that runs fine on one system does strange implementation may represent the
t.hings on Another. The user prompts might combination of these terminators by
appear on consecutive lines on the first a single character, provided that it
machine, but may have blank lines between is properly recognized at input."
them on a second machine. Worse yet, the LRM section 14.3.4 paragraph 51
prompts might appear on top of each other
on another machine. In other words, there Is no guarantee that

two different implementations of TF.XTI0
. Problems will use the same terminators. Therefore,

the line-, page-, and file-terminators
O. generated by machine I might be mistaken

for data by machine 2 and generate
Six years ago, Ada pioneers had to use DATA-ERROR exceptions. Perhaps the
invalidated, partial implementations, difference in terminators might not be
Those compilers were full of bugs. In detected at all, resulting in "off by one
those days, there were some 10 errors errors" (that is, reading item Nil when
because TF\T1 wasn't implemented you think you Are reading item N).
correctly. I haven't seen a problem that Here's a fictional example that
was the result of a TFT.T_0 Implementation illustrates what could happen: When
error In the last few years, but I think Machine 1 writes a line, it writes "some
there is still a tendency to blame the string"<CR><LF>. The carriage-return/lAne-
compiler whenever TEX.T_10 doesn't work the feed sequence is the line terminator for
way the programmer thinks it should. Even Machine 1. But Machine 2 might write a
in those cases where a program runs line with the line spacing first, so lines
differently with two different versions of look like <LF>"some string"<CR>. It
TRT _10, you can't be certain either of considers the line feed to be a character,
them Is wrong because the specification and the carriage return alone to be the
allows so many options, line terminator. Suppose you use these Ada

statements to write a few lines to a file:

7th Annual National Conference on Ada Technology 1989 529

putrFJLE,OXI 4 ASCII.CR £ ASCI.LF); X
put..lIn#(VILF.,"C"); C

If Machine I writes to FILEI.EXT and (Prompt or possible error mosvtgo Itrt.)
Machine 2 writi~a to FILiE2.LT, then the
cottst of those file% Vill be As shown This eXaple Illustrates an annoying,
below. (Lot 0E0Pn) and 4E01 n represent but not critical, quirk. .5uppose, however,
the end of page And end of file workers on FJLI-lEXT Andi F1L92.IFXT w@e dka filei;.
Machine n, which might not be the same.) The first dAtA Item Is A, but 44chine 1

would think the fir'st data Item ist A blank
FILEI.EXT FILE2-EXT line, And Nachtne 2 would think the first

Item Is Ii. This could result In
A<CR')<LF) CUM)(CR0 CO-$rRA 1,r.ERROR, or perhaps wrong anotwero
B(Ck)CLF) WL)b(CR) without any error Indication, If Lte page
X(CR)CLF> 4LF>X<CX)CLF) termInAtorA or file ttr-winators; Are
C4CRto<LF) CLF)C<CR) differe~nt, it could raise PATAERROR.
<EOPl) tK0PZ) Failure to dvfint standard terminator*
(KOFI) 190F2', leav'es thit door open for all sorts of

nAStY portability itrabl~s.
Suppose you have written an Ada

program called List which uses Tl'X_1O to N"PIJAJ-h1PIS
list files. A# lonit as FILEI-E.XT remains
'On Machine I And FILF.2.EXT remains on A potential difference in lint

Machine 2, there Isn't any problem. This terminators Isn't the only~ problem. E~ven
iwhat you will seeo: If two machines usnt the same terminottors,

you can still run Into trouble porting
Machine-DlLIST FILEI.TXT files containing ASCII reprosentatilot or
A numbers. The string representation of A
* 32-bit integer may not be kan Allowable
X value for a IC-bit Integer. The maximum
C AFT field sizes in eLOA'T_1 And FIXRO,.,JO

might be different on two different
Machin*-.2>LIST FILF.2.FXT machines, and the machine with Lte smaller
A AFT field might raise An exception if
5 there art too many charatctcrs in thAt
x field.
C To be honest, this isn't really a

TEXT,..JO problem, it Is a xachnoo
But suppose you transfer each file to capability problem. It only appears to be

the other machine. Here's what happens: a TFVTJO problem because you don't
discover It until You try to usve or

Machine-l>LIST FILE2.F.XT instantiate the numeric 10 packages in
A TAXTJO1. But if you aehitive porta^bilIty by

5 using special numeric types that aren't
x derived from integer or floAt to get the

sa&me range and precision on any computer
C (for example, An Array of digits), you
(Letter C might be immediately covered by won't be able to instantiate TEXTJ'10's
an error message, caused by & bad end of generic Packages to convert those
page or end of file terminator. If not,' it variables to ASCII representattions. Then
will probably be covered by the Hachine-1 it does become a TRX.r.IO problem.
prompt.) ccluinxnonm sfc

Chapter 14 (which describes TEXT..I) Is
probably Lte moat confusing, Inconsistent
part of the LRH. When talking about the
Get for characters it says:

530 7th Annual National Conference on Ada Technology 1969

^After skipping any line ttrmintors equivalent), or a character literal
and any pagt terminators, (Get) According to the syntax of this
reads the next character from the lexicol element tincluding
stelfied input file anti returns the hpostroplhel). Rlturns, In the
value of this charaeter In the out jiromttr IT94, the value of type
pxrAmoter ITIM." LM section 14.3.6 EMH that corresponds to the
paragtrph 3 stquence Input." LR section 14.3.9

paragraph 6
This says that every line termlnator,

ito matter where it occurs, Is Skipped. What does it do About line
Nut, here IN What It SAY# about the G@t terminator* encountered after a
procedure for stringii sinlficant character? It doesn't say.

Suppose an object of a user-defined
"Determines the length or the given enumrAtion type Cat have the values IIAND,
string And attempts that number of AID, RANDAID, and BAN DMASTER. Hov does
GFT operatlons for successive T-.VXIO handle HAtAN01.rmintor)AID",
characters or the String (in "BANDAID, and "WAND(ttrminatorHASTER? I
particular, no operation Is #tre don't know.
performed If the string ts null)." So far, the specification has said.
LRM section 14.3.6 paragraph 9 "Character OetA Ignore al terminator*;

numeric Gets recognize terminating
This Implies it also skips all lint terminators, and sometmes Ignore leading

terminators, bvcause It. calls the art terminators; enumeration gets (other than
procedure for characters. A pattern Is integer Oet*) always Ignore leading
beKinning to take shape. But wait, see terminators and might not recognize
what It says about intetgrs (or real terminating terminators." Ah, If It Was
numbers): only that simple. But there's more.

Since all forms of GeL for character
"if the value or the parameter WIDTH data types Ignore all terminators, we
Is :ero, skips any leadlnK blanks, might expect GeUine lwhlch works only
line terminators, or page for strings of charctcers) would do the
terminators, then rtds a plus or same. Not so.
minus sign If present, then reads
aecording to the syntax of an "iGet.,ine) Replace* auccessiv
Intter (or "a real") literal (which characters of the specified strins
may be a based literal). It a by successive characters read from
nonzero value of WIDTH Is supplied, the specified input file. Reading
then exftvtly WIDTH characters are stops if the end of line is met, In
Input, or the characters (possibly uhich case the Irocedure SKIP-LINE
none) up to a line terminator, Is then Called (in effect) with a
whichever Comea first; any skipped spacing of one; reading also stops
leading blanks are Included In the if the end of string Is met.
count." LRH section 14.3.7 paragraph Characters not replaced are left
6 (or 14.3.8 paragraph 9) undefined." LRH section 14.3.6

paragraph 13
So numeric :rms of Get skip leading

line terminators only if WIDTH is zero, This says Get.Lne doesn't ignore any
and never skip a terminator that appears terminators (including leading ones), and
after a character of Any kind has been skips over the terminator that causes
encountered. Since integers are Just a input to cease. That's surprising because
special kind of enumeration type, you
might expect enumeration types to be "The character or line terminator
similar. Thoy aren't. that causes input to cease remains

&vailable for subsequent input." LRM
"After skipping any leading blanks, section 14.3.5 paragraph 5
line terminators, or page
terminators, reads an identifier
according to the syntax of thin
lexical element (lower or upper case

7th Annual National Conference on Ada Technology 1989 531

Is this a contradiction! Well, Lthe If someone gave you the hiating ot
title of section 14-3.5 is "oet And Put the Xcxatroke..Counter And naked you what
Procedures". so presumably the discussion IL does, You would probably say Lhat. It
In section 14.3.5 Is limited to Get andi counts the number keys prrsased before the
Put and doetn't Apply ta Ge: ..1ine. Out user presses CON~TROL.%, thtn prints Lhe
paragraphs A And 0 of that section number of keys pressed. That's 'what It
specifically deal with Xaw .Llnt and Appears to do, but it doesn't.
Get-hiro, so one could argue that Lhe The tirst problem io the CONTROL..
title "Get Anti Put Procedures" Is A. That's 9 spoclitl character that tb.
general term that Includes all output operating system might filter out. it
routines tincluding Nvew jInel And aill might be Ignored, or It ofight, cause Lb.e
input routines (Including GotLLint). word EXIT to be printed on your screen (in

Suppose there are #even characters reverse video) And Immediately Ltrmate
before a line terminator, and you use Your program. Since CONTROL.Z Is likely to
G*L._Line to ftche a 7-charAcLer string, be the end-of-tile Lerminator, TEX7_1O
Doe2 it stop reading because it has read might notice that the CONTROL.,? Isn't
Seven characters (and theretore not skip immediately preceded by a page terminator,
the line terminator) or do*s It stop and raise EXDJRROR.
reading because there are no more Suppose you try t.o Avoid the problem
characters on the line (And skip the by changing the exit lint to exit when
terminator)? The LRi4 doesn't say. I XKYSTROKEC a 1.1;. It still won't work.
expected it to skip the line terminator, Suppose you type Lhree characters and then
but found It didn't on two validatedl a period. The charaCters are echoed as You
compilers. eitter them. You type seven ^ore

characters, and then hit the carriage
gp~~n~j~greturn. Suddenly It prints You Pressed 3

keys. That's because the operating system
It Is obvious that TEXT..I w..s designed Is treating the terminal like at record-
for riles, not people. Mies are record- oriented tilt. It wait* for the end of
oriented, and people are character- record before it passe* the complete
oriented. That's why the Kaystrokc_.Counter string to the Aexstroko..Counter. Then
program, shown in Figure 1, won't work. A'cxstroke..Counter examines the string one

character at a time.
--------------------------------- You might think you con solve the

Figure 1. A program plagued with problems. problem by changing Lte exit line* to exit
when KEYSTROKE a ASCII.CR; - Wrong again.

with TEXT_1O; uime TEX(T_,.I; TEXT...I wax designed to work with tiles.
procedure KeystrokeCounter Is Files don't care about line terminators.
KEYSTROKE :character; They aren't limited to an 8.5 inch wide
COUNTER :integer; page, so, they don't care how many
CONTROl...?: consttant character characters Are on a lint. As tar as they

:a charActer'VAL(26); are concerned, line terminatorst are Just
beg in Meaningless symbols sprinkled abaout in the

put-.linet"Press sone keys, then" real data for cosmetic reasons, so the
& " CONTROL-Z to quit."); text will look nice on a printed page.

COUNTER :a 0; Remember, the character Get procedure
loop Ignores all terminatora and throw* them

set(KF.YSTROKE); disdainfully on the ground. As we have
exit when KEYSTROKE z CONTRO...?; already noted, the LRM doesn't specify
COUNTER :z COUNTER+l; what a line terminator In, but all the

end loop; compilers r have used happened to pick the
newjline; carriage return. So, If you try to use
putC"You pressed"); gfetdXE)'STRONE) to get a series of
put(integer'IAGE(COUNTER)); characters until a cariage return is
putjline(" keys."); entered, your program will never see Lte

end KeystrokeCounter; carriage return because it in discarded as
---- ------ ---- ------ ---- --------- a meaningless line terminator.

532 7th Annual National Conference on Ada Technology 1989

Sol~ n why did it do this? After processing
o CCX), the line terminator was still

A L m. IS-JAnA "available for subsequent input" am
section 14.3.5(5) requires. The Oto')

The simplest (but not the best) solCton procedure skipped It and read your secotnd
is to find a unique solution to each Integer entry, stopping Just before the
unique problem. Consider the TEXT.IO.QiLrk line terminator. Then OcthLint read the
program In Figure 2. It is a nonsensical, line torwinator associated with the entry
contrived example to show what happens of Y and thought you entered a null
when you read two Integers and a string. respons to the quection about whether to
(It doesn't do anything with X or V. and do the loop again or not. $rASPOX$S(j..3)
doesn't check to see If the user entered a contained unspecified characters, and
response in lowor cas.) L&VOTH had the value 0, so it wasn't equal

to FES. DONE rmasined FALSE and It went to
-.--.-.-.----.----.---.-.-.--.---..------- the top of the loop again. The solution to
Figure 2. A surprising quirk in TLXT_IO. the problem Is to add a Skipjint

immediately after GeC(}'). This gets past
with TFXT.-1O; the line terminator so G .Llne will wait
procedure TLXT_1_Quirk Is for you to enter a response.

NoLice I have called New_Line
package IT_.IO is new following each Get. That's because I

TEXTIOINTEER.IO(Integor); expect Get to recognize the carriage
use TEXT.IO, INT.1O; return and throw It away without echoing

It. I tried TXVT.O,.Qu~rk on two different
X, Y : Integer; Ada compilers. On one, that's exactly what

happened. The prompt to input " was on the
RESPONSE : string(l..3); line Immediately below the Input X prompt
LENGTH : natural; because it did not echo the <CR)<LF>

sequence. Ot the other, there was a blank
DONE : boolean; line between the two prompts because it

did echo the (<CR<LF>. The spec doesn't
begin say which Is correct, so both are correct.

new-line; If I had left the Xes..Line calls out, then
DONE - FALSE; one machine would display prompts on
while not DONE loop adjacent lines, but the other machine

put("Enter X: "}; getMx); new-line; would overlap the prompts.
put("Enter Y: "; get(Y); newline; When porting a program from one
put("Oo yoli want to do it again?" computer t another, you may find that you
& " (YES / NO) "); have to add (or delete) 'ew_.LIne calls

getLIne({ESPONSE, LENGTH); after every Get and GetLine. if you want
if RESPONSE{I..3) x "YES" then to Put, Get, Put, and Get, all on the same

DONE :z TRUE; line, some Implementations of TM_1O will
end if; prevent you from doing that because the

end loop; carriage return that terminates the first
end TEXTInQu irk; Get will be automatically echoed.
-- Both machines acted the same when I

entered a blank line in response t(the
If you compile and run the program, input X prompt. They ignored the cLrriage

you will see that it prompts you to enter return internally, and continued to wait
the Integer X. After you enter a value, it for me to enter X without raising an
prompts for Y. When you enter Y, it exception. What surprised me was that both
responds with both the prompts for YES/NO echoed the <CR><LF> sequence.
and X. It acts as if you entered a blank
line instead of YES or NO. Since a blank OtherUse__nterf,_ae
line is not YES, it goes back to the top
of the loop. I hope you agree that Ad Hoe solutions

like the one shown above aren't a very
good idea. Every time you port a program,
you'll have to tweek on it tc

7th Annual National Conference on Ada Technology 1989 533

make it work. There's got to be a better next prompt to appear on the next line.
way. I think the bet.ter way is to not try (You can leave out the NeK..Lne if You
to use TEXTZO as a user interface. It want the next prompt to appear on the same
wasn't designed to be a user Interface, line.) It is good for user dialogs, where
doesn't have enough capability, and it questions must be asked aud answered In a
Isn't consistently implemented. specific order.

Remember, Ad* doeun't require you to
use TEXT.1O. TEXTIO ix Just another FORM-TFR.NINA I,
feature that you can chose to use if you
like. I don't like. Instend, I wrote my FORN._TR.IXAh is radically different. It
own set of user interfaces. These packages has the same editing features and
are called VIRTUA1,TRR.VVAh, NEEDSHRLI and PANIC exceptions that
SCROLL_TERNINAL, and FORV._.TER6IXAL. A SCROLU.TERNINAL has, but the similarity
complete description of these user stops there. FOR.s.TER.IYAh fill* the
Interface packages (with source code) is screen with quistions, default responses,
In AdPaIn.&siq.n o And simces for user inputs. The user can

jump around the screen, entering data In
V'RTUALTERHrAL any order. The user can even go back to

previous acreens if necessary. You could
Terminals are notoriously inconsistent write a spreadsheet program using the
when It comes to control codes. They all FORNTERIWXAL. (Try doing that with
have different control sequences for TEXT..ZO.}
clearing the screen and moving the cursor.
The VRTUAI.TER.VZNAL hides all these
differences. It can be used for screen-
oriented displays. It Is handy whenever I've had only minor trouble with TrXT.\'TO
you want to move the cursor all over the as a file interface. Sooner or later,
screen and write text fragments in though, I'm afraid TEXTIO could cause
different places, but that isn't Its main some major problems. Just to be on the
use. The VZRTUAL.TERMINAL Is most valuable safe side, I'm working on a package called
as a foundation for other terminal ASCIIrO that is a portable version at
packages, such as SCROLU.TERWXAL and TE'T_IO. It has the same features as
FORH_TERNNAL. Those two packages are TEXT_IO, but it operates exactly the same
built entirely on top ot VIRTUAL_TERN IAL, on all operating systems. Initial
with no system-dependent calls, so it experiments with ASCrzIO show that it
isn't necessary to have different bodies solves the problems I've talked about
for every implementation. If you can write here, but it creates a whole new set of
a VIRTUAL_TERHINAL body that works with a problems. Ste the March/April 'R9 Ad& Info
different physical terminal or different column3 for a discussion or those
operating system, then you can port problems.
SCROL&,.TERNINAL and FOR_TTRNINAL without
any modifications. Tips Foc sing T£ -

SCROLLTERN'NAL I use TE.\'TO in simple example programs
when I don't want irrelevant 10 questions

SCROLL...TDRMINAL is T.\T_O redesigned for to distract from the point of the example.
users instead of files. It contains For real programs, however, I never use
familiar subprograms like Get, GetLine, TEXTO for a user interface, and I'm
Put, Put_Line, SetCol, and so on. The working on a better text file interface.
difference between it and TEXT._IO is that My first tip is:
it supports line editing consistently,
offers defaults, allows the user to enter (1) Don't use Tr'TO 10 ifyou can avoid it.

invisible data, and has built-in
NEEDS..HELP and PANIC exceptions. It never If you take that advice, you don't
echoes the terminating carriage return, need any more tips. However, if you are
regardless of the host operating system, stuck with TEXT_I0, here are some more
so you can confidently follow every Get helpful suggestions.
with a Nek._Llne if you want the

534 7th Annual National Conference on Ada Technology 1989

WoJiLIA-e_- a -- save a boolean variable
,A m4I.on ..k§LPJd-r, e If PROTECTED then

putline(FILE,"PROTECTED");
You saw the trouble you can get into when else
you mix Got and Gec.tJne in Figure 1. You putlIne(FILE,"UNPROTECTED");
avoid this if you always use Gethine to end If;
read characters Into a text string that is
longer than the longest possible input -- read it back (TEXT'LENGTH > Ii)
string. This limits you to one value on a get line(FILE,TEXT, LENGTH);
line, which costs a little overhead (extrx if TEXT(I..3) z "PRO" then
<CR)<LP> sequences), but if you were PROTECTED :a TRUE;
worried about file size you would be using elsif TEXT(I..3) - "UNP" then
binary file* instead of ASCII files. I PROTECTED :x FALSE;
like one value per line because it makes else
it easy to examine the file (characters raise CONSTRAINTERROR;
don't fall off the side of a printed end if;
listing) and it is easy to find the value
of a specific variable (the Nth variable 0.f.r
Is on the Nth line). Intg..O

£3) km9 You don't to have instantite INIEGER-1O
Lor .- L to input or output Integers. tou can use

the IMAGE and VALUE ^ttriltes to read and
Suppose you have a variable called write corresponding text strings.
PROTECTED that can TRUE or FALSE, and you
need to #tore this variable in a file. -- save an integer variable in a file
People commonly instantiate ENUMERATION put_line (FILE,integer'IMAGEMX}};
_ZO. I don't like that solution. It forces
you to use Get instead of Get.Line, -- read an Integer variable back from
because E,.VMZRATIO,%IO doesn't have a -- a file
Get-Line. Here's an alternative: get_line(FILE, TEXT, LENGTH);

X :a integer'VALUE(TEXT(l..LENGTH));
-- save a boolean variable in a file -- may raise CONSTRAINTERROR
put.line

(FILE,boolean'IMAGE(PROTECTED)); 5 se aAgeandsluefunctionsfor Real

-- read a boolean variable back from
-- a file (TEXT'LENGTH > 5) Ada doesn't have IMAGE and VALUE
getline(FILE, TEXT, LENGTH); attributes for variables of type float,
PROTECTED :z but you can write Image and Value
boolean'VALUE(TEXT(I..LENGTH)); functions that do conversions between real

-- raises CONSTRAINTERROR for numbers and character strings. I've done
-- strings other than TRUE or FALSE that already myself. The source code for

those functions is in the ASCiuTILITIES
Suppose you print a file containing package in Adiaon.'

many boolean variables. It will be full of
the words TRUE and FALSE. It may not be C u
clear which variables are TRUE and which
are FALSE simply by looking at the file. TE. O tries to be both a file interface
That's why I prefer to do it this way: and a user interface, and it does neither

Job very well. It is loosely specified,
presumably to make it compatible with a
variety of underlying operating systems,
and this leads to portability problems. It
is adequate for trivial programs, but just
won't do the job for programs with an
extensive user interface, or programs that
have to share text files on a variety of
different machines.

7th Annual National Conference on Ada Technology 1989 535

One solution would be to make massive
changes to Chapter 14 of the LRH. That's
not a good Idea because the revision of
MIL-STD-1815A will take a long time, and
significant changes to Chapter 14 will
Just delay the approval even more. Some
vendors will cry "foul" because it will be 4ew "- ?
more difficult to implement the new CO-W LEJOMES
TEXT..IO on their operating systems than TRJEIG.IEE
their competitors, and they will try to

prevent approval.
Fortunately, isn't necessary to

change the LRX. It doesn't say you have to
use TE.YTIO for all 10. You can simply AUTHOR'S BIOGRAPHY
Ignore TF.VrTrO and use something else for
the user interface. If TE.XT rO causes Do-While Jones writes the Ada Info
compatibility problems, use a different column for the Journml or P4. cea, Ada,
file Interface package. You can write your And Hodula-2. Ile has also published
own 10 packages, or use packages published articles on Ada in Dr. Dobb's Journal of
in the open literature. Softwre Tools and Computer Language

magazine.

8_tL~eMVi In 1971, Do-While Jones received
the degree or Bachelor of Science (with

1. VAX and VMS are trademarks of Digital distinction) in Electrical Engineering,
Equipment Corporation. from a midwestern university better

known for its football team than its

2. A&ds A ctio1 by Do-While Jones. engineering school. Since graduation he
Published by John Wiley & Sons, Inc. 605 has been employed in the defense
Third Ave. New York, NY 10158 industry of a well-known free-world

nation. During the course of that
3. "Ada Info" by Do-While Jones. Journal employment he was granted a patent for a
of Pascal, Ada, & Hodula-2. Vol. 8 No. 2. radar signal processing algorithm.
March/April 1989. Published by JPAM, Inc. Hr. Joutes began programming in Ada
P.O. Box 6338, Woodland Park, CO 80866 before most Ada compilers on the market

today were commercially available. lie
was a beta test site for two Ada
compilers, and has evaluated six others.

536 7th Annual National Conference on Ada Technology 1989

Automatic Test Data Generation and Assertion Testing
for Ads Program Units

Lauren Mayes, Rhonda Wienk Aragon, Deborah Terrien, Julie Trost

Intermetrics Inc., Huntington Beach Calirornia

Under the auspices of the Software Technol-
,,;gyforAdaptable, Reliable Systems (STARS) TST is a dynamic analysis, compiler indc-
Foundations program, Intermetrics Inc. pendent tool written in Ada to test Ada sub-
developed a tool to support the testing ofAda programs and tasks, collectively termed
program units. The tool, called the Ada Test routines for this paper. TSr generates Con-
Support Tool (TST), is a compiler inde- trol Programs that contain calls to visible
pendent, portable tool used for testing sub- routines in Ada units. Users invoke the Con-
programs and task entry points within trol Program and supply input parameters or
compiloble Ada units. TST supports the request"testdatageneration" forroutines they
automated testing of Ada program units, al- choose to test. Assertions may be made about
lows assertions to be made about test results, output values to specify the expected result of
documents test results, and provides for tests. Input parameters and test results are out-
regression testing. This paper describes TST put to a TST report.
and experiences gained in the development
and use of the tool. This paper describes TST and the lessons we

learned while developing the tool. Topics
presented include: Ada as a development lan-
guage, experiences in reusing software, most
useful application of TST, problems wit, ihe

INTRODUCTION tool, and future directions.

As the demand for highly reliable software BACKGROUND
systems grows, software testing
methodologies and tools become increasingly TST leverages on technology developcd-f:r
important. New testing methodologies, like the Ada Test and Analysis Tools (ATEST) In-
those described in [Gell-is], which focus on termetrics built for the WIS (WWMCCS In-
preventative software testing throughout the formation Systems) program. The ATEST
life-cycle show promise in meeting these tools, documented in [Inter), include a pcrfor-
demands. The Ada Test Support Tool (TST) mance analyzer, path analyzer, variable trace
developed by Intermctrics can be used to tool and a symbolic debugger; all of the tools
automate some of the activities required in a use dynamic analysis techniques to monitor
life-cycle testing approach. programs as they are executing. The perfor-

mance analyzer measures execution speed and
the path analyzer records the statements and
subprograms executed during the run of a

7th Annual National Conference on Ada Technology 1989 537

program. The variable trace tool records the boxes in the figure represent executable
values of program variables during execution programs. The Shell and Source Instrumenter
of a program and the symbolic debugger al- are provided by TST, the Compiler and Linkcr
lows programmers to step through a are provided by the user, and the Control
program's execution and change the value of Program is generated by TST. Each of these
program variables at the source code level, programs may be separately executed at the

system level with Ada procedure calls or from
The unique aspect of the A-TEST tools is that within the Shell. The Shell provides a help
they are not dependent on a specific Ada com- facility, prompts for parameters when
pilation system. The system independent na- programs arc invoked, and allows users to set
ture of the tools is accomplished using a TST system variables (e.g., report width and
Source Instrumenter that parses Adaprograms length, screen echo flag).
and embeds additional code in the source
code. This code provides "hooks" to a Run First, the user invokes the Source In-
Time Monitor that is used to rcord program strumenter which generates a Control
execution information. TST uses a modified Program and inserts "hooks" into the source
version of the symbolic debugger's Source In- code so that the Run Time Monitor can gain
strumenter. control during program execution. The unit

to be tested needs to be instrumented along
In 1987, the STARS (Software Technology with any units declaring types that are used by
for Adaptable Reliable Systems) Foundations the unit being tested. For example, in Figure
program contracted a variety of tools targeted 2 the procedure UNIQUEFILENAME in
to Ada software development, with the inten- package FILENAME has a parameter of type
tion of promoting a "software first" software SYSTEM DEPENDENCIES.FILENAME.
development strategy described in (STARSJ. In order to test the FILENAME package, both
"Software first" refers to developing software the SYSTEM-DEPENDENCIES and
incrementally and deferring hardware choices FILENAME packages must be instrumented.
to later phases in the development process.
The Foundations tools were required to be
highly portable for easy integration into The Source Instrumenter adds code to the
software development environments that are unit's body for tracing statements but makes
being built under the STARS Competing no .hanges to the specification. A support
Primes program. Intermetrics proposed TST package which provides routines to read,
in two phases. In Phase 1, a basic testing write, get the next value, and compare values
capability was provided, and for Phase II, is generated for each visible Ada type decla-
automatic test data generation and assertions ration. In addition, a Control Program which
were added. has calls to all routines visible in the unit to be

tested is generated. The support packaige, the
PREPARING A UNIT FOR TESTING Control Program, and the body of the unit

being instrumented are copied into a file
Figure 1 illustrates how users generate TST which is named by appending the extension
Control Programs. At the top of the figure, a ".INS" to the body file name.
computer terminal shows the commands
which the user enters. The three-dimensional

538 7th Annual National Conference on Ada Technology 1989

Pwgvam Saute.wa

Figure 1. Creating a Control Program.

When all units have been compiled, the linker
is invoked to produce an executable Control

,,hSYSTEM9EPENOENCIES; Program. The main program input to the
p dI8,FRENME , linker is the Control Program generated

wxcdmU E NI E : ot SYSTEM..DEPENDENCIES.FW4EAME): during instrumentation. The Support
• Program, Control Program, specification of

the unit being tested, any dependent units, and
end FILENAME: the units comprising the Run Time Monitor

are linked to create an executable Control
Figure 2. Both the Tested Unit and Depen- Program. The Run Time Monitor units must

dent Unit Need To Be Instrumented, be compiled prior to linking; this is done once
After all units have been instrumented, the when TST is installed and does not have to
compiler is invokcd. Any compiler may be repeated each time an executable Control
used, as long as the T[ST installation process Program is created.
has been completed for that compiler. Inter-
metrics has hostcd TST on the Alsys PC/AT,
Alsys Sun, and the DEC Ada compilers.

7th Annual National Conference on Ada Technology 1989 539

TESTING A UNIT Table 1. Commands Are Used To Get User
Input.

After the executable Control Program is
created, testing may begin. When the Control COMMAND DESCRIPTION
Program is executed from the Shell or at the ASS(TMNKMV_ M(ACTM Se m lacio

C$..L.'ROT ,ME tRORMtEJO) Cal a 1" 0to tesystem level, a Testing Subsystem user inter- OELETe.LOB&(ASSERTI)DM1) elhft eaglobal nln
face is displayed. A TST system variable DELIrE.LOCALttASSERTION IO) Delete oa bW MOOD tS PLAY_ AS E R TIO N Li d op ass dq lo
specifies whether or not the Testing Subsys- D" NM UIaeS} Somildo UNII*S
tern is in full screen or line mode. For line ENO OfT.*gStftSYIWM

GL.oGALASERT (ASSERTION) Make & qW mse0nmo 'c, only the Testing Subsystem prompt, HELP(TOIC) Ghooi tota w0,00
'T>" is displayed. If the terminal supports full LIST-ROLTES Lis ines In WA

LOCAL-ASSER" (ASSERTIO) Mom a cel an**"screen mode, then a dual window Testing UP "UML*UNl SoupN U_LNS
Subsystem is displayed. The upper window W OOM tD.AY..WINOWME) Resie w W

lists testable routines and assertions, and the
lower window is used for interaction between
TST and the user. Figure 3 illustrates the full
screen Testing Subsystem for an Exchange test session. This description may be used to
package which contains two procedures for identify and track tests. The Test Data File is
swapping integer and string values, the name of an ASCII text file that will be used

to record commands input by the user during
the testing session. If the 'rest Data File
entered already exists, then the user will be

Testable Floutin- prompted to either use that file as test input or
1) SWAP (I:~,, tO overwrite the file with new commands. The

P2: Integer); Test Data File provides a convenient means
2) SWAP(PI : string;

P2 : string); for repeating tests (regression testing).
Dialogue Window

En a Test I1nt atlon>~t i: If a Test Data File was specified as input, then
Enter a Test Data File>> TtLOAT
TO the commands in the file will be run without

user interaction. Otherwise the "T>" prompt
is displayed and the user may start entering
commands. The commands of the most sig-

Figure 3. The Testing Subsystem Displays nificance are CALL ROUTINE,
Testable Routines and Prompt for Input GLOBAL ASSERT, and LOCAL AS-

SERT. Each of these commands is described
While in the Testing Subsystem, users may below. The Exchange package shown in
call routines, make assertions, generate test Figure 3 is used as an example for the dcscrip-
data and invokc thehelp facility by usingTest- tions. In the examples, TST prompts arc in-
ing Subsystem commands. Table I lists and dented and user input is in boldface type.
describes each command.

The CALLROUTINE command allows the
As shown in Figure 3, the user is prompted for user to specify test cases for a routine. For cx-
some information about the test. The user is ample, if the user issues the command:
first prompted for a textual description of the

540 7th Annual National Conference on Ada Technology 1989

T> CALL ROUTINE 1 PI-5

for the Exchange package, then the system P2- 0
will echo the name of thc routine and wait for
the user to enter parameter values: P I = 0

T> CALL-ROUTINE I P2 - 5

SWAP (..

The user then enters literal values for the test Input Data:
and test results are echoed to the screen:

PI=5
T> CALL ROUTINE I

P2 - 32767
SWAP (4,6);

PI = 32767
PI=6

22 = 5
P2=4

T>>

Test data generation is accomplished through
or generates test data: the use of the '*' symbol. If 'W' is enteredr.,

then every possible value for that type will be
T >CALLROUTINE I generated. If '*X' is entered, where X is a

natural number, then the set of possible values
SWAP (5, *1); for the type will be partitioned into X subsets,

and the first, middle, and last values for each
........................... of the subsets will be generated. All permuta-

tions of parameter values will be generated.
Input Data: Figure 4 illustrates the permutations generated

for an enumerated type.
PI =5

Another feature available in TSTis assertions.
P2= -32768 By using the GLOBAL ASSERT and

LOCAL ASSERT commands, the user can
PI =-32768 specify conditional statements about output

parameters and function results. Forexample,
P2 = 5 for the Exchange package, the following

assertions could be made:

T>GLOBALASSERT 1, PI <10
Input Data:

7th Annual National Conference on Ada Technology 1989 541

Global Assertion 1) 1, P1 <10 assertion did not fail for the second call be-
cause local assertions are valid only for the

T>LOCAL ASSERT 1, P2 >5 next CALL-ROUTINE command. Global
assertions are valid until the testing session

Local Assertion 2) 1, P2 >5 ends or the assertion is deleted using the
DELETE-GLOBAL command. Current

where the first number in the command repre- assertions may be displayed in the upper win-
sents the routine to which the assertion applies dow of the Testing Subsystem using the DIS-
and the following input is a conditional state- PLAY-ASSERTIONS command.
ment about an output value. In this case we
have made a global assertion about the integer
Swap procedure that states that the value ofparameter P1 should be: less than 10. The IfA PacaeHas'heDertonsm :

paraete PI houd b les thn 10 Th t"COLOR Is (RED, BLUE. GREEN, YELLOW, BROKI'

local assertion states that for the integer Swap p coo sWAP (cl : B out COLOR, C2. I out BOLOR):

proccdurc, parameter P2 should be greater And The Following Command IS Invoked In The
than 5. The example below shows how asser- Tne? Subystern
tions fail. SWAP (,I)

Then Swap WA Automatically Be Cah Wit Each Of The
T>CALLROUTINE 1 Following Input Vaiue:

SWAP (RED. RED) SWAP (YELLOW, RED)

SWAP(5, 3); SWAP (RED. GREEN) SWAP (YELLOW, GREEN)
SWAP (RED. BROWN) SWAP (YELLOW, BROWN)
SWAP (BLUE, RED) SWAP (BROWN, RED)

PI = 3 SWAP (BLUE. GREEN) SWAP (BROWN. GREEN)
SWAP (BLUE. BROW) SWAP (BROWN. BROWN)
SWAP (GREEN. RED)

P2 = 5 SWAP (GREEN, GREEN)
SWAP (GREEN, BROWN)

• Local Assert 2) 1, P2 > 5 Failed Figure 4. All Permutations of Parameter
Values Are Generated.

T>CALL ROUTINE 1
Assertions provide the user with a mechanism

SWAP(6, 11); for stating the expected values of output data.
When the expected results are not attained, the

PI = 11 useris warned by a failed assertion. This is an
important concept in that the user is explicit-

P2 = 6 ly warned and the warning is put into a report
for later review. Failed assertions indicate

*** Global Assert 1)1, P1 <10 Failed that a test did not proceed successfully.
Assertions are especially valuable forcrcating

T> testcases usingTestData Files in a texteditor.
Test Data Files that include assertions about

In the first call the local assertion failed be- expected test results can be written early on in
cause the value of P2 was less than 5. In the the software development life-cycle and are
second call the global assertion failed because useful for discovering problems in software
the value of P I was greater than 10. The local designs.

542 7th Annual National Conference on Ada Technology 1989

DOCUMENTATION OF TEST Control Program name, and default TST sys-
RESULTS tern parameters. The Routine Report lists the

testable routines that were displayed in the
After the user has completed a test session, a upper window of the Testing Subsystem. The
collection of reports describing the results is Parameter Report lists the routines that were
generated. The Configuration Report lists in- called, results of tests, assertions made, and
formation about the time, date, executable failed assertions. Figure 5 shows a Parameter

Unit Under rest: (%1)

procedure SWAP(
PI : in out INTEGER:
P2 : in out INTEGER);

Parameter Entering Value Exiting Value

P1 4 6

P2 6 4

Unit Under Test: t 1)

procedure SWAP(
PI : in out INTEGER;
P2 : in out INTEGER):

Test Data Automatically Generated
P2 -" 1
Parameter Entering Value Exiting Value

7l 5 -32766
P2 -32741 S

.. ii ; ; de

P2 0 5

P2 32767

GLOA" Asserti0n 12 1, p1 10

LOCAL Assertion 2) 1, p2 > 5
Unit Under Test: (1)

procedure SUP(
PI : in out INTEGER;
P2 : in out INTEGER);

Parameter Entering Value Exiting Vmiue

P1 5 3
P2 3 S

"*0 LOCAL Assertion 2) 1, P2 > S Failed
... afnfS- -... f.......

LOCAL Assertion 2) 1# P2 > S Deleted
Unit Under Test: (1)

procedure SWAPC
P1 : in out INTEGER;
P2 : in out INTEGER):

Parameter Entering Value Exiting Value

P1 6 11
P2 11 6

•00 GLOBAL Assertion 1) 1, Pl < 10 Failed

Figure 5. The Parameter Report Lists Test Results.

7th Annual National Conference on Ada Technology 1989 543

Report corresponding to the example given in The Execution History Report is useful for cn-
the text above. suring that all routines and statements were

executed.
The Execution History Report consists of two
parts. The first report lists the order that The Test Data File generated while the test
routines were entered, resumed, orended. Ex- was proceeding may also be examined for
ceptions are also shown in this report if they determining test coverage. The Test Data File
were not handled by the originating routine. is in ASCII format, includes comments, and
The second reort enumerates the number of may be modified or created by the user. The
times that statements or groups of statements Test Data File created in the test session above
were executed. A listing file that maps state- is shown in Figure 7.
mcnts to the numbers shown in the Execution
History Report is produced by the Source In- " " 4 1

strumcntcr. Figure 6 shows an example Ex- Pi :
ecution History Report for the example above. I:

--o 5, '1

CALL FVOUll:E I
PI 4 5
P2 m> -302C0
3'
CALL ,OWIfE I
PI ,, 51.2 "> 0
3:
C.ALL>ROtflI4C I (

Begin EXCHANGE. SWAP P2 " 2
11-4) P2 -> 32767

End EXCIIANGE.SWAP ASSE:rCt IAOI, ItM contnu
Begin EXCHANGE.SWAP GLOUL ASFLRTION 1, P < 10LOCAL XSSEATION] I* P2>5

(1-41 --- €'I
End EXCHANGE. SWAP -- 5 ,3)
Begin EXCHANGE.SWAP CALL UINE I

(1-4) 1 .; 5
End EXCIIANGE.SWAP P2 -> 3
Begin EXCHANGE.SWAP):

11-4) -- 6,113
End EXCHANGE.SWAP CALL I*:UTI - I
Begin EXCHANGE.SWAP P2 11(1-4])|

End EXCHAIGE. SWAP
Begin EXCHANGE. SWAP Figure 7. The Test Data File May Be Viewed

(1-4) And Modified.
End EXCHANGE. SWAP

Statement Execution Count RECOMMENDED APPLICATIONS OF

TST
EXCHANGE

11-41 6
(5-8) 0 Using test data generation and assertion han-

dling features, we have found that TST is a
good tool for specifying tests when designing
and during the final stages of coding an Ada

Figure 6. The Execution History Report unit. Some recommendations about using
Shows Routines and Statements Executed. TST are listed below:

544 7th Annual National Conference on Ada Technology 1989

Routines that are encapsulated and have PROBLEMS WITH TST (AND
well-defined inputs and outputs are the best POSSIBLE SOLUTIONS)
candidates for testing with TST.

We have found that a significant amount of
Oneof the most promising application areas code is generated during instrumentation for
forTST is in testing reusable software corn- test data generation. During instrumentation,
ponents that have well-specified outputs. a support package that includes routines for
As software reuse becomes more widely ac- reading, writing, getting the next value, and
cepted and practiced, it will become in- doing comparisons for assertions are
creasingly important to prove the generated for each visible type in a package
correctness of the reusable software. Con- specification. Table 2 lists the lines of code
vcrsely, reuse is promoted when program- generated for the different types. Packages
mer confidence is increased because it is containing many types, especially complex
easier to test and grater test coverage is en- user-defined types, could result in very large
sured. TST allows programmers to easily support packages.
create new test cases for software on the
compiler that will be used for development Table 2. Code Added When Instrumenting.
and delivery, thus improving the confidence
in reusable software that is ported to dif- T--t Da"t a"Od

ferent machines and compilation systems. "Ks n ,,ton: Grw,6n Write

* TST could be used as a debugging tool, but Pt"finod 0 0 0 0 0 0
this is not recommended because compile Enumenralon.2
times are increased because of the support Float 9 1 2 10 2 2

package and Control Programs that the Fix Poi1
Source Instrumenter generates. Aco,, 35 69 16 39 26 56

Array

" Because TST focuses on the inputs and out- constraled 36 72 66 162 26 S9

puts of routines, those routines that modify unconstraind 1122 227 36 76,

global data and do not return values cannot no discdminan 39 72 96: 10 25 55

be adequately tested with TST. d!scrimirated 155 300 40 78

sim: Ad& staleon~ts
" Components that are highly user interac- I:s: .is of coe (W- i. ctmo, ! and bW* ap,)

tive, like menu generators and screen gen-
erators could be tested quite easily when the In addition, Control Programs are generated
user is present to view de output on the dis- for each unit and a small amount of code is
play device. added at the bcginning and end of each

routine. The size of Control Programs is de-
. To provide thorough testing, TST should be pendent on the number of routines defined in

used in the context of an integrated test plan. the unit being tested and the number and type
of parameters within each routine.

A significant amount of the generated code
may never be used. For example, package A

7th Annual National Conference on Ada Technology 1989 545

may use one type declared in package B which Additional reports could be generated that
has ten additional types defined. Package B show thoroughness of testing foreach routine.
must be instrumented in order to test package A tool that allows testing of routines within
A and code will be generated for all of the the body of units would also be useful. This
types in package B because when B is instru- could be accomplished by putting the Control
mented we do not know which types A will Program in the body of the package being
need. tested and adding code for all types declared

in the body.
While a good Ada linker will remove this
"dead" code, the problem of compiling the ad- ADA AS A DEVELOPMENT
ditional code is not alleviated. A possible LANGUAGE
solution to this problem would be to provide
a post-instrument tool that allows the user to Similar tools [Deutsch] have been created for
specify which unit they plan to test. The tool testing programs written in other languages.
could go through the source instrumented One of the problems we encountered develop-
code for package B and comment out the code ing the tool in Ada was the inability to get
added for the types that are not needed along "into" the code because of scoping -Acs and
with the Control Program, if any, created for strong typing. For example, private and
B. limited private types cannot be tested because

Ada does not allow the examination of private
Another problem is the technique used for test data outside of the unit's body. We also en-
data generation. Very large test inputs will countered problems due to the rich typing
result for routines having many parameters provided by Ada. Test data generation for the
which have a large range of possible values, vast number of types that may be constructed
Using the partition method of 'est data genera- and complex types like multi-dimensional un-
tion (i.e., *X) alleviates this problem some- constrained arrays and variant records was
what, but does not allow complete test especially challenging.
coverage. We have considered adding the
ability to generate values within a specified Because Ada is well suited to reuse, we were
range, but even this technique may produce able to build TST in a relatively short period
more data than is needed. These problems of time. Table 3 shows the amount of code
point out the fact that at the present time, tools developed and reused and person-months re-
cannct bear the full burden of testing; intel- quired to compete the tool. User's guides,
ligentselectionoftestinputmustbeprovided. presentations, and design reviews are in-

cluded in the person-month estimates.
Currently TST has no facility to do configura-
tion control on the testing cf many units. A We had the added advantage of programmers
test manager tool could be provided to inform who knew Ada when the project started, and
the user when a unit has been changed and some who had worked on the original WIS
needs to be re-tested. A tool that lists the units tools that formed the basis of TST.
that need to be instrumented to test a particular
unit would also be bencficial.

.46 7th Annual National Conference on Ada Technology 1989

Table 3. Significant Productivity Increases CONCLUSION
May Be Achieved When Software Is Reused.

Tools supporting software testing are impor-
__ 6250tant in achieving the level of reliability re-E62,500 tOC quired for today's complex software systems.OEUVEIFEO

However, testing tools must be integrated in a
REUSED 45.000 LOC complete software test plan that spans the life-
oXE cycle. We have outlined a tool that supports

VONt1MtNIS 34.5 testing in a small area, and have given sugges-
PP rWTItY 1s Lone tions for improving the tool. It is the opinion
WrTH REUSE M" of the authors thatTSTand other lest tools will

PFO TMTY 1304.3 LocPm not become widely accepted until industry un-
NOTINCLUOJ M derstands the benefits that testing can bring to
REUSE both software design and verification.

REFERENCES

Ourexperience in reusing softwa resulted in LDeutsch] Deutsch, M.S., Software Verifica-
the following conclusions, tion and Validation, Realistic Project Ap-

proaches, Prentice-Hall Series in Software
" Software designed using object-oriented Engineering, 1982, p. 130

techniques is easier to understand and reuse.
[Inter] User's Guide for the Ada Testing And

* Adequately commented code is important, Analysis Tools, Intermetrics, Inc., 1985.
but not critical in reuse. Code that performs
a well-understood function, is well (Gel! lis] Gelperin, D., IHetzcl, B.,TheGrowth
designed, uses meaningful variable names, of Software Testing. Communication of the
and is net extremely complex can be under- ACM, June 1988.
stood by experienced Ada programmers
even if it is not well documented. [STARS] STARS Technical Program Plan, 6

August 1986.

" Isolation of system dependent features

makes porting reusable software almost
pain-free.

During development of TST, we were pleased
with the state of Ada compilers. Most of the
development for TST was done on C/AT
clones using the Alsys compiler. A few
problems concerning data size were en-
countered, but these were expected. We also
had some problems with tasking and our
program libraries, but these were corrected
with compiler updates.

7th Annual National Conference on Ada Technology 1989 547

The authors may be contacted at
About the Authors: (714)891-4631

Lauren Mayes is a software engineer in the Deborah Terrien is a software engineer in the
Aerospace Systems Group's Civilian Space Aerospace Systems Group's Civilian Space
Programs Department at Intermetrics. She is Programs Department at Intermetrics. Her in-
the program manager for the Ada Test Sup- terests include software design and develop-
portTool. Her interests include software test- ment tool and software reuse. She received a
ing, software reuse, design and development 1S in Computer Science from California State
tools, real-time software development, and University at Fullerton. She is a member of
quality metrics. She recieved a 1S in infor- IEEE.
mation and computer science from the
University of California at Irvine.

Rhonda Wienk Aragon is a software engineer Julie Trost is a software engineer in the
in the Aerospace Systems 'roup's Civilian Aerospace Systems Group's Civilian Space
Space Programs Department at Intermetrics. Programs Department at Intermetrics. Her in-
Her interests include software reuse, software terests include software design and develop-
design and development tools, and database ment tools. She received a BA degree in
management and design. She recieved a BS mathematics with an emphasis in computer
in computer science from Chapman College. science from the California State University
She is a member of IEEE and ACM. af Long Beach.

548 7th Annual National Conference on Ada Technology 1989

PRACTICAL ADVICE FOR DESIGNING ADA

SYSTEM ARCHITECTURES

Caroline D. Buchman

Atted-Signal Aerospace Company
Compuier-Alded Engineering Center

Totorboro. Now Jersey 07C08

Packaging schemes can negatively impact a The present state of the art is such that the
system's pedormance and maintainability, approach a compiter/linker takes to generic
Adherence to a design methodology and good Instantlation or packaged modules can make a
software engineering are nc always sufficient to critical difference in the deliverable system.
ensure optimum system performanco. This paper Consequently. knowing how the linker and compiler
suggests guidelines to be followed to avoid or work does and should affect how the Ada software
correct the problems of code copy Instantlation, architecture Is designed. Moreover, that architecture
linking, and recompilation. Four areas are covered, should take recomp;tation effects Into consideration,
generics; packaging: interfaces to non-Ada code; particularly In large systems where the recompilation
and, recompllation requirements. time may be measured In days.

We will focus our atteottlon on four major
Packaging schemes can negatively Impact a problem areas, and recommend counter measures

system's performance and maintainability. Herein that will provide developers with a degree ofare suggested guldelines to minimize this kind of protection from unpredictable or unacceptableImpact. These guidelines are based upon results. The four areas are: 1) generics, 2)experiences encountered In building two large packaging, 3) Interfaces to non-Ada code, and 4)
Interactive applications Involving many thousands of recompilation requirements.lines of Ada code.

Compilers that Implement each generic
The design of the software architecture can be instantiation as a separate code copy can causeas Important to the success and acceptance of a tremendous overhead In the final Image size. Each

system as the design of the logic. More than any Instantiation of the same paclage causes a newother programming language, Ada requires a complete copy of the origlb.dl generic, with values
software engineer to consider the physical for Its generic parameters, to be generated. Thearrangement and placement of program units. guidelines presented here are Intended to minimize
Program units, data types, and data objects must be the potential code explosion.
grouped Into packages. Linkers generally link In all of a package

How packages are organized relates directly to whether It Is actually used by the application or not.
how the finished system will perform and how easily When unnecessary code and data are linked Intoit can be maintained. True, the design methodology the final image, memory Is wasted; virtual memorymust be the primary authority for packaging systems experience Increased page faulting,schemes. Within this framework, however, resulting In performance degradation. Theconsideration also must be given to compiler and consequences of the link everything philosophy are
linker behaviors and Ada recompilation issues. far reaching, particularly In the area of reusability.

We will discuss packaging schemes that areIdiosyncrasies in compilers and linkers make It designed to minimize any excess baggage.
difficult to predict how an Ada system will behave
when It Is finally ported to the target machine. These The designers of the Ada language realized that
behavior differences often can be a factor in the the transition from other languages would besystem's success. Hence the notion that system gradual anck !hat entire libraries of provendesign can be completed without regard for the subroutines would have to ba accessible from Ada
supporting hardware and operating system In order for the language to reach acceptance byenvironment Is fundamentally false. Ada designs will the engineering communhy. However, Indiscriminatebe Independent of hardware considerations only use of Pragma INTERFACE may involve penaltieswhen compilers and linkers are mature enough to when you try to convert those subroutines to Ada.
eliminate the code-copy method of instantiation atid We will offer some suggestions for keeping those
the philosophy of "link in everything."I penalties to a minimum.

7th Annual National Conference on Ada Technology 1989 549

Ada recompilation requirements, enforced by they are contained in the same package body.
DoD-STD-1815A, can be costly In large system Place these supporting units In their own package
development: It may take days to recompile a and reference the package from the generic unit.
system. Many times these compiations are The unnecessary code duplication Is avoldod. This
unnecessary. such as when an additional problem Is frequently encountered in generic units
enumeration value was added to a typo definition, that are parameterizod by generic procedures
Incremental compilation Is not widely available. We andlor functions only. All such generic package
will demonstrate that a packaging strategy can body routines should be examined to see if they can
protect against extensive recompilation, be moved Into a package of their own. Example 3

illustrates such a package.
go.neric. generic

Much of the problem associated with generics type LISTITEM is pivate:
actually occurs In Instantiatlons. As mentioned p LIST is
before, Ada compilers have Implemented a uNrEOI.ST iS
Instantiation by copying the entire generic unit and typo USTTYPE.ACCESS Is Imitod prvate:
substituting the actual generic parameters for the procedure INSERTATHEAD
formal generic parameters and then compiling this (oUEUE : In out USTPE.AGCESS;
code. Given this, how can we minimize the size ITEM :in USTITEM):
issues raised by creating multiple copies of the pocdure INSERTAT.TAI.
generic unit? (UEUE : In out USTTYPE.ACCESS:

ITEM :in LISTITEM):
Package All Generic Instantialions IEM O: I ,F LOM H ED

Lacking rules to the contrary, package (OUEUE in out USTYPE ACCESS

developers will instantiate a generic directly In the ITEM out USTITEM);
package. If two package developers need the same procedure SEMOVEJFOM TAIL
generic, each will Instantiate It. If they happen to be -OUEUE -EMLvEPEOM.TAIL
using the same parameters. two Identical ITEM : out LISTTEEM) :
inst3ntiations of the generic are in the system. It Is
difficult to Identify this waste because these pdvate
Instantiations are hidden in package bodies, In type US TYPE:
accordance with the dictates of encapsulation, typo USLTYPEACCESS Is access USTTYPE:

ty'pe LIST TYPE Is
The simplest and cleanest way to handle this tecoT"

problem is to create a package specification for the INFO: UST,ITEM:
Instantiallon and then use rename and subtyping to NEXT UST TYPEACCESS :. null:
make the necessary Instantiated units and data PREV : LISTTYPEACCESS :a null:
types visible. Now the generic package Is end record:
Instantiated only once: only one copy of the code Ismade. and LINKED UST:

Example I
To illustrate this, Example 1 is a commonly Genetic Unked Ust Peckae Specfication

used generic specificat!on for a linked list. Example
2 is a package that encapsulates an instantiation of
this generic. With this resource available, package Packaglg
developers may make as many uses ol the linked As discussed earlier, linkers link the entire
list as Is necessary without Inadvertently creating context of a program unit without regard for what Is
multiple Instantiations. actually necessary to the execution of the program.

Many extraneous data objects and program units

Include Only the Necessary In a Gener are Included In Images this way.

Generic unit bodies frequently contain Object Oriented Design (OOD) Is a
supporting program units that do not depend on a methodology that Is frequently associated with Ada,
generic parameter. There Is nothing at all generic primarily because of Ada's powerful capabilities to
about these program units, but they contribute to the encapsulate and abstract data and procedures.2 If
functionality of the generic package and hence are you subscribe to an OOD methodology, then your
Included in the package body. Of course, at package specifications contain all of the object
instantiation, the compiler creates copies of these definitions and actions normally associated with the
units as well as those that are truly generic since object. Take as an example the management of a

550 7th Annual National Conference on Ada Technology 1989

with UNKEO.LIST: with UNIT DEFINTION: use UNIT DEFINITION:

package ITEM UST Is 0e0o0fc

te ITEM.TYPE is.. wiVth procedure PROCESS(UNIT : in UNT _TYPE):
package ITEMINKEDOUST Is now UNKE.1LST paciwge PROCESS UNITS is

(UtST.TEM rp IT EMTYPS),: pftrcduf PR~OCESS UNIT
(UNIT 'TO PAOCEI S : in UNft.JYPE):

subtype UST,3YPEACCESS Is end FlOCISs!UNITS:
ITEMLNKEO%1ST.USTYPE. ACCESS: package body PROCESSUNITS Is

procedure INSERT ATJIEAD
(QUEUE : In out -- This function is not dependent on any generic Parameter

ITEM_UNKEDO.LIST.UST TYPE ACCESS: -and cis such It can and should be removed to Its Own
ITEM : In ITEM_7YPE) -suppxtiO package.

renames ITEM LINKED LIST.INSERT.ATHEAD: funciion UNIT iS PROCESSABLE
procedure NSERT.AT.TAL (UNIT : in UNITTYPE) return BOOEAN Is

(QUEUE : in out - UN1TISPAOCESSABLE
TEMLINKEOUST.LiSLTYPEACCESS: end , i OCESSABE:

ITEM : n ITEMTYPE)

renames ITEMLINKED UST.INSERTT AT TAIL: pocedure PROCESS UNIT
procedure REMOVE.FJROMHEAD -(UNrT TO.YROCES : In UN T.TYPS) Is

(QUEUE : In out begin - PROCESS UNITS
TEM UNKEO.UST.UST.YPE ACCESS: II UNIT S PROCESSABLE (UNIT TO PROCESS) then

ITEM : out ITEM TYPE) PICESS (UNIT .> UNIT6 9ocEss :
endJ If:ES)

renames ITEMUNKEO LIST.REMOVEFROM,,HEAD end PROCESS UNIT:
procedure REMaYEROEA.eC.TAnLUN

(QUEUE : In out end PF1OCESSUNIT;

ITEMLINKED UST.USTTYPEACCESS:
ITEM : out ITEMTYPE) Eample 3

renames ITEM ULOKEO UST.LEMOVEFROM..TAIt: Exwnole of Gentc Pame Body With non-Geodc
end ITEM UST E Parameter Dependent Program Units

Example 2
Package Sperifcation of an Instantlation ol the

Gentdc Unled Us In Example 1. Sublypng and
Renaming Have Been Used for Visibltty

The solution Is to break up the original package
Into smaller units and use the subsystem approach
(Example 5), although this does have a tendency to

dictionary. An object is read from, written to, or multiply the number of packages In A software
deleted from the diconary. According to GOD, a system. The example should be implemented as
package (or packages) should exist that specifies multiple packages: 1) Data Definitions. 2)
the object definition and this set of actions. We will Read-Only, 3) Write, 4) Delete. (In some cases it
assume for purposes of this example that these are might be acceptable to combine the Write and
contained In a single package, as In Example 4. Delete prccedures In one package.)

As long as each program using this package Of course, the original program should be Ole
needs the readlwriteldelete functions, the package to view this object and its associated actions as a
design offers no problems. But suppose another single ty. o, a it acae ation s
program in the system only needs to read Items single entity. So, a fifth package specification Is
from the dictionary. Because the package was created which references the therafr viand uses
designed as a single entity, this second program rename and subtyping to transfer visibility
must carry the code to perform the other functions (Example 6).
as well. Not only Is there extra code included In the
Image, but there Is the potential that functions other This technique does not work for generic
than read are being performed. Referencing a unit packages, we should note. Using the linked list In
makes it potentially callable. From a quality Example 1. if a program needed to traverse the list
assurance perspective, there is no guarantee that going forward and backward, two more procedures
this program does not delete or write to the would have to be added to the package
dictionary In some way. specification. This has been done in Example 7.

7th Annual National Conference on Ada Technology 1989 551

package ITEM DICTIONARIES is
type ICTI&NARYJTEM Is pakso. rlEhtO1TIONARVOATkDEFS Is

tecord t"p ICTIONARY ITEM is
fecord

type OICT OTYPE i.... n eod

p~c.$ire WRIIE
(DICT1ONARYJOE&tMRER : in DICT ID TYPE, type 04CTICLTYPE is

ITEM :in OICTbilNrYtEm: end fTEMO1CM1AnY D*TkOEFS:
procedure READ

(OICT1ONAAY-IOENTIFIER :in DICTIO0TYPE. with ITEM~ DICTIONARY DATA (JEFS:
ITEM : InOUI DICT6ON71Y ITEM): use ITUM OCTIOfNARY:DATA:DEFS.

procedure DELETE
(DICTIONARYJOENTIFIER :in DICT ID1 TYPE: pecksao MhtMDICTIONARY REArJ is

ITEM :in DtCTIONARY ITEM) prcdt READ
end ITEM_.DICTIONAFUES: (DICTIONARYJ ;D in 04CT I0 TYPE;

ITEM : in out DICTZNAY ITEM):

Example 4 end ITEM _DVCIONARYJREAD:
Packa8e Specdflca fiof Wustfaling ObetadAtoswith ITEM DCTINAY DATA .DEFS:

________________________________us* ffErM4ITOARY..ATA...EFS:

This change requires all other users of the ptickage ITMLOICTIONARY,.WITE 13
generic package to recompile. and Imposes the pfcdr WRITE
necessity to carry around the two traverso routines. (DICTIONARYJ I in DICTJD.0,TYPE:
There Is no elegant solution. Because the unit Is ITEM In DIC04CAY.iEM).
genric and generic units cannot Instantiate other w4 ffEM DICTIONARY_%%RITE:
generic units based upon their own generic
parameter values. this package cannot be broken *ith ITEM .DICTMOARY DATA DEFS:
Ple o smaller dependent packages, A tradeoff must us* ITEM..DCT)NARY:.OATA:.OEFS:.
be made with regard to final image size and ultimate package ITEMICT1ON.RYDELETE Is
maintainability. If the effect on Image size Is critical, p~ciw DELETE
the only alternative Is to have two packages that (010TICNARYID1 in OICT 10 YPE:
manage linked lists, one With the traversing routines IT EM In DICTIOARY iTEM):
and one without. end ITEM DICTIONARY DELETE:

Structured Deslan Practices Suggort
Architectural Changes Exempte 5

We have found many times that adhering to PackAge ol Exempt* 4 subdivided into Sm~lor Mome
prlnclples of good structured design can help to fleusebl, Components,
overcome problems In the architecture. In the____________________
following actual situation, the minimal cohesion
between program units In a package that had grown
too large made subdividing the package a small
chore. Not a single unit body was modified, and the
pared program ran through Its test suite flawlessly Interfaces to Non-Ada Code

the irstUme.Existing libraries of non-Ada code are often
We were able to reduce the image of an Ada useful In Ada applications. Some Ada applIcations

program by fifty percent by re-packaging some of may require a portion of the system to be
thN units originally written for another program within Implemented In another language (e.g.. Assembler)
the same project. Entire trees of unused, but In order to meet requirements of timing. For these
referenced, program units were eliminated by and other reasons, It Is often necessary for Ada
re-packaging. The original size of the program was programs to coexist with other source language
1012 blocks (512 bytes/block), but after careful solutions.
study of the reused code to determine which units
were being unnecessarily Included In the program In order to refer to non-Ada modules from an
closure, and re-packaging to eliminate numerous Ada program. Ada requires an Interface definition,
packages, the Image size was reduced to 443 including a "pragma INTERFACE." These can be
blocksI This al30 reduced the Image load time, and expressed wherever they are needed, but the
page faults were decreased by thirty-three percent. specter of maintenance difficulties Is introduced.

552 7th Annual National Conference on Ada Technology 1989

with ITEM DCIONARY DATA tXFS: 04notic
with ITEM 0iCTInAOW"A0: type LISTJTEM is pf;vato:
with ITEM ODICTIOARYWITE:
With TEMpDICTONAnYOELETE: pacxao UNKEOUSTQTH-TRAVEASE is

packkso ITEMOICTOMNARY is type UST TYPE ACCESS Is In"itod pewate:
subtypa TIiONARY ITEM is p ocoduto INSEIT..ATHEAO

ITEMpCTNiARYATA OF.FSCTONA'Y. ITEM. (OUEUE : In out LISTYPEACCESS:

PrOcutt MhAD ITEM : in LIST iEM):

(=TIOT RY0 : In OiCT 0 TYPE. ptocedure INSERkATJA,
ITEM " in out I'b4ARY ITEM) (QUEUE In" out USTTYPEACCESS:
tonsmos ITEM OICT AYNATftrAOREAO" ITEM in USTTEM):

POuo WAITE procoduro RIEMOVEFROMH4EAD
(OfCTO.NARY 110 in DCtO TYPE: (-UEUE : in out LISTYPE ACCESS:

ITEM in 0&CTiOWARY ITGMI) ITEM : out LLT ITEM):
ronames ITEM CTNARY iTE),'TE: ip.cura RMOVEJROM.TAI

pcocduro DELETE (QUEUE in out USTYPEACCESS:
(OiCTiONARYK)0 in DCIT 10 TYPE: ITEM out LST,.ITEM):

ITEM : in O T ARYITEM)tenemes ITEM DTKNAY.OELE1E."OCLETE: pcCcduto TRAvErsE, FORW AR.D
(QUEUE : In LIST YPE ACCESS:

and ITEM.DICTIONAnY: ITEM out LIST.TEM:
CONTEXT : in out LIST.TYPE.ACCESS):

EXOmp14 6 PfxOdumn TRAVEP11SUACKWA1RO
&nfe PscAap Sptctr ication Croarod (QYJEUE : in LISTTYPEACCESS:
room th# PocagS In xafr a 5 ITEM : out LISTITEM;

CONTEXT : in out LISTYPE.ACCESS):

PivatO
type USLrTYPE:

How, for example, can these definitions be located typo USTTYPEACCESS is access LISTTYPE:
when one of those modules is to be rewritten in
Ada? type LISTYPE is

record
INFO: UST.ITEM;

Ioslalo the Interfaces NEXT: USTYPEACCESS :a null:
PAEV UST TYPE.ACCESS u nun;

Treat all non-Ada modules as "foreign" end rocotd:
package bodies by defining their own package end UNKEDLISTWITHTRAVERSE:
specifications. By putting the Interface definitions In
their own spocllnca(ion, the problem of multiple Exmpls 7
definitions for a single routine is avoidod. Since Uned Ust W'th Taverse Thai Cannot be subdivided
there Is a 'singlo source" for the routine,
maintenance Is simplified.

If you do not package the specifications for a Identify What Is Really Le ed
non-Ada Interface, then In order to Implement that Shortly alter we formally adopted the Ada
module In Ada, you must strip out the interface language for application development, we were
definitions, and replace them with the now routine confronted with the need to continue using a large
by modifying the original package and. perhaps, library of approximately 800 FORTRAN subroutines.
producing an additional one. By defining the The prospect of building an interface to 800 routines
interface as a package specification, you will simply was daunting. After some research, however, we
remove the "pragma INTERFACE" from the discovered that our applications only called about
package specification, add a package body, and 10') of these routines: the rest were low-level
recompile. No other unit need be modified. supporting program units. The prospect of writing

the interfaces to 100 routines was considerably less
(Incidentally, here Is an example of formidable.

unnecessary recompilation being required by Ada.
Removal of the pragma INTERFACE should not With some linkers, writing an Interface t'. a
cause obsolescence of units referencing this non-Ada routine is all that Is necessary to have .
package specification,) routine included In the final linked Image. Under

7th Annual National Conference on Ada Technology 1989 553

these circumstances, interfacing to only those tye OS 13T MASK is
routines actually called should be a requirement. not teco~d
an option. FLAO NAMEFOk.BIT 0: BOO(EAH :a FALSE:

FLAGNAMEFOR BIT I BOOLEAN :w FALSE:
Q~ganlza..b FtmM1naYNt FLAGNXEORP..T2: BOOLEAN -w FALSE.

FLAO4AV-EFOkDi%3 DOOLEAN :w FALSE.
A package specification of 100 routins Is not a FIG NAMC.,FOAGfT,: BOOL(EAN :a FALSE.

manageable ar-chitecture, In the case of our FL.AkNAMEJOkBiTS: . BOOLEAN :a FALSE.
FOR~TRAN ibrary, we broke up the interface Into FLANAMEjCkB"T., : BOOLEAN *mFALSE.:
multiple packages, each identified by a specific FLAG HAMEJOrOBiT : BOOLEAN -m FALSE:
huntion:, one package for forms, another for cursor ond rocotd:
movement, another for prompting and reading rot OS BIT ,MASK use

responses, ae. This not only enhanced our &.i11y to FL0.WMEwd~ a:0rne0.0
manage the routines, but we also reducoo the FLAG NAME FOR BIT at 0. rnge 0 0:
recompilation necessary when a routine definition FLANAMSJFOfWT at 0 tg no 1, 2:
had to be corrected or a new definition added. FLAGNAMEFCB3 a&10 tonge 2 .3

FLAG NAME FOR BiTA at 0 tange 4 .. 4:
Ada-lze the InterfACes FLAG:,NAMEFORIT at 0 range 5 5:

Interfaces to operatiN system calls are FLAG,_NAMEFORDIT,,6 at 0 tongo 0. 6.
frequently necessary, and are a common problomn end ,NMORIT cizwl 0 rag 7.
area, In order to be language Independent, for OSBITjdASK'Sizo use 0:
operating system calls use low-level data typing.
ILe., common data typing for many programming
languages. A direct translation of these dala types Esesffpl# a

weakns he)we ofAda' stongdatatypng.Example of Usirj Adols Sitono Typweakns he owe ofAdas stongdat tying o l lNttr 41fsces (a Non-Ada Cod#

For example. considor an operating system call
that requires a bit mask, one byte In length. Each bit
in the mask corresponds to a setting for a particular
flag. Of course, this bit mask could be Implemented
directly as an unsigned byte Integer. but then the
users of this routine would need to look up the flag typOL s O IRECTIONSs (~ UP. DOWN. AWGT. LEFT):
that corresponds to each bit and determine the lor SCRjOLL BMRCTIONS use (UP w.. 0. DOWN n>" 1.
Integer value of the flag settings. SIGHT ;> 2. LEFT a> 3):

for SCROLL ORECTIONS'Sizo use MNEGERSizo:
By using an Ada record definition, the same bit

mask can be defined as a record with each field Example 9
component corresponding to a bit flag (Example 0). Examnple of Uszing Ada to Spaclly a Mome Ftiendly.
To set the flags, a user need only turn them on or Ads Cronslstent tinedica

off by name. (Rename can be used it the value
needs to be handled as an Integer value as well.)

The Inherent power of Ada to capture and
Another common occurrence In operating express the meaning of bit settings and integer

system calls Is limiting an argument to certain vaiues Is dramatically illustrated In these two
values. For example, the formal argument Is defined previous examples. We can note that these are
as an Integer, the only valid values of which are capabilities of the language, but we have to elect to
zero, one, two, and three. A value of zero means make use of them. It takes a certain amount of time
scroll up: one, scroll down, two, scroll right: and and effort to write this code, but the returns In the
three, scroll left, form of readability and maintainablity are manifest.

Defining the argument as an INTEGER range
O..3 would be a good start. At least the Ada strong RcmlainRaleet
typing and range rules can be used to our RcmlalnRaleet
advantage, and an out of range value would be This section offers some random suggestions
signaled through CONSTRAINU RROR. But who Is for minimizing the need to recompile and to
going to remember that zero Is up? An even maximize maintainability. It Is an attempt to Identify
"friendlier" type definition would be the enumeration some key principles with the hope that these will
type shown In Example 9. spur new Ideas and discoveries.

554 7th Annual National Conference on Ada Technology 1989

Use Package Namino Conventons Place type definitions in their own package
Naming conventions eliminate confusion. For specircation when they support multiple oackages.

example, give the source code filaname the same Each package can then reference the data type
name as the program unit It contains. This facilitates definition. subtyping It for visibility It necessary. This
locating source code filos. To dil, orontiato package advice contains a caveat, however. Be alart for
specifications and bodies, use a tta.;ng underscore ambiguity resulting from the subtype names when
on the specirication name. multiple packages. depending on the samecommon data type, are referenced,

Prefix a program unit's name w:kh the system or

subsystem name or acronym. For example, our Ada ummiry
Interaces to the run-time library are all prefaced If you are building large systems with Ada, you
with RTL. This makes Identifying tlN% run-time library ar uoubte confrote with e o imgcalls and the location of the source code easy. are undoubtedly confronted with Issues of imago
bcase and The lockati te sre coden ne size, performance, and maintainability. Some ofbecause all RTL packages are stored In one teeise eiefo h a oplr n
location. these Issues dative from the way compilers and

inkers deal with generics, packages. "foegn'

Use Small Packages code, and rocompilation requirements. This often
Keep the size of Ada packages "manageable." forces us to be concerned about things that are

In our experience, this translates Into having more typically outside the scope of system design.
smaller packages rather than fewer oversized Compilers and linkers will Improve. and
packages, especially considering the problems with designers will not be confronted with these Issues
reusability and current linking technology we within a reasonably near future. In the nrn.'rne,
discussed earlier. Observe the 'seven these guidelines will enable you to avoid or contend
p;us-or-inus two" rule of thumb to facilitate with some of the major architectural concerns.
comprehensibility. Limit the number of supporting
program units in a package body to loss than fifteen
for the same reason. In general, more smaller
packages Is more manageable than fewer oversized Acknowledgments
packages. The author wishes to express her appreciation

Also, try to limit the acceptable nestedness to Mr. Drew Yskamp for his Invaluable advice and
within a pa.ticular program unit to four levels, assistance.
Anything more than four levels of nestodness makes
it difficult to understsnd the program unit logic: the
human brain can handle just so much abstraction.

References
Manaoe Visibility of Data I Firosmith. Donald "Two Impediments to the

Although Ada strongly supports the design Proper Use of Ada," Ada Letters
principle of encapsulation, it Is not unusual to ind September/October, 1987
this principle compromised In Ada programs. One
situation In which this commonly occurs is date 2 Beach. G., Software Engineering with Ada,
base access routines. All too frequently the access Benjamin Cummings Publishing Company. 1983
information Is passed from module to modulo along
with the data, even though most of the modW'es only
need to see the data: and a much smaller number
do the actual reading and writing.

Separate the data structures from the
supporting data objects and program units. This will
enable you to limit a referenced unit's visibility to
only that Information that Is absolutely necessary.
This provides assurance that only those units that
have the responsibility are actually modifying the
data base. In a few cases, this technIque can
reduce recompilation: but It Is usually the data
structure that gets changed, which means
everything becomes obsolete. If another database
access routine Is added or an existing one modified,
recompilation Is limited only to those routines that
actually access the database.

7th Annual National Conference on Ada Techrology 1989 555

Caroline D. Buchman
Manager. Mechanical and Software CAE
Al ,ed-S,,qnal Aerospace Company
Compulor-Aldod Enginoering Center. MC 3.,12
Route 46
Teterboro. Now Jersey 07608

Mrs. Suchman receivc-d her Bachelor of Ails in
Phystcs and Mathematics from Smith College In
1978 and her Mastor of Science In Computer
Scionce from Fairleigh Dickinson University In 1989.
She has boon Involved with Ada since 1983 when
Alliod-Signal Aerospace Company undertook an
effort to develop Internal CASE tools specifically
targoted to Ada.

556 7th Annual National Conference on Ada Technology 1989

A1DA DESIGN TOOL
9. Tupper,M N1*ritz,J. Iwcton

S. narley, P). Divanito

Software Technology Dcpartmcnt
Shipboard and Ground Systems Group

Unisys corpowaion
Great NCel, &NY 11020

(S516) 574-.137
AIISTRACr

This paper describes the components of the Ad& Design Tlool 2.0 C rtristims of t~e.Ada O.in 'rW
(ADT), which is being developed and integrated into a
software engineering enioiwt This eniromn prvie *n Ainr surports the sortwaic w nect in t
autornation and methodology s pport for life-cyclc activitics cottccptlixAtion, prepartion,9 and genertion~ of Ada
from reqirement specification through uanit testing. The ADIC pograins. The AlYr is hosted on a SUIN Workstation
consists of a graphical and textual edito which enables the nictiwrklng system which gives thec user three MIPS of
software engineer to exprcss an Ada design int Objet Oriented processing power within a mnultiple-user environment. The
Design or Functional DCcompSltion. In addition to the workstation uses a multi-window system on a 19.inch,
editors, the AD? has a v-Al~atioo function which ensures that bit-inapped graphical monitor, is mcnu-driven, and uses a
the design is complete and consistent, a source code generator keyboard and mouse lnterfacc As part of:a wtoa life-cycle tool
which gcnromtcs the program templAles at well as the detailed set, the ADm diagrams and narrtives arc stored in the project
code, and a documentation function whkch produces MIIL-STD databac to which access is tontrolled through a relational
specifications as well as analytical reports. The AD? will have database management. system. This is an ideal environment for
the capability for specifying and retrieving reusable design high user productivity, programming in the baxc and small,
templates, as we-l! as "fotyping the design. and access to a centralized repository of Ada designs.

Thec ADT' includes a set of sophisticated editors that simplify
1.0 Introduction the creation and maintenance of sevtral types of design

diagrams and textual descriptions. A user may access several
Trhe soft%=r design tools, available to us, supported '.he diagrams and/or narratives simultaneously through the use of
traditional development of software which abstracts thc multiple windows. T1-e editors have been designed such that
top-level design, through the %,se of a processor model and the associations between graphical components and textual
software architecture descriptions, and the detailed design via counterparts are automatically established. The File
coding architecture details and PDL Thbese design techniques, 1\anagemntt facilities provide for creating, copying, renaming,
by and large, are performned in a langusge-indepenident manner, deleting, and editing of the database entities. To promote
thereby requiring the programmer to translate the stated design reusability, an import facility is provided, allowing access to
into the implemcntation language. Since Ada is more than just elements in other projects.
a coding language, it is desirable to express our designs in Ada
terminology, both at the top level as well as the detailed level, ADT includes a validation function that ensures all diagrams
thereby eliminating thc need for translation into a target are syntactically correct and all graphical and textual
language. Another consideration was that most of the design descriptions ar complete and consistent with one another. Ile
tools supported a single design method, thereby restricting the AD? will include a facility for gencraming Ada source code.
designer to the use of a particular methodology and xnind-set. Trhe source codc will be derived by evaluating the graphical
Furthermore, the AD? allows the program designer to views in conjunction with their textual counterparts. The
represent specific features or Ada such as abstraction, documentation function within the ADr7 will produce Software
multi-tasking, exception lizndling, encapsulation, and generics. Design Document.s (SDDs), in compliance with

7th Annual National Conference on Ada Technology 1989 557

DOD-STD 2167A, in adition to several analytical repots
summarizing d&Sign details. $11OI1 *tf v(w6 %i o

3.0 Ads t)esign Sreication Within ADT 0

Once the ned for a dcdicated Ada dsgn facility was A r.L4tif ffre*

was made. Mie techniques examined include pictorial and.....
native desciiptions. While graphical diagrams awe beicrial qiw.ii

int defining pram~n strulctures and environimental elements, :~ ~& : ~* ~ ~ '

textual descriptions servcz to complete Iower~kvcI details and -

anniotations necessary for a complete view. It was concluded
thtthe most effective means of illostrating an Ada design was SYMMWnArl MOO4Aq% *M fA

through a combiroition of graphical aW textual detals. J M ,r

Specificaliy, complcti: Ada designs can be represented by the
scries of AD? disgra=~ (depicted in succeeding pages), textual
descriptions, and Ada-compilaible: VOLF 1 1

3.1 Graphical Ada Dsign within ADT. Graphical Ada design
within Aur allows the user to represenit an Ada design throuigh ACM31IOC M i~ot% 1 wtM&0

a Sarla of diagram composed of Ada-specirc icons. In an WMUYfr*1

effort to definec a graphical deSin language to best represent
the design of an Ada system and allow for leveld design
reviews, an ln-depth study of existing graphical techniques was
undetaken. As a result of this study, it was decided thatthL ZJ tAfl Itdt a
ADT would provide four cooperating graphical views to
represent an Ads design. Eah view would contain icons that LMK IUWY% it *IMM"
ame commonly used and found in many commercially avaihWtAC-, *ts4~~

design tools.

Them aft three baskc classes of icons: Unit icons, Associative The annotations to unit icons arc as follows:
cons, and Miscellaneous kons.The Unit icons art used to ______ V

reprsent the Ada programn units and specific types of tKX NYAwg0 d0C.aV I"Wi
programming constructs. Unit icons ame connected by tWMAIMn 1A&W ""WkR A
Associative icons which represent the relationship (eg., [MJ 'AI4 1"i" urmlt ~i
invocation, sigl, access, etc.) between the units. Each icon Prib * s0 v

class has additional annotations to further detIl the element or M-r- thqt)"
action being represented. Thet following lists all icons available rti? cW t cc~m f
within the ADT for &h Ada-design diagram. bMW"katScs*qfi,#

7%c %me(W dcu~s o at my Voima

A.Wt A4 r~t4 awor Ww'sO "s

PACKAGE e
SMld'nA a trna a(korsz it, -

1) Moncin heteA Unitan cons arpwwdfbtoocttL ? J icons As.Miv icons mIy rpent* uprorm Als entr
calls cortci clucexctomsqec, tc. 4 cs z j"Wu

558~~~~~V Cigh AnnualJ National Ctnfrnc o 3Tcholg 18

___________________________%Wr

k "COI Y 0 AW $4iS bo ~ J u~ &t,~~.~

V"t Al 1 44 o W 1"7 t 14 A 1 M Yq qi- 1Afs

tt)WOA V~ft rv*Aa OVWAawrKW

-141k*
tXTA lits) IN I Ite~t "A bo O"odMWWW" w 46

Annoatlti~ o A. ~tivcIcos prvid fuhcr etals o th Th folowig kos at cassiiedas NisWM acousicos a
interaction~ ~ ~ ~~~~~~~~~~~~CS betee Cntios n epd~cectro hyd otasaedr; l oA stoa nitsO -4 cod

thr9d withi the system.ok*

£4 14 WO~I~ * d 411 k a "t1b.I4(-- w W

£4 ta l 6""% i 0 4W4* 1* p,

SV~n AM bncwj dWu..e %W ftrfW te~

0>- (Vtwi- 065fN S) C44 Irk &ftIW
64WH *k IIS" M£4 4

or41F4C. tu #4"C. w o"

MMM T C WV4 b6 tW~~~~4 t 2aCAaa W % .W A i

N.-.i't L"Vbm TMwi~t mq- k4 W044 a

MLV4UIVM comncaiA strucr &~4 kn physical.
Theno envrometa Ilkw conist om a.4 aotDagahc
decrbe the bondr bc32c k-44 sWtwr system under?

fttc"a come.nicako and4- ine"to ewe h ao d nt
41TN~ ~ ~ 4 4k w t4 Thicn hesyte bein mboeled.l Te dtoa SCicat on

GV 7The nnulvional Conferecont Ada Cotehnologa 1989ich

desribs te ounarybc,%v -h sotwae ystm ude

STARTUP

TIDlS)L10

Diatram (AC?)) will repftscot all pros: arn unitl which The AC?), aKcompit! by the kxtual descriptions and
commwtlcae though rcnde,.vQI, as well as the spitcik Comm trant, serves as an ecellent too' for a top.lcel
duals a(the rendezvous; calls to ;xccdures within peckaps, View of the syskim.
lW:Iudig the specific dottaiIs o(thz; cals; Wn calls to ma*o
subprotan voits, as well at the dtails of &-e calls. igtum 2 illusteas in csamp)c of an ACO.

0- -0-0

0-n -*-

CC

Figue ~ ~ ~ 't Mo. DakSmtuo Se dXounnainDa

560 th nnul Na~onl Cnfernceuc~AaT ecnlgy18

The Internal kogic, sequence, an structure within a progamn
unit is rpesented by an Ada Strucwre Diagram (ASD). The
ASD is simular to a Structure Chat, but has keen extended to
encomnpass Ada specific constructt and details. Acep
statements, block structures, exception hanidlers, looms, cases,
and if stalements arm all illustrated on an ASD. ASDs may be
leveled to avoid over crowding. The users of t tool
determine the level or detail shown on an AS!). The tool will
generate source code for an Ads Unit based on level of detail
entered.

Figure 3 Is an example of an AS!).

text l0oex

rut-line
f

custonaer-entry tod-of day

Sit I Bank S11mul131101 SYSICM. Ada Sinicture Diagm C c

Tha physical view of the syste- Is used to ilustrate lthe
compilation units and subunits and their ile organization
within the system through context clauses, sequence markers,
and other annotations on a Physical U- yout Diagram (PLD',.
PU~s enable the user to define and represent the fie structure
for storing the programi elements within the application. This
information is used by the source code generation function to
determine the "withing" of the various prop'ram entities and by
the Configuration Management Function for tracking the
creation, modification, and ac'css of compilation unit riles.
This diagram also aids the Software Engineer in partitioning
the system to minimize recompilation.

Figure 4 illustrates an excample of a PLD.

7th Annual National Conference on Ad~a Tec hnology 1989 561

customer-tasks - hank simulation -bank tasks;

accounts

rFgwe 4. Ia iu ao Syssem - fhlkal Layot Diagram _________________

3.2 Textual Details of an Ads Deskg. A textual~detalls SUBPROGRAMI DETAIL.S
window Is provided for each subprogram, package, task. and
block unit Icon within the systeme. Prompts ame provided within Nome: Nam of subprotram
the window to define information that is relevant to the
corrsponding Ads Unit. Each unit's details widow cotan SubpnWgrm Type: Procedure, Function
in explosion field to definme the next lower level derinition, a Main P~ocedur
compilation unit field to specify the name of the file in which primrly: Applicable to main pacdum only
the unit is contained, a description fiel, a declarative section
definition, and, if appropriate, a ile for separately defined Explosion Type: ACD, ASO, P01., ctc.
bodies. The user will be responsible: for entering all
information required to generate declaratons and pefr Source Code File: File in which Adai source is
consistency cheks between data definitions and usage. contained
information (such as Identification and purpose, relationship to
other units, and other definitive information) not contained i, Parent Unit: Nam of unit in which subprogram
the ADT diagram that is used to satisfy the detailed desiga is contained (if appl icable)
requirements should be specified in th description field. Each
details wirdow also includes fields dedcated to the unit or Parent Unit Type: Type of parent unit
structure being defined (ecg., entry points, parameters, ctc.). (if applicable)
Examples of each program unit or structure textual details may
be found in the right-hand column. Formal Parameters:

Utclaratlve Section: List of all objects and types
4.0 Validation defined within the declarative sction

of the subprogram body
T7he ADT vilidation function consists of two main
components: syntax checking and Exceptions: List of all exceptions handled
completcnicss-and-consistcncy analysis. The validation checks sndlor propagated within the
can be performed on the entire Ada design or any Isubprogram
user-specified subset.I

Syntax checks are performed on each type of diagram to ensure .Dcipon

562 7th Annual National Conference on Ada Technology 1989

that basic software engintering principles as well as Ada
specific ccpts awe not violated.

The following amc sonme of the major syntax checks:

" Every object is labeled and numbere correctly
TASK DETAILS

" Froc standing objects amc not allowed
No"": NUam (taii

" T e amn fpaeAssocisdt c on Task Type: Anonymous cr Task Type
* Actual-paranckrs match foml parameters Numbier ofocurmeces:

definitions

* Every Exiriumil Entity Is connecd to the system Exposios Type: ACA, ASD, MOL etc.
directly, via a Context Cluse, or indirectly, using a ikly
Library Package, via a Dma Blus.Proi:

Tem plc esnd-iconsssency analysis enue thateoato alale
objects within the scope of this validation analysis are fully SOMrc COde Fle: Nam of file in which Ada source
defined by their corresponding tex tual details and their usage is is contained
consistent with other objects in the design database.

Master Program Unit: Nam of unit In which task
5.0 ADT Source Code Czcratia'i is defined

The ADT Source Code Generation facility will generate Dectarative Section: List of all objects and types
program templates In addition to detailed cod. By analyzing defined within the declarative secti
ACM and accompanying textual details, program templates of the task body
(which include task specifications, package specifications, and
rendezvous constructs) can be teneratcd. ASIs and associated En~try Pints
textual detail interpretation supply lower-level logic and 1) Entry Nam
sequence details to complete the Ada program. The use of the Paramcten:
ADT Source Code Generator will eliminate syntax errors, and 2) Entr Nam
enforce the use of desred programming standards.Pamers
Furthemiore, changes in program design immediately can be
reflected in the code.

6.0 Automatic Repor and Document Generation ni) Entry Nam
Parameters

The ADT will provide a tum-key documentation facility from
the design database. Analytical reports (such as Where Used Excepvltis: List of all exceptions processed
and Data Dictionary reports) are gcented to aid the software anid/or propagated within the task
engineer in the creation of the Ada design. The hardcopy
documents produced arm formal Software Design Documents in Description:
compliance with DOD.STD.2167A. The documnent generator ______________________

automatically provides section heading gencration, page
numbering, figure numbering, table of contents generation,
security markings, figure cross-reference generation, and
merging of text and figures on the same page. TI o final design
documentation will be produced on a commercially available
publishing system. lie document generator turns out an
interrnedinte design document containing publication
commands for the publication system. A Customizer Kit will

7th Annual National Conference on Ada Technology 1989 583

allow t uw to taio th 1c a ofterpot n documets ~ BLOCK DETAILS
to specific needs, naing i flexible so other documentation
standards. Name: Namet of Block

Black Type: Standari. Accept, PDL, Exception

Eaplawo Type: ACD, ASO, PDL, c.-

SUMMARY Paret Unk: Nam of unit In which block is
contained

AMT is an Ada Design Toot which enables the Software
Engineer to represent a top-level and detailtd-levc! design in Parent Unk Type: Type o(unit In which parent

terms of the Ada langirge through the use of sophisticated Is contained
graphical and textual ediwos. The tool can be used effectively
to automate both the Object Oriented and Thnctiona Parent Unit Source File: Nam of file in which parent

DcmoiinDsg aprahs In adiin ADT tae Ada source is contained
advantage of the richness of the Ada language, and supports thecaaieScio: Ls faldtaeeet eie
principles mid goals of good so"ware engineering prDactarces. Wecthin U theal decata v leteine

The ADT is scheduled for Alpha tes in April 1989 an t of the block
release In June 1989. Subsequent releases will contain the Ada Ex~o Lito l xepin rcse
Source Code Generator for the program structure as well as the ano prpgae within the block
detd code.

Description:

REFF.RECES PACKAGE DETAILS

111 R.L .r, "System Design with Ada", Prentice Hall, NAME: Nam of Package
1984

Exploom Type: ACt), ASt), PDL, tc.

(2) Grady Dooch, "Softwr Engineering with Ada", Second
Editios, Benjamin/ Cummings Publishing Company, In. Source Code Folr. Namne of file in which Ada source
1987 is contained

(3) Reference manual for the Ada Programming Language. Pam(n UN: Name ofW ui n which package
ANSIIMIL-STD- 18 Ia- 1983 is contained (if applicable)

Parent Unit Type: Type of Parent Unit
(4) P. Ward and S. Mellor, "Structured Development for (fap~ak

Real-TimSystems", Yourdon Press Computer Seuies,(iaplcbe
1986 Specification: List of all objects and types

defined in the specification of the
[5) G. Cherry, "PAMCELA Designers Handbook', Analyticalpakg

Sciences Corporation, 1986
Dectarative Section: List of all objects and types

[6) Department of Defense, "DoD-STD-2167A", 29 February defined within the declarative sectio
1988 of the package body

[7) McDonnell Douglas, "Ada Software Development Exceptions: List of exception processed and/or
Curriculum: Ada in Software Design". 1987 propagated in the package body

[8) UNISET User Manual, Version 3.2, Dept 2239, Unisys, Dsrpin
September 22, 1988 1 1_____________________

564 7th Annual National Conference on Ada Technology 1989

BIOGRAPHICAL SKETCIIES

Mr. Tupper has worked in software tool development and
real.time command.and.control systems for 15 years. As
Eneeing Section lead, he is responsible fr development
ota complete software engineeing environment which Is
targeted to support project development from requirements
specirkation through unit testing. Previously, Mr. Tupper
worked on several real.time simulators and commandlcontrol
systems. The most recent was the Spanish Navy program
where he was the Senior Engineer responible for design and
development of Simulation Support Processor software for the
land.based testing of FFG- and CV-class naval ships. Mr.
Tupper received his bachelor's and master's degrees in
Computer Science from Pratt Institute lie published several
IR&D reports and papers on automated software development
tools and environments, and operating systems development.

Ms. Levitt has 22 ycars of experience in the design,
documentation, implementation, and test of software systems
And software support. ier primary emphasis has been in
development of embedded real-time operating systems for
military applications. She was responsible for design and
development of the Memory Processor Operating System
(MPOS) on the Trident II navigational subsystem shipboard
computers. Ms. Levitt is a leader of a group developing the
Embedded Multiprocessing Ada Rundme Support System
(E.MARS), and is de author of five operating system.rclated
publications. She earned a bachelor's degree in Mechanical
Engineering from the University of Ilarnford And a mAster's

degree in mechanical engineering and applied mathematics
from Rensselaer Polytechnic Institute. Ms. Levitt was a 1987
winner of the Unisys Excel Award for her wo'k on the TriC-nt
II navigational subsystem operating system.

Ms. Hetzron has mor than eight years of software engineering
experience, having designed, implemented, and tested major
program components for the SEALITE, HELP and TACDEW,
Command Control and Communication applications. She also
designed and implmented software functions for the Memory
Processor Operating System (MPOS) used in the Trident It
Navigational Subsystem. As a member of the Unisys Ada Core
Group, she participated in development of the Embedded
Multiprocessing Ada Runtime Support System and
development of the Software Design Tool (SDT) and Ada
Design Tool (ADT) within the Unisys Software Engineering
Toolset (UNISET). She earned her BA in Computer Science
from Queens College in 1980 and her MS in Computer Science
from Polytechnic Institute of New York in 1983.

7th Annual National Conference on Ada Technology 1989 565

Ms. Barkv has six years of software engineering experiencc.
She designed, implemented and t1sted extensions to the utility
package (UPAK) for the Mk 92 Ft Control System. Ms.
Bhrlev also designed and implemented a code auditor to detect
specified pmgram anomalies, and actively participatd in the
prokoyping of Requirements Tools on thc Lisp Machine.
Currntly, se Is responsible for the jrphicsl editors on the

SUN workstation for the Requitnwhts Speciriation Tool
(RST) and d Ada Design Tool (ADT, within the Unisys
Software Engireeing Tool (UNISE). Ms. Barley received
her BA In Computer Science from Queens College in 1983, her
MBA in Mo tet Informa~o Systems from lofstr

University n 1986, and currently is completing her Master's in
Computer Science from Queens College.

Ms. Davanzo has five years of software engineering
experience. She worked in a software developent gup for
Trident I and Trident 11 Fot.Mission Data Evaluation which
Included deign, implementation, and testing software on
various systems. These activities included conversion of
Forran programs into Ads on difftt computer systems. Ms.
,evyanzo currently is involved in tte derintion and

development of the Ada Design Tool (ADT) which involves
the Details tor within the Unisys .Software Engineering
Toolst (UNISE). She earned her BS in Math with Computer
Science from St. John's University in 1983 and her MA in
Computer Science from Queens College in 1987.

566 7th Annual National Conference on Ada Technology 1989

OBJECTS WITH MULTIPLE REPRESE'vATIONS IN ADA

K. Nt. George Jag Sodhi

Oklahoma State University ITLOS rdca Systems
Stillwater, Oklahoma Lawton, Oklahoma

AB5TRA M of the problem and an Ada solution. The complete Ada
program and output from a trial run are given in the uppcndx.Ada provides the facility for the separation of specification and .Some side effects of the solution are discussed in section 3;

implementation. iiowevcr, there is a one-to.one and section 4 is the conclusion.
ctetspnce between a specification and its implementation
(if one exists). This paper presents an impkmentation scheme 2.0 ABSTRACT DATA TYPE
which provides multiple represcntations of an object. It is
possible to choose an implemcntation from the available An abstract data tvo (ADT) consists of a set of objects and a
Implementations. The user of the specification need not be set of operations characterizing the behavior of the objects
concerned with the details of impnipmestaon. LIGU 86). The set of objects can be defined using relations

of the operations. The specification of the ADT provides the1.0 INTRODUCTION name of the ADT and the nwncs of th, operadons. The details
of the operations arm hidden in the impleentation. AnA programmin; paradigm such as object oriented Implementation of an ADT Is called a ruluailgo of the ADT.

proyammin; which permits scparation of specification and An ADT can have morm than ofe realization. An example Is
implementation provides several advantages. Specification given in the next section.
provides an abstraction from computation (LIGU 86) which
allows the use of complex objects without having to be 1IM PLP
concerned with their implemntation. The user of a
specification is spard from the implementation details. The Let us examine the ADT "stack" and two of its possiblo
burden of the appropriate choice of data structures is handle4 implcmentations. The ADT stack is defined by a set of
in the implementation and can be postponed as long as functions and a set of defming relations. The implementations
necessary. H1owevr, once the impkmentation chooses a data using an army and a linked list am examinied.
structure the user has no other choke. Modern programming
languages incon rate this concept in their deslln and provide abstype STACK is
adequate facilities for separation of specification and
implementation. In particular, Ada [VAXAl supports this functions :
separation of specification and implementation in generics, PUSHl : STACK x OBJECT.> STACK
packages, tasks etc. The implementation bundles together data POP : STACK --> STACK
structures and the operations on the data structures. The TOP : STACK-.> OBJECT
specification provides the view of an object and a set of
operations on it. Put another way, the specification provides relations:
theviewof anabstractdatatype ICAWE85). Themrisaone- POP (PUSH) - Id
to-one correspondence between the specification and PUSH! (POPTOP) idifSTACKisnot
implementation. TIe user of the specification has no control EMIPTY
over the choice of data structures and algoAithms used in the
implementation, end STACK
In some applications, efficiency might depend on the choice of The implementations must obey the defining relationships of
data structures and algorithms. In such cases, the facility to the ADT. Two implenentation schemes are shown beiow:
select an implementation will be useful. As an example,
consider a linear programming problem. The type of efficient i) aray-implrinentation is
representations are different for large sparse mtnces and small P using salar I and array A
matrices. The particular choice will depend on the application. I <-- 0;
So, ideally, one would like to have a linear programming PUSH:
package with the flexibility to choose efficient representation. I <-- I+1: All] <- X; /* X is an object *1
The issue, then, is to provide specifications of abstract data POP:
types together with the capability to choose appropriate 1 <-.1-1;
implementation. Such specification shou!d not diminish the TOP:
advantages of the separation of specification and valueofA[I];
implementation. This paper is concerned with an Ada solution end array.implementaticn;
to multiple representatons of abstract data types and the means
to choose an implementadon. The user of the specification still
need not be concerned with implementation details. The next
section provides a definition of abstract data type, an example

7th Annual National Conference on Ada Technology 1989 567

2) ~2) TYPEisrabt
a s a utur LITwith t1o P0~C~ eiNF OPE3RA11ON is binding: (t,d) -.> tid
LEAD 0/N~L. wheteLd refers to an Instance of t with realiza-

HEADC <-MLLion d.
PUSH:

TEMP.I-nFeLIS X: *FM~ isatl *,w An Ad& peeks seicaion for the AD? stack Is given in the
TEM.IFO<- X:MM NK<-HEAD; above will correspond to an Instaniation of a gencric package.

HEAD < TMPThe tpe rabstype Is Implemented as a generic package
po:HEAD <- HEADULNK; pcfato.

T(.value of HEAD.INFO; 3AsIPEETTO
end likdls-mkettm In ordcr to Implement the above concepts in Ads, the

In th aboe imlemenatio ~ ~realization type should be visible throu# the specification.
In th abov h nplmndto bo msthet dat stutue The floigpackage seicaonprovides a specification:

HA weInternal to the impeatation. The operations packaeSTACK-N4PLEMENTATION-ULSTis
PUSH, POP and TOP awe the only nogt visible to outside tp S-FSAKIPTMI
users. It Is coay to veify that bth implementation scee tye S..F.A CJMP TPElIMP)
satisfy the defintif ng quons. hIs also obvious that thikIKD..IT.M)

Implematation we fucin .1diecl related to the data STACKIMP: LlST..OF_.STACKIMP_TYP4
strucur chosen for the implementation. When an pcaeSAKI

mut eprsevd y h SIn this ,-Aper wfntnTO return INTEGER;

eane a n asrcto packaghc M s; rlvate STACK (BET NEE)
worstin. idSTACKMPLEMENTA1ON...IST

21 FA~7A1ON~ AS A TYPE The list of available Implementation at made visible as the
vaus associated to the enumeration type

A D ambe Wrolemented using several data 5sfliturcs. LIST..0F.STACK-JMP..TYPE. The choice of an
We ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~4 cala e-- dno nATC mlzot Ipeetto is the same as instantiation of the Itne"=

realization elwv~l~y Ii. a $4%t structure. The defiiton of a package ST sn the aprpit value. FQT the
dat srucur ugiven by Reingold and flaw"e (REHA 83) is complete Implementation and a test run, the reader Is referred

shown below, to the appendix. Some of the advantaget anod disadvantages

A data structure consists of three nIponenta: esdt aprchvicu ineex ao.

I) se of Ofuncion definitions, lFE MO I PRAI
2) a storage structure, and The method Illustrated by the specification In the previous
3) astoalothsoe xeahfnto.section can be used to construct Interfaces to reusable

our iscssin, n alorihm s ientiiedwit. fsoftware The specification can be viewed as it window as
For ur iscssio. a aloritm i idntifed ithits uncion Shown in figure 1.name. Therefore, we can view a data structure as a pair (SF)

where S represents a storage smauctutre and F repesents a sw of
futions An equivalnc class structure can be imposed on a
stt of daa structures. Let D be a set of data structures. Two
data structures di n (Sl,Fl) and d2 0 (S2,F2) In D are OBJECT NAMIES
cagnan if dj anmd d2 A m elizats for the Same set of _ _ _ _ _ _ _

ADTs. If!D consists of exactly one eq uivalence class and if
th e equvalence Is imposed by an ADT t, then D Is called aFNTONNM.
=zuiAtipcAsu for t. In other words, every member of D wiUNlINlANE

be an implementation of the ADT t. The set D contains more L_---------------------_
information (eg. storage structure) thin the AD? t Itself. If the
Information hidden in D is available to the user of t. then that
user will be a"l to choose the appropriate realization based on Fgr
the application from D. This can be achieved by viewing D as
a type. We call this typ aiala. Using D and t. we can

de1CneaneM type whichallows one to select a reaiztion for Object names refer to implementation type and the function
an ADT. This new type is called uabty= where, as an AD?. names refar to a function or it procedure. For example,
it is cad AhM. Tie formal definitions are given below: assume that there mre several procedures which implement

sorting algorithms such as bubble sorn, quick sort etc. Then
I) TMpEJ reaiNAtion the function name can be sort and object names can be bubble,

VALUES am in D quick etc. The advantge is that the user or the specification
OPERATION is selection: D -> d, where d is a needs to be concernt.d only with the algorithm type and the

menmber of!D. name of the function. The user need not know which

UM8 7th Annual National Conference on Ada Technology 19e9

packages to use or witAt specirc name to use and so on. The
disadvantage. however, Is the Inefficiency 3ssoclated to
geneiic Instantladon. The runtimie nefflclncy robably can be
removed by appropwiato. subtitutionts at compile timre If such

In this paper we have addressed the Issue of multiple
Implementation% and dynamic Implementation choice of
abstract data types In Ada. The method used Is Illustrated
usin; an cxanipk. s coffet nAda pmVam. The separation of
spcfication an Impicnientation Is not compromised. In
oirder to provide a choice of Implementation. a level of
abstraton Is chosen such that the narms of Implementation
ame visible.

(CAWF. 85) L Cardelli and P. Wexner. 'On Understandng
Types, Data Abstraction. and Polymorgihsm', Camputing
sufti Vol. 17, No. 4, December 1915

IUGU $61 B. Llskov and J. Guttag, &bgrictionL and
SPICdfkC 11nn In PrntrAM flCV cjR8 nt The MIt Press,
Cambridge, Maschusis, 1916.

IMALE 161 M. Maronty and It. F. Ledgard, ftngmmmlnLAnUUXe 4UdWARC Synt~lt StHmntiit/ jMpknMnft12iM
Second edition, SRA, Chicago. 1956C

IREIIA 331 E. M. Reingold and W. J. Itansen, D=i
Swums. Ute 11rown and Company, Boston, 1903.

IVAXA) Vaxt Ada Languag Reeence Manual

-- This package privides the list of available Implementations of the abstract
-data type STACK.

package STACK-ZKPLZMENTTION LIST is

type LI ST-OP STACK -IMF TYPE Is (ARRAY IMP ILINKED LIST 1)42);
geneic -List of impleintations.

STACK IMP z LIST Or STACK IMP TYPE; -- Implemetation type to be chosen.
-- Absact data type YoIllovs:

package STACK is
procedure PUSH (O3JuCTintmo);
procedure POP;
function TOP return INTEGER;

end STACK;

end STACK IHPLEMZNTATIOW LI ST;

7th Annual National Conference on Ada Technology 1969 569

-This package body contains all Implementation%~ including the subprograms
-assoca ted to abstract data type STACK.

with TEXT 10; Use TEXT 1O;
package bdY STACK IMPENENTATION LIST is

package INTO 10Is new INTEGER IO(I1tTEGER);
use, IN? 1O;-
type ARlAY TYPE Is array (1--100) of INTEGER; -- torage for array
type NODE; - implementation.
type LINK is access NoDE;
type NODE is -- storage for linked

record --mi list implementation.

NEXT :LINK;
end record;

STACK ARRAY :ARRAY TYPE;
STACK-TOP : JNTE4ZER in 0; stack top foary
LINK TOP : LINK in null; -- stack top for linkdls

-- Array -implementation of PUSH.
: c dls

rocedure ARRAY PUSH (OBJECTtINTEGR) is

STACK TOP :~STACK TOP 4l
STACK ARRAY (STACK:TOP) in, OBJECT;

-Messages to verify the actions.
PUT(OARRAY IMPLEHETATION Or PUSH IS USED AND VALUE PUSHED ISO);
PUT(033ECT):
NEW LINE;

end ARRXYPUSH;

-- Linked list Implementation of PUSH.
procedure LINK PUSH (OBJECT t INTEGR) is

TEMP : LINX;
beg in

TaM in new NODE;
TZMP.VALUE a* ()IIT;
T3MP.NEXT in LINC TOP;
LI NK TOP : - TZMV ;

-- messages to verify th*e actions.
PUT(OLINK IMPLEMENTATION(or PUSH IS USED AND VALUE PUSHED ISO);
PUT(OBJECT);
NEW LINE;

end LINIK PUSH;

-- Array I mplementation of POP.
: ocedur* ARRAY-POP Is

STACK TOP :- STACK TOP -1

-Messages to verify the Zctions.
PUT(OARWAY IMPLEMENTATION oF STACK IS USED AND VALUE POPED ISO);
PUT(STACK ARAY(STACKTP~l));
NEW LINER,

end AXRYPOP;

570 7th Annual National Conference on Ada Technology 1969

-- Linked list implementation of POP.
:rocedure LINK POP isI c9in-

-- Mtssages to verity the actions.
Punr('Ll4K IMPLEMENTATION Or STACK IS USED AND VALUE POPED IS*);
PUT(LINK TOP.VALUZ);
NEW LINET;
LIN' TOP :- LINK TOP.NEXT;

end LINK-POP;

-- Array implementation of the (unction TOP.
function ARRAY-TOP return INTEGER Is
begin

-- Messages to verity the actions.
PUT(ARRAY IMPLEMENTATION or STACK IS USED AND VALUE OF TOP IS*);
PUT(STACK ARRAY(STACK TOP));
NEW LINE;-
return STACK ARRAY(STACK TOP);

end ARRAY TOP;

-- Linked list implementation of the function TOP.
function LINK LIST TOP return INTEGER is
begin

-- essages to verity the actions.
PUT(*LINK IMPLEMENTATION or STACK IS IUSED AND VALUE OF TOP IS*);
PUT(LINK TOP.VALUE);
N1EWV LINE-.
rettrn LINK TOP.VALUE;

end LIMKLIST_7OP;

-- The implenatntatlon of the abstract data type STACK. It uses one of the above
-- Defined implementations.

package body STACK is
procedure PUSH (OWJECT : INTEGER) is
begin

if STACK IMP w ARRAY IMP then
ARRAY PUSH(Olitc);

elsif STACK IMP - LINKED LIST-IMP then
LINKPUTH(OBJECT);

else
null;

end if;
end PUSH;

procedure POP is
begin

if STACK IMP - ARRAY-IMP then
ARRAY PoP;

elsif STACK IMP a LINKEDLIST IMP then
LI NKPO;else
null;

end if;
end POP;

7th Annual National Conference on Ada Technology 1989 571

function TOP return INTEGER is
begin

if STACK IMP I ArAY T MP then
return ARRAY TOP;

elsif STACK IMP ; LINKED LIST-IMP then
return RKLISTTOP-

else
return -1000;

end if;
end TOP;

end STACK;

end STACKI)PLV4ENTATIONLIST;

572 7th Annual National Conference on Ada Technology 1989

-This a main program to test the package STACK which is a generic package
-- Which implements the abstrac t data type STACK. It is possible to select the
-- Implementation one likes from among the available Impi enentat ions. This
-programs ttsts the generic package STACK by instantiating with the two
possible values.

-- since Its purpost Is to verify the relevant packages, there are no means
-of handling exception$.

with TEXT 10; use TEXT 10;
with STACK impLEXE#TATToR LIST;
use STACK TMPLEHENTATIONLI ST;
pcocedure STACK CHECK Is-

package INT To is new INTEGERJ1ONTEGER);
use INT 10;-

beg in

-Test array implementation of STACK.
declare

package STACK PACKAGE is new STACK(ARRAYIMP);
use STACK PACKAGE:
X, 7: 1 14TEGIR;

beg in
for I in l.-5 loop

PUTO!NTEGER TO BE PUSHED ;
GET(X;
NEW LINE;
PUSTR(X);
T :- TOP;

end loop;for I in l..4 loop
POP:
T :- TOP;
PtiT(*NE1 TOP IS:;
PUJT(Y);
1411 LINE4;

end loop;
end;

-Tesz linked list implementation of STACK.
declare

package STACK PACKAGE is new STACK(LINKD.3IST IMP);
use STACK PACKAGE:
X,I:INT!ER;

begin

for I in l..5 loop
PUT('INTEGER TO BE PUSHED:;
GET(I);
NEW1 LINE:

Y :. Top;
end loop;
for I in 1-.4 loop

POP;
Y :- TOP;
PUT("NEW TOP IS:;
Ptr ();-
NEW LINE;

en;end loop;

7th Annual National Conference on Ada Technology 1989 573

SAMPLE OUTPUT

INTEGER TO BE PUSHED :
ARRAY INPLtMETATION OF PUSH IS USED AND VALUE PUSHED IS 100
ARRAY IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP iS 100
INTEGER TO BE PUSHED :
ARRAY IMPLEMETATION OF PUSH IS USED AND VALUE PUSHED IS 200
ARRAY IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 200
INTEGER TO BE PUSHED :
ARRAY IMPLEMETATION OF PUSH IS USED AND VALUE PUSHED IS 300
ARRAY IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 300
INTEGER TO NE PUSHED :
ARRAY IMPLEMETATION OF PUSH IS USED AND VALUE PUSHED IS 400
ARRAY IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 400
INTEGER TO BE PUSHED :
ARRAY IMPLEIETATION OF PUSH IS USED AND VALUE PUSHED IS 500
ARRAY IMPLENENTATIOh OF STACK IS USED AND VALUE OF TOP IS 500
ARRAY IMPLZMNHTATION OF STACK IS USED AND VALUE POPED IS S00
ARRAY INPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 400
NEW TOP IS : 400
ARRAY IMPLEMENTATION OF STACK IS USED AND VALUE POPED IS 400
ARRAY IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 300
NEW TOP IS : 300
ARRAY IMPLEMENTATION OF STACK IS USED AND VALUE POPED IS 300
ARRAY IMPLEENTATION OF STACK Is USED AND VALUE OF TOP IS 200
NEW TOP IS : 200
ARRAY IMPLEENTATION OF STACK IS USED AND VALUE POPED IS 200
ARRAY IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 100
NEW TOP IS : 100
INTEGER TO BE PUSHED :
LINK IMPLEMENTATION OF PUSH IS USED AND VALUE PUSHED IS 600
LINK IMPLEMENTATION Of STACK IS USED AND VALUE OF TOP IS 600
INTEGER TO BE PUSHED :
LINK IMPLEMENTATION OF PUSH IS USED AND VALUE PUSHED IS 700
LINK IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 700
INTEGER TO NE PUSHED :
LINT IMPLZMENATION OF PUSH IS USED AND VALUE PUSHED IS 800
LINK IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 800
INTEGER TO BE PUSHED :
LINK INPLEMENTATION OF PUSH IS USED AND VALUE PUSHED IS 900
LINK IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 900
INTEGER TO NE PUSH.D :
LINK IMPLEMENTATION OF PUSH IS USED AND VALUE PUSHED IS 1000
LINK IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 1000
LINK IMPLEMENTATION OF STACK IS USED AND VALUE POPED IS 1000
LINK IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 900
NEW TOP IS : 900
LINK IMPLEMENTATION OF STACK IS USED AND VALUE POPED IS 900
LINK IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 800
NEW TOP IS : 800
LINK IMPLEMENTATION or STACK IS USED AND VALUE POPED IS 800
LINK IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 700
NEW TOP IS : 700
LINK IMPLEMENTATION OF STACK IS USED AND VALUE POPED IS 700
LINK IMPLEMENTATION OF STACK IS USED AND VALUE OF TOP IS 600
NEW TOP IS : 600

574 7th Annual National Conference on Ada Technology 1989

K. M. GEORGE has a Ph.D. in Mlathematics from the State
University of New York, Stoncybroolt. Ile is an Associate
Professor. Department of Computing and Infonnation
Sciences, Oklahtoma State University, Oklahoma. lic his
published sevcral papers In functional and object oriented
progranmming.

JAG SODI 11 his a Master Depec In Mathemnatics, a Degree In
Teleconmmunication Engineering, and Is a Graduate of I BM In
Data Procersing. lie has many years of Data Processing
experience In business, financial and scientific applications ln
various EDP machines and languages. lie has conducted
numerous profecssional classes and seminars on these subjects.
Hlis publishing credits include numrous training courses on
A.&I ud sortware engineering. Jaz is a senior system cngincer
and In charge of education and training at 1 ELOS Federal
Systems, Region 1.

7th Annual National Conference on Ada Technology 1CS-9 575

A Software Dovelopment Toot U~singj Ada -

Pseudo Code Mnagement System

By Dar-Iliau flu

Department Of' Computer Sciatice Arid inc~ering
California State Univori ogRbl

Long Beaifch. CA. 96640

ABISTRACT within a "Miodulo Template. An example or
such a template Ts %hown, in tionj 11.

Tis software development tool will This teMplat~e Ultimately leads Lo the
allow for completion of one ofre ~ creation or Elhe pseudo-codo body.
detailed design Specifications,.hsmdl epat n h suocontributing to the architeCC~ural design c i od u cnler be exptoande Ciosuo
and the detailed design modularization coure od. c oula Iter e coxp pe i ice
of' the software product. Tile Interface sorc coe Module.odulerfae reiia
specificationx for the various modules Lfetv oaions sut stl f 0uo acchiecturi
are incorporated within a "Module retvnoaisfrachetu lTempate. Tis Mduljemlateandthu design when they are used In combinningTempate. Ths MduleTemlatea~dthu With Structured charts and data flowpseudocode body can later be expanded diagrams. They also provide a naturalInto source code. The PCM will allow transition from at-chitectural de08ign Losystem designers to document and crack detail design,. and from dote i design tosoftware modules more effectively asImlenai.
they are being created. It also fias ticleetain
capability to recontrucc a structur Tedvlpeto n otaepo
chart graphically for a given subsystem. duct idanexlpmenive, an sti wreom pro-

process. 'Fli need f'or accurate, well-documented, maintenable source code Is
evidenced by tile growing amount, of
emphasis placed on fault-tolerant, large
scale. efficient system Packages. A tool
which provides the ability to fully
document and track thle development tiro-

1. ~~~ ~cs ITOUTOCOOf tile various modules within aI. INRODUTIONProduct Is One Of the several Important
Durig th deelopent f asoftare aids which IS needed to cope with Lila

product, It Is helpful to provide Icesn~ ifcl niomnvarious tools and mechanisms whereby within which sof~tware packctges are
the Programmers working on the product currently being developed.
can document thre development cyclesTePsuoCdMnamntStm
and Identify the various inter- Tl suoCd aaeetSse
connecting Paths between modules. P W) will allow system designers (or
This facilitates the easy generation sortware Engineers) to more eflectively
and maintenance of robust, efficient document and track 501 tware modules as
codes. thley are being created. Tile sys1tem fits

well within thle philosophy ofr Top-Down"
Our goal Is to design such a soft- development methodology by providing a

ware development tool to aid in thle valuable tool to document, verifydesign of a software product. Tis Completeness and maintain an archivablo
tool will allow for completion of one tracking method for the Product under
of the detailed design specifications, review.
contributing to the architectural
design and the detailed design modu- The life-cycle model was used tolariatin ofthesoftareprodct.manage the development of PCMS. The deve-lariatin ofthesoftareprodct.lopment, operating, and maintenance of

One of the area that such a tool is PCMbS will be done on VAX 8530 using tileadvantageous is during the Initial VMS operating system. DEC Ada Compilc' isdesign of the Interface specifications chosen to develop thle system.
for thle various modules written for
the subsystem of the product. These
specifications are often incorporated

578 7th Annual National Conference on Ada Technology 1989

Tie basic teatures of PMS tre as 3. CAI.LIEDIY:
followings:- It has Attributes limited Lo 10 chnrac-

-- o-line capbllltlhu to creat. delete tars or numbers

o h entry Ini ,aih Definition Tills enLry Identifies
aIl the modules whichmodule temPltta. call this modulo.

-- Capability to print an onLire module
template for a given module. 4. PURlSS:
-Capabilty to print only 1,110 MOS ALtrlbutes textual description

recienly tOlngad entries. Definition A short abstract des-
recetly hfllg~dOntr~5.cribin; the functional

-- Capability to reconstrucL a strucLured
o te odul

chart graphically for a given sub- Purpose of the modula.

system (from the Informaulons provided

by the mule templates i the sub- Attributes : The designer name is
system). limit;ed to 20 charac-tars and data is of

the form MtmiD/VY.

It. MWODUI.I TFAPIATF STRUCTIRIE Definition : This entry denotes thie
initial author and

A) For eacti module, there corresponds ,i date of the templa.

module template which includes tile 6. PAHAMbrERLIST:
following entries:- Attributes : nams - limited to 1O

characters
MODUiENAiE : (module name or numbr) modes - limited to IN.
PAWLOF : (subsystem name or number OUT, or N~OUr
CAIRhEB : (module name or numbr attributes limited to
PURPOSES :(textual description) 15 characters
DESIGNER/DATE : (designer and dace) Definition : This entry Identifies
PAEAMETEHLIST (names. modesattributes)* all parameters.
iNPUTASSEKTION (preconditionsi
OUTPUTASSERTION : (postconditions) 7. INPUTASSERTION:
CoLINGFO : ((module fame or nurbdrj4 Attributes : textual description
GLODALS : (nam(tedushared cith)n Definition : This entry deLails the
SIDE-EFFEetS : (textual description) conditions that. should
LOCALUATA : namo,ode,attributosi exist prior to calling
EXCEPTIONS : tcnditions. responsos* tils module.
TIMINGCONSTRAINS : (descriptiont
OTIIEKIMITATIONS : (descriptiont) 8. OUTPUTASSERTION:
MUDULEBODY : (psoudo-code) . -dMODIFIEDDY : (whom~when, WhatoWhYJ' Attributes :textual description

Definition : This entry details the
conditions that exist

denotes zero or more occurrences of upon leavin tis

the entLties enclosed in parentheSes. module.

9. CALLINGFOR:
Attributes : limited to 10 charac-

ters or numbers
B) Modulo Template entry definitions: Definition : This entry Identifies

all the modules which
1. MODULENAME: are called by this

Attributes : t1mited to 10 charac- module.
ters or numbers

Definition Tie module name Iden- 10. GLOBALS:
tifies tile module temp- Attributes : names - limited to 10
late. All references to characters
this module in other attributes - limited
modules should use this to 20 characters
name to identify this Definition : 'This entry Identifies
module template. all global variables

used by this module.

Attributes limited to 10 charac- 11. SIDE-EFFECTS:
ters or numbers Attributes : textual description

Definition : This entry identifies Definition : This entry details the
which subsystem this side-effects
module is part of. of executing the module.

7th Annual National Conference on Ada Technology 1989 577

12. LOCALDATA:
Attrtbuv s : names - limited to 10

characters
attributes - limited to
20 characters

Definition : This entry Identifies
All locnl variables usedby tlhis modle.~

13. EXCEPTIONS: y i d
Attributes : boith conditions and res-

pofl542 are textlU.LZ2L..
Def initIon :This entry Identifies

conditions that would
tauso an exception or
orror to artsu and the
that exception.

14. TIMIN,=NSTRAINS:
Attributes : textual description
Definition : Thin entrty Idenirili,

thela mre itshou L 'ac

for processing.

15. MODUIEBODY: T fI i
Attributes : textual description
Definition : This entry lists tihe

actual processing of rv,,
the module In a stepvse
manner using pseudo cu

16. OTIIERLIMITATIONS:
Attributes : textual description With Text. 10
Definition This entry I sLS te With Dirct 1O;

functional limiutatIon
of tihe module which are Pachage PCsS is
not already specified.

Subtype NAME TYPE ix string(I..1l0);17. MODIPIEOIBY: Subtype DHSC TYPH Is strlnq~l..- jOj:
Attributes : Whom - limited to O type DATETYP Is new string(..0);

characters type PARfl.tTYPE is +
when - wMiDiYY flw itring(i..80);
what - limited to JO
characters NUMBER CALLED : constant :o 20;why - limited to 20 NUMBER PARM : constant integer :- 20;characters NUMBER-GLOBALS : constant Integer:-20;

Definition This entry is the NUMBER LOCALS constant integer:-20;history of the module. NUJBER-EXCEPTIONS:constant integer:%20;NUMBER MODIFIED: constant integer:-20,
X MOUULES : constant integer :-20;HASH TABLE SIZE : constant intoger:-20;

NU NBR-SUBHODULES:constant integer:-20;

Ill. SYSTEM ARCHITECTURAL DESIGN: -
type MODULE TEMPLAT is record

HIPO Diagrams are used to represent NAME :TNAME'TYPE;
the system architecture. The overview of INDEX : INTEGER;
the system is ar 'I., an In structured chart end record;
Figure 1.

type MOiULe ARRAY is array(count)
Each Module Template is considered as a Of MODULE TFMPLATE;

record in a direct access file. In orderto facility the access of the direct type MODULE DESC RECORD is record
access file, a look-up hash table is also NAMES : NAME TYPE;
established with the module name and the MODES : NAME-TYPE;Index. ATTRIBUTES :NAME TYPE;

PURPOSES : DESC 'r PE;end record; P

578 7th Annual National Conference on Ada Technology 1989

typo LOCAL LIST RECORD it; record TIMINGCONSTRAINS : DESC.TYPE;
NAKII': NPTE TYPE T, LIMITATIONS : DESC rYPE;
PURPOSETS :)Est _PE; PSEUDO CODE : DESC-TYPE

MODIFIED lY : MODIFIED 8YjMATRIX;
end record: lEN(tl MD MATRIX: integer;

typo GLOBAI, L14T RECORD Is record end record;
Ni e NAMR.TYPE:
MODES NAMDtBsR : UNITRECORD;
PURPOSES . DFSC TYPE; Dallt~eRtcS1!ARFDI WITH : NAAMR.,.YPFH;
and record: type Rocord_1ndox is ranoe I.. MAX_MODULh;

type EXCEPTION-.RECKR Is record typo Unit Rec Vact Is array(RcordIndex)
CONDITIONS DESC_TYPE; of-UNIT_RECORI;-
RESPONS S DESCTYPE:

end record; lnit,_Roc_Vact::

type MODIFIED BY RECORD is record packnge Databoxe t11 Is Now Direct_10t
WIKxi : NTw.TYPE: UNITRECURD);
DATE : MN-TYPE;
WHAT : DESC TYPE; Uo Database 10;

ily : DESC - YPEH Datajiasoj ile : floetype;
end record;

typo EXCEpTION MAThIX is a (DatabnseO. ilo type;

NUMBER EXUEPTIUNS)J of EXCEPTION_
REcoRD; pacage INTI1 Is Ne [ntaer_1O(lntager);

type LOCALS MATRIX Is array(l. Use INT 10;
NUMBERLOCAI.S) of, LOCALJAST.
RELORD typo LOOKUP TABLE Is array(l.. MAX._

type GLBALS MATRIX Is arrw(l,.. MOULS) of M0DULE ThMFATR;

NUMBERILOHALS) of GLOBA I_,-TL _ IIASILTABLE : LOOKUP_TABL9E:
RECORD;

type PARM MATRIX fit array(l..
NUMI5R KPARM) of MODULE.DESC..
RECORD; Procedure Display Menu

type MODIFIEDBY MATRIX is array(l.,
(ManujNumbo: IN NAMITYPE,

NUMBER MODIFIED) of MODIFIED DY Procedure Display Modules
RECORD. - (Root..Modulo -Namo: IN NAMETYPE);

typo CALLED BY MATRIX is array(l.. Procedure Print Modulos;
NUMBER"SU5MODULES) of MODULE-
TEMPLATE; Procedure Initial izoDuitalase;

type CALL FOR MATRIX is array(l.. Procedure Create Module
NUMBER SUBMODULES) of MODULE_ (ModuloName : IN NAME rYPE);
TEMPLATE;-

Procedure Delete Module
type UNIT RECORD is record (ModuleNan : IN NAME..TYPE);

?%) NIE NAME TYPE,
SWkj: NAMETPPE; Procedure Modify Module

CALLED BY: CALLED BY MATRIX; (Module Na IN NAME TYPE);
PURPOSES: DESCTYPE;-
DESIGN DATE: NAME TYPEI Procedure Search For Module
PARM4.LTST: PARM MATRIX; ro MN : N NM YELENG-tl AP LIS'" :inteer;(Module Name : IN AN TYPE;
LENGTH PARM LIS: Integer; lash I dex Number: OUT Integer;
NPUT ASSERTION: DESC T Pl';-Dataase lIdex: OUT Integer);

OUTPUT ASSERTION: DESW TP;
CALL FOR: CALL FOR MATRIX; Procedure Find Sub Modules
GLOBLS: GLOBAIGS MATRIX; (Module N mo:-IN NAME TYPE;
LENGTH GLOBALS LTsT: integer;
SIDE EFFECTS: UESC TYPE: Call 7 Veer: OUT MDULE TEMPLATE;
LOCAL DATA: LOCALS-MATRIX; CaliFZrUect: OUT MODULETEMPLATE);
LENGTH LOCALS LIST: integer;
EXCEPTrONS: EKCEPTIONMA'rRIA;

7th Annual National Conference on Ada Technology 1989 579

Procedure Allocdte rotulo Procedure tleto- odula
(?lodu Ic Name: -I NMP rro iollMo.
lndaxjiuamber. OUT inCe'or): W911W

search.For Mdule
Procedusre tWeAI10caL6_tky ll If module U003 not exist tion

(tndexNuasber: TN Integer) : print error messageOise
Procedure Read Data Bse ,begn

tLoacton-: IN-InLgncv): read module Into a buffer ricordfrom dnattbaeg fie

Procedure Write f ,,t I etg tsslgn CALLED jY field co g(Loation : IN Tnteoer); tomporar7 1owationAis[ga CALLFOR field to a
t.6orary loeitilon

fl'AL.LOCATS mODUt, from tile 1103h tatble
IUhA1.LOATECAL. lp Y~RENCjend Perks: UR .OcAT.-c(O.., rp.C .

end I f
end

1ho detail de itqt ot the me)Jnr functLtQ11
for the pMIS will bo described in psuudr-
codes In tihe next section. Procedure warohFor., odulo

Initialize variable RE-SULt to zerosearch LhO hash Ltble until a moduloSwith given name found

XV, DI'TAl, iFlF-;(N If found pien assign the positionwhere its fout to RbEUsT
and ttte ox OXL

1.1 Editing r:ibsysttm: ell nd hnei

Procedure Crent iMdUlO
begin rocedure AtIlucatq_spaC*o_Pur, Hodulo

scarch For Module od l tI
if module a o;slnot exitr th,, bg 1inboIflal l RFSUIT to zero

bco tn If TAIII.P SI?,, grelter thtan MAX KIOI)ULH
Cou informatton allowtd then raise excPo O
A IUCaLespace ForModula else tslsg tie WIoSTnAVAILAJL-.pUs
Set Link Called 01% F I I.V ILUFO

~ kelidto RE~SULT
Uritaecord to database filu iind it

end put the Index In tile corresponding
else rgsh table and the MODULI. NAW, inprit error message th name field or the has- tableend if t

end; search tihe hash cable until thu nexttO.irst available position found
asslgt that value to

Procadure Modifypodulo end PIRSF.AVAI LABLE POS

begin
Search For Module Procedure Set Link Called
if modgle ifoes nou existe i Cnen - -

print error message begin
else assign CALLED BY. CALL FOR and the
begin

read module into buffer record length of each field to a temporary
display menu location
read the chosen field from the

buffer record for all the element in the CALLEDjY
display the field on crt field loop
enable editingsave the modific tios got the record corresponding to thereplace the modified {teld to thc element from database fIledatabase file search through Its CALL FOR fielduntil an empty posiCion foundend assign the file index of current

end if module template to that Index
end position

580 7th Annual National Conference on Ada Technology 1989

,write the record back Lu thtN (I to draw Lt torixconthl line connecting1
Lite firSt Clie acid last alet

end loop draw vertical line,- for 0edcls coaiO00

for all Lte elemenlt In Clio CAIJ.-FO draw a verticol line connecting tho
field loop module and Vallee

act tho record corrnspondlfl9 toCo
the Oo~nt fros database tilt

tsearch through Its CALA&hO lv field
until on er-pty pogiclun-found Procedurebrw dl om ls

assign tile Filo Index of the curret
modulo template to that poulidt.11 ol

Assign Lte module(oK oito It1o H1~ u the 11113ff t loMo4.haie loop

field of' that poSlIfL1 draw Clio module lumber
write tile record back tv th tl draw Clio module name

end loop
end loot) 025

end

P~roceduret ct nrorwatiutl Procedure Draw A Treo

egoinmtln ofec ll fCofor Lila number of queue i tims4 loop
module templdtq from thio scron Draw~ Box

edInteractively It' tiare are calleos then
eld Draw connoction-ifl0

end I f
keep record of thd last. row toiabor

2.0 Printing subsystem en lo
and

Procedure PrI nLAModuli

bog I nPrcdr lwa -Ma
print, cachi field of Clio modulo templai4 lrceueVewadWv

one by one bo
end initfalize first row nod firstt volumn

loop
Di IPaYPnScreen

Procedure print.odifed-Etltriesdilymoecoe dgt chi
If choice Is to exit: then exit loop

boagi also5

print all tile fields that have bean chng first row and column occord-
changed by checking cachi field f lag !nq to tile choice

end end loop
end

3.0 Display Subsystem Procedure P1 ndRocurs ivejplodu le

ProcdureDrawUoxbegin
ProcdureDrauiOXfor 411 modules loop
beginfind MODULE INDEX

cacuat inerwad ouno for all calfees or the module loop
calclatetherow nd olum ofif tile modulo calls Itself then

the module box mark the module recursive
draw the module box end loop

If thle module calls Itself then if tile module Is recursive then
draw thle recursive module lilies remove tile recursively called

end calee from thle callecs table
end lo

Procedure Draw-..Cofllctio11-Llnesan

beg in PoeueU~rcn
calculate row of thle connection line PrcdeUprln
if more than one calcs then beqin

calculate tile columns of tile first~teu rcn uu ne

and last cailees of the module Intalie tea op tein queu u ne
"hile thle UP tracing queue Index is

7th Annual National Conference on Ada Technolopy 1989 581

not the top of tile troe loop number Of th rotr module to tileinitial ize tE Itft tracing R% V first qUeno i~~Index to thft left Pointer ci- ,Aeup tracing quee i ndex whlA#v tiv rear or tile queuej is not.while module pointed by LheiOlf equal LO Ell* front of the qu0uOtracing queue index exist8 loop loopadd thle left mos co edieo for ;1l1 tile 04,exO 0(tile modujrelative columl position of Liahoite by the reajr or tile 10UOumodule pointed by tilt rear queue loIndex to tile rolative Position movo Lh-o frontr or tilt quouo byIof the modulo pointed by thle n331911 thle modulo Iidex.multort tracing queue Index numb and recursive in"Oulaimove the left tracing quouil of 1~~tIndex to tile lert queu "Itt the frontend loop i*Ie
Cculate the layer and Columninitiallxe tile righit tracing queue position Of thle front queueindex to the right pointer or 00e tcuem teu.let ih

up tacin qtuo IdexPointer Of tile front queue iteM
up racng ueu inextile down Pr~nror of the r(earwhite module pointed by the right queue IWO Point# to I Entracing queue inex exists loop first calicoe

addt L))c righti mos ealo-nd loop
MRClnIvO column position of tile UP-Tracing CO Mik~e room (Or tilemodulo pointed bythle rear queue t"oulY added enllesIndex to the relattva position of movp- the qUeUQ rear by ole,thet module pointed by thle loit dlotracing queue Index n00%1 th e l ef t t ra c ng q e ue nd e xre se t th e re a r o f V t* q ue u e to Ito thle lef t C..YsoU~_Mdue Itiend loop end JSr~

Move Cho up tracing queue index tothe cal larend loop Procedure ')Isplny ModJutle ts Andend
-MtHO dUhi .- Ie1 nacs

ProcdureCalbsolto~rcalculate rows and thle number ofPrcdueCl bolt odule -position ofmdles on thle last row
- dislay the odules module number,beg in

and module name*for all the queue items from rear Promt tile user to (pot thle rootto fontloopr=mol 'lumberto font oopCalculatO the root modula's moduleIf tiea~dl ~ caller then edIndex-
add ts allronabsolute columnl enPosition which hans beef% calculatedbefore to this modulo's relativecolumn Position to make Lihe column Procedure Read..Data Baso Fileposition absolute

else no calculation, begintile relative column Position is assign rhe ic~czj hash tbewt halso Its absolute column position tauso tego abl hash tableend f prmpt L'he User to enter thle file nameend loop got thle file na~end read thle number of the modulesend for thle number of mnodule., loop
Procdur Buld p Qeueread the record according to tileProcedure Buld-UPassign mod lnex of the hash tableassgn hemodule numbrabeginInenmeof ale deInitialize queue front and rear to 1 tE modules il orthe layer position of the tirst queuu Of the reordIe it hitem is I dvle

assign thle module index and module 'or the number, of! Cal Ices loopassign the modulo Index field for

%82 7th Annual National Conference on Ada Technology 19ft9

eachntilce with the value of tle Ar-Olnu Liu is a professor
record at CllforntiA StAe Univer.

end loop sity. Long Beach. where he
Ond loop has Won a faculty member

and uineo August. 0986. lie
Leaches graduate and under-
graiduita classes in Software

Procedure D~play.-SLrtjcruraChrt engineering. Distributed
Computer System. Computing

begin Theory and Programlng
read files to got number of modules. ?iithods. Ills research

haxh abl and modules Interests Includes Software
find recursively called modulus Musbillyo Object O.riented)esiqn. atdO~ynlc Task Schodu -in9 In Distributed
do util uz.r wants to exit Computer System. Bfore coming uo Ctll-

loop |ornin State University. Long Beach It was
ieanu and Cat Cholca A faculty mber at Old Dominion University
Ca iso"oTce f . Norfolic. VA. Previously, he was a Staff

1.2: to display structurn chart Engineer at; IBM Corp. and was a project
if choice - I thel manager at iTT Corp. bWforo that. lie

lulld.UpQueue for thle wtiole racolved his Ph.D. In Applied Mtheuatics
system and Computer Science from Tie Unliveraty

also Uf isconsin-liadison tIt 197. Previously.
Display ,Moduld List; On-L he had received a M.A. In h'i,1hmtLi from
CO ie"o.oduloJndex VAynle St we University. and a 8.S. in
OuIr~d UlpQUuo strtinhg I r %W ? l li t ic from NationI Taiwan Normal
the root -OJule University. Ills current addreas Is

end If Upartment of Computer Science and
Draw A TrO FOQtnOerln9. California State University.
Draw-Mdule Nm ,_t~%iL LOn9 leacho CA. 90640.

View And M076enabTe tU print Eo structurd
chart

3 : if the structure chart has
been drwit then print. It

4 : exit
end case

end loop
end

V. CONCLUSION

The pC3S will help tele system do-
signer (or software engineers) to more
effectively document and track software
modules as they are being created. It
Is also a valuable Lool to document,
verify completeness and mAintaill an
orchiviable tracking method for tel
product under review.

With the pseudo-Code it' each Module_
Template, the source codes in Ada will be
easily developed, and therefore. all
system will be more easy to maintain.

REFRF.NCFS

1. Fairly, Richard: Software Eingineering
Concepts, McGrawHill, 19115.

2. Cohen, Norman: Ada As Second Language,
McGrawHIill, 1986.

7th Annual National Conference on Ada Technology 1989 583

Worren I). Ferp ow. 'ArP4 1, Catruhhqra.
Orlfwr J. c1artel. Jr~. xttiftih A .14APIVA. Jr. Ch~tica V '.

Ofnrr'.l Derk Comny

TM. 5iAper ,I.'*tilh a data rrdt*0n mcWhl that atottnaIcally *N~fwr md.p that compriwe the ftawse'a o f tho data. twdocti~n
tctrlti data pr(ico4 IW Ada Pw sfptao. 11w maiho tw o' anal~iu oftwamy AM producesA n extable "(am The
play. a unitoe dain reilutin build. "togia that uwcA Ada V11KtAki prtat will reduce an *Wiiyse the recrded dtsa

"tmko go Alve Ohe coontiguralon C"nten problonso aswinfes! producerd by the large Kale systm 'TWA automatel source coat
with data rWacrion in many large #)#It"a The pty~ntq exttri " vdpnalon apalty #s the wri aion mwit
"ethad senrates Ada genric Inotantlsns to support the core WAteon pn44fl of corrrhorng OW"pu&At with th O 04V C04

(urnt"An not"e by the slats redittlon a ls softw~tV to
pItrA trcord data This method involves the teconitIon of lUAta Reduction lsilele
trod~ 46t PtoxIurro by u~n Id4niirkrs tiawtbW In the
As ouarce code. Thu# an automated binding of the datis Ptroc, 11w A46 oc sOatware for the large scale system that ptWOdsc
tts, omcrs beteen Ohw A44 source program and the dlata weorded data Is preroed by the dat* neducion buldr in south
reduiction *nalysi* syptem. t1W sawe way as a CoMPler ProcesAeA souirco coe. Ihowtver. In

the case of tOW data reduction buddr. the only thing It Is
Overview concrned with is to Identify rcordable data, strtures amd to

Amajrpedemnrelgthvsmn~daathtshrge generate Tye_9piic.A _orc.Cok to pwsus the dat
sAl syste proe in ii vat aut oa that corrlarge strutues For each Ada type uisedl to dlefine recorded data
OC4 t e tpt Prdta It an k~bl t uoae th to reato siflctuftr lIn the Ada wiuct software (or the large scale sY is

fte Otpu d; sf w ith tylctl I.M rtkthaft allhetsats StructrS pr eda eltuntaiitio is generate vrth thattyp declaresd " thwredutio sotwae q all iswriton totallthedat 01%xtfro actual parameter to 4r assoted with the roneric (fomal pararn.
of the syotem h*v* bern "5 loped1. andI the satwr run AA ter. IU ypr.%p41(cir.C,daKr.eI lnto anAds
seporae program A correlation between the two prorams mus library and provides ths tore functions of the data ttduction and
exst regarding the leitiions of the recorded data so that data anlssyte im 2Ilurt$thmjofncoi pr
analsi functions can In performed., In a deotvhpment trnviron- aonitls toystemtiro2Iltae the ajo functions pfteeaa eutioa
went. sorce cosde often undergoe debugging and testing, and fomdo neaeh crfntonofheaareuinad
changes Involving datastmructures; and data output* ar tuinl analysis System
made to the source sofware. Often &h coresjronding changes to ~ RdCII n i~nASse
the data reduction software aft Inadvertently negtlected. Ili$ can Dot Relcta an Anl)4 - - _

crAft a configuration control nightmare. The data reduction and ansaiy a oyttm provides an inttracit~v

Bly enforcing a design discipline on the large-scsie systern that user Interface to analysis :roeures that access recorded data
requires an AtdA.typet definition for each recordable data strac. contained in a data Wae. The Type-clc.AdaSourct-Code
ture, this configuration problem can be eliminated. In addIion to
an Ad. compiler and a hoot computer operating systcm. three
majr software components to be considered In desribing this
method ate (1) The Ada source software, that products recorded
data, 12) the data reduction builder software. and (3) the dais
reduction anlysls software that Illustrates the relationship of one
componn to Grnothtr.

Source Softwat for Recorded Data WO" VWt

As shown In Figure 1. the data reduction builder software accesses
the Ada source software of the large scale system. The data
reduction builder software Identifies the recordable data struc. ^WM1*

tures and generates a symbol table that represents the data
structutes. By taking advantage of Adas genetics feature. the -

data reduction builder generates lye..Specific-Ada..Souirce
-.Code. This e-..eSpecific..Ada..Source.Code forms the core
functions of the data reduction analysis software. The Ada
compiler links the Type..Specirse-.Ada-Source..Code with the Figure 1: Data Reduction Support Environment

584 7th Annual National Conference on Ada Technology 1989

(Vte SUAKMsAs Ouppoii d1ta belA #qfrntes U"e by the 1W~v~ tVy by ploolig it ino am tnutteratwn Ul svd(RilCoIU h
pM,frT*~r The data baWee VqrejV* hancllo Notta soh ** the M aaion type that Arflac all Wt!"da4 data 1*tatit
itW4 at* 010(inisttort OWd 64" of tho raw wr4l4 4eta, t=31b N U" to guide the dot* retlution lx,4le to tieftenln tOW
The ra twotIed datA I e nit, l fq inf1 t 11 fdtt of W. 040 of elt twr~t ren The keltok to this approkwh tIs

tirouns XwlelI.tTYpc. rsuetv 3 alw trotersthe ;Os'df procesatot th ftflagtty 4ntr. that met in the gounwatilo nv yemtch
formt iti vohed. flee t~ttv veatet tv the D~ata Rvdx* sh (he osIt" e ilknt folr recotdah datal frituote. Is
tim lI*I*5f ,eta1nV #UMIOn theO flasW I osit t wo fvtase r'nloete oeai f tho humars atIimy aInvl. A lfodv~off

&04%449 teih hssael Wtec the r"tk0 rIrtlon bmpeedy the upe
Of a MMItitn CIO tleln41 VV*4* the a0ded LeYer Of "6ated

t~~e~~ta~ed triptie.wid ga to usolA $4etre4 by o t ~is a itwy maintaine

Alct trummn nameftOs.~tirtol

for 14416O 14 OR ". he i~oK Onshe 44 miv fttci"nml La hat 14IIt mu-tbe pWia n an Ada lhear. whih
tha prodqt ft" k* I Oda A aL bf mtnlmal Within tho Ada itfs thati it 4ao bern compilvol vert-fw This Weieveo tho data
0Swt. a edetied Adatype, 4-ititI f4 te'f~te for wah ted'WW"~ lollIk or peffoli errort checking that he1ralse
reWOft~b slain PtIaNOUM The seWIho 01141 t0 i&At4fv eIKh W"ul he6 er
weoMtahb data Mrits'tV rIC Itby 1hW deIgn1 fr"pVi a try
C thtt Mting tW pl tt - Ada'-1"p mes. Aet 14tetnate to As lnpta t1. tw~ ta tedheon bite. the u~se t Oeci~fy the
the estalihewn I It a14 pl i at Atonitiello is tol teeelwv she nme, of the Ae~ 4,1 ae li that pnidu*# rt&k tam* "n Its
"It"elopr f WeorstAkl dtai etnkftr tol frsWr the A&1.4 P"*e Wrgam,4ay The user 40C iat y select cosapilmtlo "Ae link

nmew olf tI"p Ofimolve seith the datir mwi,*tus Wedr The it
Adtty mame of esth trotelal dat wtruture wmMl te regls,

Thle Initil #age of Ada Powm coelor ptor'lnit performed by tbe
da1t rdion t " uifdr tol Itatitft Al dall smtnctitrw d wmI
Intol a IA~tL0(AI.Ty5e. 'TIs requlret t6e repiltion of the
Ada dat types., which are uiefin#d as the actel type. att$ Inve.

5'"'.- ~privatv type. frtoMi type. kca*e type tahirh can We i rete type
of teat sypel, andl the *gt,+". llePreaetuttisw #Ofti(ecalon, sane
any usq orthc ptirWAfie langoiav pao PACK. hstsaeI with
these ftektta bt estveCted (rmm the A A* iource cede.

liA aesuiate that the physoeal striwto f a rvctrd meqag 1s
Mhstridld. sithe thrnuO the defacto structure provided by the

SAda rn tiwe en .a~hoshthe we Ofilla teptv setion
. - ~~ptirecitiost. or throw% use Othe p.rr&AMd W ~gug ptigisi

PACK. One Important etopaderatite Is that when the Pystemt that
produces the data uwt ditret device drivers frosthe sy#tem

~~ t~hat analyses the datai. a poeleliy for Inconsistency WsI. The
use orf Ada ewpresentats specificasonis in the Ada propem that
produces recorded data only affeta the core functions that handle
recorded dat Input to the data)A *i sofware. The miethod

Figure 2. OVerView of 0ata ReductIon Builder used to handle it trpreeaton specdfication (or as type Is tO copy
It from the Ada prooram thai produce the recoirded dais and
place It in the tye edeclarations (fr the data OWanay procedurMs
The same processing is also tru for use or the predeined
langu~ prasma PACK as It applies to reordabe data stru.

.... ~ jmsbol TbleGenerator unctcis

TIR symtbol ta" generator fucinl~ wceto o a liest.~of.Known.iYp,, data structure that dht it~ l of the type
dtpendeocies of each Known.Type. In this context. a Known
-.Type Is the name given to the Ads type for an Identified

wee i...aerecordable data structure. An Applicable.Type Is a type depen.
denicy that must be defined in order for the comtpilation of a

~ ~ Known-.Type to he correct. Each Applicable-Type also gets
~..e..eeedefined In the Ust-of.Known.Types. Figure 4 Illustrate the

processing elements Involved with creation of the Uit-of

The l.lst-of..Known..Types also contains links that, represent the
MIA association or types in the Ada program that produces recorded

MhM4"Mew data. Backwards links between a Known..Type and all or its
Applicable..Types are generated. A backwards link from each
Applicable..Type to all of its Applictibie.Typet Is generated.

MY~t.USJMAForward links from an Appticable..Type to all of the Known
..Typea and/or other Applicable-Types that refer to it are also
generated. The purpose of generating all of the"e links is to
support the Acts code generation stage of the data reduction

Figu-e 3. Overview of lists Reduction and Aniolysis System builder and to support an interactive type analysis function.

7th Annual National Conference on Ada Technology 1989 585

9Slii CM10 r~uaWtr waitib" sirved *4 a Knq-s.T~pwl % e W t #"o*Wr4 A44 tpfe,%
lAgso" *~cta a a S othe "r'i"1tto n *pdckatea W

The ~t c@d4 p"eratc #w the b qwiX~-sT"pe to hh n Th a o pp i t ue
p~xv AsU Comk (We priNew4ft w i5aiiqn. lnw der;#OW41i bOw h prudiisdi WqAmeoq~ peafs PACK.
and iswutnu at xwoe yp

Yot caqh Ka~i.T)pe ond Jor ikh AplicAkeType. A44 to&e 0
Orwatfi 1 p vl" t ar pqh~O~q ofh y .@IkIM o4@ Ow ow-~ or tkv to"t fiiwieCM troeb4ed by the di"s
ppoeifc core fioo% The type opwcit coft(4w foatt"on uaepsoe #Yh It o . data hie #qrvce# tim IM eatA4oWd to ON*m
"WnkApka 6tn-sg .ttalyi- "peorvii*y to petaea. iacii OW 4heda4. The data

h60e #V.fvkqm pqod 0n Itefac to type rsncite comft WO04:
I.U theI Kmww.T~pe sAn Ap~kAW~Ty~ data 0 kf-ec*"1 llt " OA aptocad that We# imetated

Kn4"I"## I t o (y the Xtw"i.Type il Fufttotic The #w(d h4'4NWIcMO Ap'OIC4 ly the *"natyMI "- "haWll ito olam ,W"Wde
1 C'tate is dAtisba to~ twlf tvro6 do' sha Io he t"94 with Ohe 1, peivv mc 0 ode d4t " apktshret

4iertattt W"tiwdt) describe the #Wt& A01 Wi*ttractie Ier lS'teffi(C
X Trsik wo"44 rmte g o yr that ,aae "to o OWipido"r. a mii*". an pll'dw meowa H a

riot", * 6 ino OWtwitWorAhle WW I wcthrtatidl 6Mat~t fletative~ data vtama.
~~ "~' ~ tat.. And4 the kvtiof h#n" coplee orfrcoeda dai k a"d

4, ltetiniv ir 444 al (rota the dAa bowreew"

~. ~, Att4thedeJIIA iseamebir that Car to mpotwdi ht the COOt

lot sA&W&O for each Koapw.'l" APd e~h Alk"Tpe. hichwdm$WO k0h o typo. pumiv atio a l
AA* cide to asie~rovi so OssPo the chiotef POWia that H the *Q wa ~rol hici lei the pdrieai am$ structue e1k.
amec ode vap We of Ohe lypo Thai H toed by t1 hetwiaft Wy OjM Th wefW pyfils the user With all typoa tha
daVIyO44herOM" 4,daao~tatahe conth 00401, 0A w*~ on A~kW) in their Aer..siwa 'rhe l~Api-of.hnw
ofiueiw do'a PANtn Mrlsti Type# c~yed sy the data nyoiOs h"tde W the hay tkiiiitt for

~ ~ M ;l ~this feature. ana servesc a 6wnciti Amash to that of is dait bfe

ltiatio*a of griserk ptocwdl m vhich T. ehnt"y.4 6Y the "opair A"d hecos" part Of the heaY. Aa The ditfatil *ode of dapha for i. dta* obwt uses a i*anda
#Oto&)Ad als lOp MY*UtI* tro e e I"O CsiumaNCied type. now mapping to the type Arlliition In the #"Min code. This Inchtde
iith OW Ipe Coft Fonci**a Whih cosito twoIwat*O Mtalo the use of emomeratto. ltaha to det"i the V"o Ofran th"We'
that ldeitt(Oah core flA#kIII. the other 1 Iti type hftOwV atadl tyv. The vwr can sqkecc other f#or piioai (tooa A list t
.Iypqo. Vkhih ldaniVe Waih of the uNOO Type faes tha In at P41149*11Wn R meis to it dMa ohjet.
to. Ideifiy thw Wyoedai data structures. The types Coft-
jFooctlatand W Kow#.'&pa are tWd in c aimw by the Another Intarealin *ape of %hi meathod 14 that the dWat rdoc

O I tIW$M tied SIOA4 li*Ucedukt. to lavolie the ct Ib5* two 6"ldr can he u"d 10 generate Ada sftwaft to mnlse~ It
tiamotinehoa. Surct alo gneraed o dei~t own dtai ottucttarvo. This boomrap approiach to wiltt is

each Know#.Thpe mnd each Aplicable-Type that g",v iiii4 ty cftvenient betit " dmNot r"Wure the We ical system shat
of thooie vinhcttorA to the dtai retwoiwn d analysis Ot~aata. produce reorded data to he coopkated before coasplew dati
As moanti o talier. for e rdald daa Mtttlfei tthie An-l otructotwa can he sead at tooat cases for the datat reduction and

anailyiiis system. The wet of Ada genetics a"s has the ohvliot
advantate that. changes to the core fwsctana or the Intlusion of
additional core fution only trei change to 'he iteleric
Widiest for primiltv data typoit. Testing of the core functions Also
only needs to he pqtefored an the primitive data tylies.

U~sing an Ack data structure. some feature$ of an interactive
wecrded data examination tool will he prrated. This tool

mAbta uoe of the core functions that the Data Reduction hBuildcr
lienerate. Assume that a data structure hot been weorded by a
procusa that monitors communications bus acilvity In tie large
osal spstm. Also assume that a user has been Able to selet this

06- L11 f data structure for analysis. The reorded data 'structure includes
message header Information containing thet message Identifier
twhich 14 lit Ada type Identifier). a tienestnp. and possibly thet
tender and intended receiver of the message;. the header Is not

4414.. -4-1"tdeined A part or the example.

Figure t. Symbol Table Generator Diagram

586 7th Annual National Conference on Ada Technology 1989

SYSTEM ID : SY3TEMSTATUS MESSAGE

ASYSTEM ->package samplestructure s PRIMARY ID -> 100 (0
SECONDARY_ID -> 200 (1

Structure Definition DEVICES ->

DISK CAP => 1000 (2
type LAN NODE_ID is range 0 1024 SHARED RAM *'> 900 (3

type PERIPHERALS is NODES -> 200 (4
f DISK CAP , PRINTERS => 50 5

SHARED RAM , CPU LEFT ->

DISPLAYS , MicroVAX -> 50 (6

PRINTERS) MacIntosh -> 15 t 7

typ, IROCESSORS is (MicroVAX, Macintosh MBASYSTEM ->PR.IMARY ID ->300 (8

type SYSTEMS is (A_SYSTEM, B SYSTEM) SECONDARYID -> 400)
DEVICES =>

tyr. "'FIGURATION is array (PERIPNERALS of DISK CAP -> 5000 1 10 1
. 4i£EGER range 0 .. 10_000 SHARED RAM => 2000 11

type NETWORK is array (PROCESSORS) of NODES -> 1000 12

INTEGR range 0 .. 100 PRINTERS > 250 (13
CPU LEFT ->

ty5,e SYSTEM RECORD is record MicroVAX -> 45 (14
PRIMARY ID , SECONDARYID : LAN NODE ID MacIntosh -> 20 (15
DEVICES CONFIGURATION
CPU LEFT NETWORK type SYSTEM RECORD is record

en A record ;PRIMAR _ID, SECONDARYID LAN NODE ID
DEVICES CONFIGURATION

tyre SY.TEM STATUS MESSAGE is array C SYSTEMS CPU LEFT NETWORK
of SYSTEMRECORD ;end record

-- Data Structure Initialization
The user interface for this interactive recorded data examinati,n

SYS!'EM Th : SYSTEM STATUSMESSAGE tool will be similar to that of the Macintosh, making use of a
A SYTEM -' !2ouse, windows, and pull-down menus.
PRI ARY ID -> 100'ECO,,DARY ID ff>200

E By using the mouse to select a recorded object, the user will be
DEV1atES =>DI:"ECAP -> lOO0 able to perform operations on the data, and will be able to

SHARED RAM => 9000 investigate attributes of the object. One of the more usefrk

NOrES => 200 , features of the tool is the trace back of data types to their
P? :!TERS 5 o , primitive type structure. If the user were to select the object

cPU ' IFT -> "DEVICES" to be operated upon using a definition traceback
Mi' VAX -> 50 operation, the following relevant Information would be displaye:
MA-:ntorh -> 15)

BSY':TFM -> (300, 400, type[PERIPP.FALS is

C 5000, 2000, 1000, 250 , (DISK CAP ,
45, 20))) ; SHAREDRAM

end sample_structure NODES ,
PRINTERS

An integer dump of a message containing this data structure as type rC-FTP ,u iO N is array (PERIPHERALS of
initialized would be as follows: INTEGER :.nge 0 .. 10000

type SYSTEM RECORD is record
0) 100 PRIh'ARY ID, SECONDARY ID LAN NODE ID
1) 200 DEVCE -N;

2) 1000 CPU LEFT NETWORK
3) 900 end record
4) 200

5) 50 It is assumed that, in most cases, a message data structure has thi,C) 50

7) 1s same definition In the sender and receiver. When that is not the
0) 300 case, a layer of decision making is involved where the user
9) 400 specifies this context.
10) 5000
11) 2000 Conclusion
12) 1000
13) 250 This paper explains how the generics feature of the Ada lamguage
14) 4515) 5 can be used to solve a data reduction configuration management

20 problem that is typical of many large scale systems. What ii

unique hbout this method is the use of a tool to autoynatically
At this point enough ihformation is involved so that It Is already generate the declarations of instantiations of the generic proce-
difficult to determine what each number represents, The format dures, based on identification and decomposition of the recordable
of the message displayed In context with its Ada source code type data structures.
definition in presented next. It includes an index from the
heginning of the message as a reference. The index scheme could
also reference word addresses Into the message, bit fields within
words, r l, multidimensinal array positions. Arrays of records
could ,1no he presented In a way that makes them clear to
underm ind,

7th Annual National Conference on Ada Technology 106, 587

l~iog~phi ~Carter earned a Bachelor of Science dreef III Malbetitk*
Plhysics from Brigham Yoiung Univerity in 1979 Ile crrently
serves as a consut~t.n desinn a data reduction &irns system
fr the suhmarine combat sytem under develpment by the
Kniingn Department ef the General Electric Governmetnt

- Electronic $ystems Divioian in NIoomiastow, New Ivrkey.

Warrern D. Ferguson I* currently the reponsili engineer for the
devlopmewnt of A data reduction analysis systerm supporting a
submarfine combat system at the Enigineering IDepariment of the
(Ieneral Eleciric Government lectonic Syptems lDivlslon In
Moorestown. New Jrse. NMr Fergwsn recived a Mlapters of
Science in Computer Science from Wright State Univrmity In
Dayton, Ohio In 19031. and has worked ira a software enineering Kenneth A. Staples. Jr. Is currently participating in the dAn*)-
conoultainton nanyd fenekprogrants Ile h"s 6vni Intvolved with opment ofa system for supporting the creation and intenance
all ph*$"s of development of trallime em 'us At M U.sl. of the tactical doit ljAs (or a submarine combat systopm at the
l4afts and test facilitits, and has worked on severl effoutiA Enginerg D iment of the General lectric Governuent
Involving Ad*. lIe has a deep respect(fr the IdAlA of software ElecifonIe Systems Division In Niooretown, New Jersey. Mr.

cmInality through tht uot of Ada. the ap~plication of the Staples received a "achelor's of science degree In Aropace
principals of artificial Intelligenice to computing systems, and at F"Itntcring from the LUnvirsty of Virgintia in IM8, and har been
commtment it) practing a professional w-tork ethic. dtAeirjng andi developing systems using Ada for the past five

Carol 1. Carruthera s i olA I n th dvopmetnt of a data

reduction analysis system supporting a submarine combat system Charles F. Wise Ismangr of the oftware Development Faclity
at the Engtineering Departmetnt of the General Electric Govern. In the Enigineering Department of the General Electric Govern-
ment Ecitonics Systems Division in Moorestown, New Jersy.
Nis. Carnuthers received a Bachelor of'Sciene degree In Nanage- ment Electronic Systems Division In Nlooretown, New Jersy.
Ment infor11mation SYstems from Gla#Aboro State College In Glass. Mr. WAitt received a HS5 In Computer Science from Temple
b~o. New Jersey In 1983. and Is currently completing a Bachelor University and hias authored several papers on automated soft-
of Science degree In Computer Science at Glassboro State Col. ware development environments. Ile Is responsible for large scale
leget. Hecr experience as a software engineer has Ween primarily In computer facilities for engineering andi development In boh
user Interfaces, hardware and software at a corporate level. Ills experience s a

computer professional datesr from 1967 and Includes the design
and development of operating systems, management of real-time
communicatlona system development, and the design of micro-
processor based rearl-time systems.

Bruce J. Carter. Jr. Is a software engineer with over ten years of
data reduction experience supporting the testing and evaluation
of large military systems. From 1979 to 1980, he served as a
Computer Systems Officer In the USAF. HIs work experience
Involves a variety of areas including radar system development
and tests, surface-to-air missile simulations, electronic warfare
range Instrumentation, war gaming exercises, real time opera.
tional flight program controls and tests, analog and digital com-
puter programming, and cruise missile test and evaluation. Mr.

588 7th Annual National Conference on Ada Technology 1989

A METIOD OF TRANSLATING FUNCTIONAL REQUIREMEi'S
FOR OBJECT-ORIENTD DESIGN

Russell BrownVelyd Dobbs

Wright Statc University

common approaches of decomposing systems Into functions.
AISTRACT For a basic intrduction to the pcinciples of OOD, the reader

Is referred to 13).
The use of Object.Orintced Design methods for DoD systems But 000, as prescnted by Booch, Is only a design and
developed in Ada presents a number of chalknges. One of Implementation approach. The first edition of his book does
the most critical Is the difficulty of maintaining traceability present an informal requirements analysis approach based
between functional requirements and an object.oricnicd upon the work of Abbot II, but he never claims that It
design. This paper presents a forms-bued methodology should take the place of a formal requirements analysis. To
called Functional Requirements Translation (FRT), which can avoid further confusion, it was kft out of the ,econd edi-
be used as a framework for translating functional tionlS). So basic OOD provides no support for requirements
specifications Into a set of object requirements. Ilach require. analysis or maintenance of requirements traceability to the
ment is documented on a Requimment Translation Sheet design.
(RTS) and Is translated to a set of objects, operations, and Because of this, Booch and other researches havc sug-
access links betwecn objects, which are necessary to satisfy gested the use of established analysis methods such as Struc.
the requirement. These object requirements are then corn. tcred Analysis(9], JSD[13,161, and VDM[121. These
bined from all of the RTSs onto Object Requirement Sheets methods can be very useful for clarifying system require.
(ORSs). Each ORS documents the operations and access mcnts and developing structured requirement documents, but
links of a single object and contains rfcernces back to the they do not completely solve the problem of requirements
individual RTSs which generated them. This method pro. traceability. Data flow analysis, for example, produces a
vides traceability In both directions of the translation and can structured set of functional requirements, each of which may
be used to Identify unsatisfied requirements and produce good b satisfied by a complex set of objects, operations, and
detailed object designs, object visibility. The difficulties of using data flows with

OOD have been great enough for at least one DoD contractor
to abandon OOD completely(6). The problem is less pro-
nounced with VDM and JSD, since the requirements they
produce contain more information about the behavior of
problem-space objects.

The difficultics of maintaining requirements traceability
with OOD are compounded by the way the DoD does busi-

I. INTRODUCTION ness. The development specifications for DoD systems arc
functional and are not usually subjected to any formal
requirements analysis techniques. Some software developers

The U.S. Department of Defense (DoD) has developed and have applied Structured Analysis to fomalime specificautionspromoted the Ada prognx.milng language in an attempt to before proceeding with design, but ultimately the system
lessen the impact of the -software crisis being brought on by must be tested for compliance with the original requirements.
the increasing complexity of software systems. Ada enforces,
or at least supports, basic principles of good software It DoD software developers am to take maximum
engineering such as abstraction, information biding, and advantage of the software engineering features of Ada, some
modularity. These principles are brought together nicely in a method of maintaining functional requirement traceability to
design methodology called Object-Oriented Design (OOD), OOD must be developed. This paper presents a structured,
proposed by Booch[4j. In OOD. software systems an forms-based methodology for translating functional system
decomposed based upon abstract representations of objects in requirements into object requirements, while maintaining ra-
the problem space. This differs a great deal from more ceability between them. It is flexible enough to work with

many different types of requirements, and it does not enforce
any particular design strategy (other than object-oriented
decomposition). It is specifically intended for use on DoD
systems implcented in Ada.

7th Annual National Conference on Ada Technology 1989 589

2. THE TRACEABILITY GAP Opr.nanWPar:T ,j, Par.2:1) pe) => Reun_l:pe.

We can see that there Is a gap bcwccn require.mnts analysis Each object requirercnt must also include the names of
methods which produce functionally decomposed other objects which It must access to define its state and per.
specifications, and 000, which seeks to develop a design form its operations. These access links represent visibility
decomposed into objects. Some software designers have from one object to all of the operations of another object.
found that the simplest way to deal with this probl.:m Is to Other rsearchers have suggested that the links between
review the functk)l specifications, then press on with OOD objects should Include a declaration of which specific opera.
and hope all of the requirements are satisfied by the final tions are accessed(2j. Some have even suggescd that each
design. Another aproach Is to assume that each function operation should have a separate set of links to the operations
called out In the specification corresponds to an operation on on other objects which it acccsses[l8]. Although these
som object; the concept of an object Is used like Slue to methods may provide a more detaikd representation of con-
hold a group o4 related functions together. Using this trol within the object structure, them Is no easy way to
approach, it Is difficult to producc a design which models the implement such limited visibility in Ads. Since FRT is
real world problem. Mor formal approaches, such as SEL's specifically intended to support OOD with Ada, a simple
Abstraction Analysis(81, have been suggested, but each object.to-object link is used. This is also the approach used
seems to assume that them should be a simple method of by Booch[3,5] and Buhr[8].
convening functional requiremnents into object.orined An object requirement for a television set (apparently
designs, similar to the methods used to convert structured with automatic color and contrast adjustment) is shown
dats.fiow diagrams into structured designs. These approaches below. The operations require no explanation; based upon
Ignore the fact that a good object-oriented design requires the state description, the purpose of each Is obvious, To pro.
Information about the real problem which may not exist in vide a picture, the television must receive a signal, so this is
the functional requirements. The translation of functional not a complete model. However, it does show the basic for-
requirements must remain a creative human task; when using nut of an object requirement.
OOD, the software developer must design with the real prob-
lem in mind, choosing objects which best model the problem
space.

Object Name: Television.Set

3. OBJECT REQUIREMENTS State Description: The state of a Tckvision.Set consists
of the channel It is tuned to, and it's
on/off state.

A method Is needed for maintaining requirements traceability Operations: Turn.On.
between functional requirements and OOD. The methodology Turn-Off.
presented in this paper is based upon the translation of func- Chanl_Channl(To.Channcl:Channel).
tional requirements into object requirements which can then Gct.Curent.Chan l->
be easily trced to the design. The information which must CuntnChanncl:Chann.
appear in an object requirement is the object name, state
description, and definitions of operations and access links. In Access Links: Picture.Tube
addition, each object is categorized as either an abstract state Tuner
machine (ASM), or an abstract data type (ADT)5. ElectcalOutlet

Object names are text strings which uniquely ientify

objects. They are used throughout the methodology to refer-
ence objects. Legal Ada Identifiers should be used to name 4. CAPABILITIES OF METHODOLOGY
objects to make implementation easier.

At object's state description provides an English A formal methodology for bridging the traceability gap
descripion of what the object is meant to represent an tts should:
range of possible states. Only the state information which is
in some way accessible to other objets through operationsshould be prsntd a. Support Generation of object requirements from

shoul be itseted.functional requirements
The operations on an object are specified formally with funrtioe Ientifimins

an operation name, parameter objects, and returned objects. b. Provide Identification of unsatisfied functional
All parameters are assumed to be passed as values to the ruirements
operation, so all information provided by the operation is in c. Provide Identification of unnecessary object
the returned objects (implemented in Ada as either values of requirements
functions, access types, or 'out' pwameters). An English d. Be as automated as possible.
description of each operation can also be provided, although
none are used in this paper. The format used to specify
operations looks like this:

590 7th Annual National Conference on Ada Technology 1989

The methodoloty must support the requir.nients analyst Functional Requirements Translation is designed to track
while object requirements are being developed. As stated complex relationships between functional requirements, per-
previously, this does not mean it should automatically en. formance requirements, objects, operations, access links, and
crate the objects, but it should provide a structured approach. derived object requirements. It Is built on the recognition
The methodology should be useful with both functional that a requirements analyst must perform a mental transfor.
English text requirements and products of Aructured require- madon of the functional requirements beck to the problem
menits analysis technlques(9). space In oider to generate a good object.onented design. It

If all of the objects and operations necessary to satisfy a will also support simplified approaches to translatng the
functional requirerent exist In the current set of object requirements, such as a one-to-one mapping of functional
requirements, we can consider it to be saiuied. The metho- requirements to operations.
dology must provide the capability to easily identify those Two forms are used in FRT: the Requirement Transla-
functional requirements which arc not satisfied in this con- tion Sheet (RTS), and the Object Requirement Sheet (ORS).
text. This capability must be available at any point during The completed RTSs and ORSs am the main products of the
the translation of functional requirements to object require- methodology, but others, such as complete objt diagrams, a
mtis. Master Requirements list, and a Master Objects List can be

If, for some reason, object requirements have been gen- generated. Each RTS documents one functional or perfor-
csted which arm not traceable to a functional requirement, mance requirement and its translation to objects, operations,
the methodology must provide the capability to identify them and access links. Each ORS documents a single object, Its
as un ecssary. This capability becomes more important operatlons access links, and the functional and performance
when the design must change in response to changes in the requirements to which each is traceabk.
system requirements. An RTS consists of a header, a body, and an optional

In their final report for the Ada Simulator Validation object diagiim. A compkted RTS is shown in Figuem 1. The
Program(20, Burtek, Inc. points out the complex relation- header contains a title for the requirement, an alpla-numcric
ships which can exists between functional requirements and identification, the requirement type (either functional or per.
objects in an objct-oriented design. They go on to suggest formance), a description which could just be the actual text
that "Manual methods of tracking requirements arc of the requirement, and the status of .he requirement. The ID
Insufficient for handling the large number of requirements number is a unique identifier for the requirement, either taken
and objects needed for'a simulator." Since we would also directly from a specification paragraph number or the
like a method which can scale up for use on large software numbering of nodes in a data flow diagram. The ID number
projects2, we should heed this advice and identify a metho- should also indicate the requirement's source document
dololy which can be automated. The methodology presented (specification, change proposal, correspondence). The status
in this paper is being applied manually to prov its concept, of a requirement should be utranslased, ranslared, or com-
but in the future it will be supported by an automated tool. bined. The meaning of these will become apparent as the

FRT process is explained. The body of the RTS contains
one entry for each object needed to satisfy the requirement,

S. FUNCTIONAL REQUIREMENTS TRANSLATION and each object entry contains definitions for the specific
operations which ame needed, and a list of other objects

The methodology we are proposing is Functional Require- which must be accessed. Each RTS can also contain an

ments Translation (FRT). It provides a flexible approach for object diagram, which is a graphic representation of the

maintaining requirements raccability while an object.oriented object entries. Only the objects, operations, and access links
deign is being developed from functional specifications. FRT necessary to satisfy the requirement should appear on it.
will be presented here as a manual method which meets three Except for some minor differences,3 the object diagrams in
of the requirements listed previously. The fourth require- this paper follow the conventions established by the Goddard
ment, that the methodology be automated, will be met by Space Flight Center, Software Engineering Laboratory[181.
developing a tool to provide the necessary record keeping
and reports. When using FRT, a requirements analyst, with
knowledge about the problem space and the object require-
ments already defined, can translate each individual func-
tional requirement into a set of objects, operations, and
access links which will satisfy it. The object r.quirements
are coxbined incrementally to produce the set of objects
needed to satisfy all system requirements. In the process, tra-
ceability to the functional requirements is maintained for each
individual object, operation, and access link.

__ _SEL uses the term Provd s instead of Operations, and
Flight simulators ar typicallk 100,00 to 500,000 lines Uses instead of Access. SEL Uses entries also list the

of cod specific operations used, not just the object.

7th Annual National Conference on Ada Technology 1989 591

REQUIREMENT TRANSLATION SHEET A completed ORS Is shown in Figure 2. It consists of aheader, a body, and an optional object diagram. The ORS

HEADER header contains the object name, type (ASM or ADT), level,
and state description. These have all been described already,

ITLE Cliet Inofmatim on Repon s with the exception of object levels, which will be explained
ID NUMBER: sp.3.2.2 later. The ORS body contains one entry for each operation or
ryrE ructilei access link the object possesses, and each entry contains the
DESCRIPTION: The clie 's nme and addrs mus sa"ar identification number of the functional and perfornance

8t lek optf lpon. requirements to which the entry item (operation or access
ST"ATUS: Tranied link) can be traced. Operation entries must define theoperation's parameters and returned values, and access link

BODY entries must name the accessed object. :ntrics which
represent derived opemtions or access link requirements

OWECT: Getne uouil.Rtclou should reference the objects which use them. ORSs can also
ACCESS LINK: Client contain an object diagram which represents the object, its
ACCESS LINK: eA me operations, and any access links to other objects.
ACCESS LINK: Addres

OBJECT: GcftMinLcd8c..Rcport
ACCESS LINK: Client
ACCESS LINK: Pwton.Nam
ACCESS LINK: Adre

OiECr: Clkm
OPERATION: N=me(O.rCIknt : Me >t) Cli tLNum: Pcron.Namc.
OPERATION: AdmcOr..Ctkat : Client) a> ClIcAdt.-,ks : Address.
ACCESS LINK: Pc rmoNae
ACCESS LINK: Address oBjEct REQUIQEMENT SHEET

OBJECT: Pcnmo.Nwan HEADER
OPERATION: PrinLon.RcpoCTh.Namz: Pnas.$Nm-Ne).

OBJECT: Address NAME: Client
OPERATION: PrLon.Rcv cTmN3asnc: Pirson.Name). TYPE. ADT

LEVEL: unknown
STATE DESCRITION: Client Is Sn abtUt data typ which manUics

OBJEC DIAGRAM clicnt I (omdon. It coftuans 1k cWK's name, adkess.
nad fscai)tr smuciue.

BODY

OMERATION: Nonc(O(..Client : Client) w>. C~icLNamc: Imnon-.Namc.
FUNCTIONAL' spoc3.2.2

OPERATION: AddEFcsg .t(Thcnt : Client) a> CIien.AddMes Adrm
FUNCTIONAL: spcc3.2.2

OPERATION: CstablishsclYfMrCMCIent : Client).
FUNCIONAL: spoc.3.1.4. corr.12.3

ACCESS LINK: Pewon-Natne
FUNCTIONAL: spec3.2.2

ACCESS LINK: Addtess
FUNCTIONAL: spo3.2.2

'--on.NmAm ACCESS LINK: FisclYea
FUNCTIONAL. ,oc3.1.4

€)er~on.: Ojr-iww ACCESS LINK: CakndarjonthhW-.XP.d hira.m_.R" FUNCTIONAL spec.31.4
PERFORMANCE. spc..2

Figure 1. Completed RTS

592 7th Annual National Conference on Ada Technology 1989

OBJECT DIAGRAM Them amt six steps in the FRT process:

1. Classify Requirements
ca"A 2. Identify Preliminazy Objects

3. Translate Functional Requirements
4. Combine Object Requirements

or-io-S. Identify Derived Requirements
6. Establish Traceability to performance Requirements

They ame not necessarily sequential, as can be seen on the
data-flow diagram In Figure 3.

Figure 2. Compleled ORS

Analysis 6

System..fp~f
Req. IRq

Req. AReq.

Fig u . T FuDinaeeureet rnsionv rod

Funtiha AnulNtoa o fernc n T ecnlg 18 9

5.1. CLASSIFY REQUIREMENTS operations and access relationships can be defined in the
body of the ORS. If a Master Objects Ust is used, the name

The purpose of this step is to organize system requirements and type of each preliminary object should be added to It.
and classify them as fncdon, or prformance. The requlre- Until each object, operation, or access link is assigned tracea-
ments must be classified bcause (unctional and performance bility back to a functional requirement or another objevt, it is
requir.enmts ae translated differently. during separate steps considered wwucsary. Any preliminary objects which arm
of the FRT process. During the Classify Requirements step, stll unnecessary after translation of all functional require.
an RTS is created for each system requirement and the ments and Identification of all derived objects should be
requinement ID number srucnre Is csutblished. Ii may Also examined as candidates for dekti.
be desirable to break a large system into subsystems if simple
Interfaces exist. If this Ns done, the requirements should be
divided accordingly and FRT should be applied separately to 5.3. TRANSLATE FUNCTIONAL REQUIREMENTS
each subsystem. No differentiation is made between hardware
and so(tware requirements during the FRT process; this is left An analyst translates a functional requirement into object
as a design task. requirements by identifying a set of objccts, operations, and

A Requirements "ransladon Sheet is generated for each access links which will satisfy It. If possible, these objects
requirement, but only the following header information is should be taken from the basic set of objects already csa-
filled in: blished on ORS. An existing object may not have the exact

operation needed or an access link to a certin object, but
Tide klentifying these during translation will ensure they become

pan of the object requirement in the futum An example
ID Number requirement for an accounting system is shown below, alog
Type (Functional or P ance) with the objects, operations, and access rights to which it
DescriptionfText might translate.
Status

REQUIREMENT

The body of the RTS will be filled out when the requirement
is translated into object requirements. For easy reference, The system shall allow the user to establish a different fiscal
RTSs should be filed by their ID numbers. It may also be year starting month for each client.
useful to keep a Master Requirements List showing the ID
number, title, type, and statu% of each. Every requirement
should begin with a status of juntranslat~d.

5.2. IDENTIFY PRELIMINARY OBJECTS
TRANSLATION

During this step, informal methods are used to define a star-
Ing set cf objects, operations, and access links. This estab- OBJECT: Accountsm
lishes a top-kvcl stucture for the object requirements and ACCESS LINK: Cliew
anchors representations of problem.space objects which may
not be clearly represented in the functional requirements. OBJECT: Clicn
This step can also provide a common vocabulary for a group OPMATION: L,,. _Af'hl_Ymef.._CIknit:Ccni)
of analysts working on the same translation; identifying a -> Te..Clki:Ckat.
preliminary set of objects may help prevent the creation of ACCESS LINK: F'uca _Yar
multiple objects with different names which rmpresent the ACCESS LINK: CakndA.ow_
same problem-space entity, or multiple ASM objects which
could have been a -ingle ADT object. OBJECr: FiCaLYcar

A number of methods for identifying potential objects OPERATION: Ceae => New.y.sLYear: FWcaLYe=.

have been suggested in the OOD literature. Although Grady OPERATION: Setylt..MNk T heFscalYear: FiscaiYear,
Booch no longer supoorts the Informal Description as a for- FisLMonth: CakndrMonth)
mal design method, this is one place where it could be use- ,,> T FiscYIear : FiscLYcear.
ful. Top-level descriptions of the system would probably be ACCESS LINK: C&.AwdMorwh
good sources of preliminary problem-space objects, and the
names given to items in a data-flow diagram could also b- a OBJECT enduoh
good source.

Each preliminary object is established by filling in at Again, both Grady Booch's Informal Description
least the object name, type (ASM or ADT), and a partial method and the terminology used in a data-flow diagram can
state description on an Object Requirement Sheet. If possible, help identify the needed objects. But, existing objects should
the ORS header can be filled in completely and a set of be checked before generating new ones.

504 7th Annual National Conference on Ada Technology 1969

Required objects ar documented on the Requircmcnt throih other objects and their access links, beck to tht start-
Translation Sheet by making an entry for each In the body. ing object, cannot be directly impkmented in Ada. When a
An object diagram showing thu.. objects can also be added. loop is found, i must be brokn by changnlg at least one
Each RTS enty should contain the &-finition of one object's requirement translation. One possible solution is the addition
operations and a list of Its acces links o othcr objects. of a 'communication' object as shown in Figure 4. If
Aftr all necessary entries have been made, the status of the objcctA and object.B must send messages to each other,
RTS should be chanted to translated. they should not access each other - both should access a

It Is oot necessary to define the operations of the lowest scpr'te message object, and if possible, the object used to
level ojets (the ones which do not access other). In fact, break the loop should represent a probkm space object. The
if their operations were defined, they would require access to methodology pr esnted in this paper is cUhrently manual, so
the objects they pass as paramete or rctumr. This would the recommended method of searching for these loops Is
require every translation to define objects and opertions inspection by the analyst; no formal algorithm Is prcsented.
down to the most basic objects already defined by the implc.
mntation language (Integer, flot, duration for Ads). In the
example above, Cakndar..Month could have defined opcn. ObjcLA
tions such as:

OPERATION: Crtate(Tloh.K:Mo.Nuhjwber)
=> Nw.MowAh:Caltdaronh.

ObjeeLSB
But this would require another object, MonthNumber, which
is accessed by Calendar.Month. To keep tnr.slations simple,
they should contain only those objects which directly relate
to the requirmt. Lower level objects which just support
the translation should be defined later as derived require- ObjetC
menus.

S.4. COMBINE OBJECT REQUIREMENTS

During this step of FRT, the translations on the RTSs arc
combined to form object requirements. Each object require.
mint on an RTS is used to inerate a new Object Require.
ment Sheet er update an existing one, and traceability to the
functional requirement is maintained. This step should occur
whenever a group of completed RTSs is available. This will
make any new objects inmmediately available to the analysts
doing the functional translations. ObjctA

Each object requirement on an RTS must be transferred
to the ORS for that object. If no ORS exists, one must be
cre.aed by filling In the necessary header information. A
separate entry is made in the ORS body for each operation or
access link listed for that object on the RTS. The ID number Objct-B
from the RTS is then aided to each of these entries so that
each operation and access link, can be traced separately back Object.D
to it. If an ORS entry alrwly exists for an operation or
access link, the functional requirement ID number must still
be added. This means one operation or access link can be Object_C
traceable to moe than one functional requirement. After
izansferring the object information from the RTS to the
ORSs, the new objects should be added to the Master Objects Figure 4. Breaking Access Cycles
List (if one is used), and the status of the RTS should be
changed t combined. Object level numbers should be updated periodically

After updating the ORSs for each of the object entries during the process of combining RTSs. The level number of
on the RTS, the analyst should check for access loops. Each any object which is not accessed by any other object is zero.
new access link which was added to the set of objects could The level of any other object is one deeper than the deepest
potentially have completed a loop of access links. A path of level object which accesses it (greater numbers represent
access links passing from an added or updated object, deeper levels). Figure 5 shows the access structure of a group

7th Annual National Conference on Ada Technology 1989 595

of objects and their resulting level numbers. Levl numbers operations arm produced. Finally, additional low-level objects
provide a clear hierarchical structure and can be used to may be needed to support the existing objects. If possible.
define subsets of objects such as "all objects down to level 3" these objects should represent deeper levels of the problcm
or "Object.A and all objects it accesscs down to level . It space, but at some point it may be necessary to define purely
is probably not a good idea to update level numbers after solution space objects such as generic data structures.
each RTS is added, because a change In the way one object A new ORS should be created for each derived object
is accessed may change the level number of many other rquirement (unless it was already created during the
objects. At the very least, however, the level numbers of identification of preliminary objects or combination process).
objects should be calculated after the lam RTS Is combined. All of the header information should be filled in and entries

made In the ORS body for each of the derived object's
operations and access links. The derived requirement entries
re completed by adding the name of the existing objects

which require the existence of the operation or access link.
Lad 0This means derived object requirements are only traceable toother objects; a derived requirement becomes unecesary

whcn It cannot be traced to an existing
necessary object. Each derived object should also be addcd

to the Master Objects List.

S.6. EST/BLISII TRACEABILITY TO
PERFORMANCE REQUIREMENTS

During this step, the requirements analyst dctenrnes the
scope of each performance requirement and updates its RTS
and the associated ORSs. Performance requirements are
translated in much the same way as functional requirements,

Level 3 using the same forms. The objects, operations, and access
0b*1 links subject to the constraints of the performance require-

ment are entered on its RTS, and the performance require-
ment ID number is added to their ORS entries. The perfor-
mance requirement ID numbers in an ORS entry should be
set apart from the functional requirement ID numbers because
they have different effects on the traceability of the object.
For example, traceability to a performance requirement alone
does not mean an operation or access link is necessary. Per-
fon incc requirements do not generate object requirements,
they just constrain their behavior.

Figure S. Level Number Example

6. APPLYING TIE METHODOLOGY

5.5. IDENTIFY DERIVED REQUIREMENTS FRT has the flexibility to support many different approaches
to QOD. We can look at two simple approaches which have

The set of object requirements is not yet complete when all been used, then recommend an approach which combines the
of the system requirements have been translated. Additional strong points of both. The recommended approach is more
objects and operations will have to be added to support the complex, but the added complexity can be handled by using
existing objects; these are derived object requirements. FRT, and it can generate a better object-oriented design.
Derived objects may have to be added for several reasons.
First, the translation may not have produced all of the top One simple form of OD involv s the separation of
level objects necessary to provide a clear hierarchical struc- requirements traceability and design. The system designers
ture for the system.' Second, new operations and access links look over the system requ siments and then begin identifyingmay have to be added to existing objects. It is certainly not objects and perf'orming the design. No requirments tracea-

may aveto b aded t exstig obect. Itis ertanlynot ity information is maintained. The fully developed system
reasonable to expect an analyst to identify all needed opera- it inftione i aint T he ul eele d te
tions during the initial translation. Many of these require- is then tested against the original requirements and the

ments will not be apparent until detailed design of individual designers pray that it meets them. Obviously this is an
__ns__will ndextreme approach and is unacceptable for all but the simplest

7 A good indication of this is the presence of more than pieces of software. However, if a developer chooses to u,:-
one level zero object. it, FRT can be of some help. If the Identify Preliminary

596 7th Annual National Conference on Ada Technology 1989

Objects step Is extended until the entire design is complete, the data on the RTSs and ORSs. These products can have
FRT effectively becomes this approach. Designers who hap. many different uses, bu. they am mainly intended to support
pen to know why they are defining a given object can easily the design phase, identify unsatisfied requirements, and Itcn.
take the time to make some entries on the RTSs and ORSs. tify unnecessary object requiremcents.
Not all objects will be traceablc, and not all requirements FRT only supports the translation of functional require-
will appear .sadsfed, but sonic traceability information is ments to object requirements. The classification of object
better than none. requirements as either hardware or soft ' requirements (or

Another simple OOD method assumes a direct onc-to- both) is left as a design Issue. Also, FRT do s not support
one relationship between functional requirements and opera- Ada implementation decisions. Each ORS can be implc-
tions on objects. Most applications of this approach have mented as an Ada packsge, task, generic, or just a derived
Involved sonic front-cnd requirements analysis using data type. Operations can be procedures, functions, task entries,
Now methods. Function nodes are translated directly to or even declarations. Tracing these Ad constructs back to
operatons, and objects ar Identified to represent data stores their ORS should be straightforward (especially if the same
and data flows and to lime related operations together. This names arm used) and the ORS provides the trceability back
design method provides straightforward requirements tracca- to the original requirements.
bility, but can only produce a desin which models the prob- The most important t:sc for FRT products, from the
lern spoce if all of the problem space objects ar present in developr's point of view, should be traing obj*ct require-
the data flows. Again, FRT can support this approich If a ments back to the functional and performance requirements
software developer chooses to use it. The entire FRT process they must satisfy. This becomes a significant capability dnr-
would be followed, but requirement translations would only ing the desiln phase, allowing the designer to see exactly
consist of a main object, one operation on it, and whatever what an object, or a set of objects, must accomplish.
objects it had to access to perform that single operation.

We recommend an approach to FRT which can provide The generated RTSs can be used to Identify unsatisfied
requirements traceability without sacrificing a good represen, requirements. Any system requirement which has no RTS, or
tation of the problem space. After classifying all of the sys. has an RTS with a status other than comined, is considered
ten require.mnts, they should be reviewed and soni unsatisfied. The translation of the RTS may be complete, but
emphasis should be placed on establishing a good top-level if it has not been combined, the current object structure may
structure of preliminary objects which represent the problem not contain all of the objects, operations, and access links
space. Them is no real danger in generating extra objects; if needed to satisfy it.
they really are unnecessary, FRT will eventually show it. The ORSs can be used to identify unnecessary objects,
Next, requirements should be translated one at a time, or in operations, and access links. These have no valid rason to
small groups, then combined as soon a possible with the appear in the system design, based upon the functional
existing ORSs. Analysts should feel free to identify prelim- requirements which have already been translated. An opera-
inary or derived object requirements at any time during the tion or access link can be considered unnecessary if its ORS
FRT proceS, shows no taccability back to a functional requirement or

A Master Requirements List and Master Objects Ust are another object requirement. Any operation or access link
probably not necessary on relatively small projects where it is which Is only traceable to other unnecessary objects is also
practical to just flip through RTSs and ORSs. If these lists considered unnecessary. Objects are unnecessary only if they
ar used, it must be understood that they are just a summary have no necessary opertions or access links.
of the information on th" main forms. They should be
checked periodically to make sum they am consistent.

Object diagrams should be used if the tools needed to S. HANDLING CHANGING REQUIREMENTS

maintain them are available. They provide a quick view of
the object structure, and are generally easier to analyze than Besides helping verify that a design meets the requirements,
the written object requirements. FRT does not prescribe any FRT can also help analysts and designers deal with changes
formut for a complete system object diagram, but it is obvi- in the requirements. Most DoD system specifications change
ous that it will have to be a hierarchy of separate diagrams. It frequently, so we must be able to update our set of objects in
is important to insure that the object dLigrams match the response to new, deleted, or modified functional or perfor-
information on the ORSs. mance requirements.

If a new requirement is added, it must be subjected to
the entire FRT process. The requirement must be classified

7. USING THE PRODUCTS and documented on an RTS. If it is a performance require-
ment its traceability to existing ORSs must be established. If

The primary products of Functional Requirements Translation the requirement is functional, it must be translated and its
are the Requirement Translation Sheets and the Object translation must be combined with existing ORSs (possibly
Requirement Sheets. Other, optional products are the Master generating new ones). All performance requirements must be
Requirements List, Master Objects List, and the combined re-evaluated to see if the operations and access links gen-
object diagrams, but these are just alternate representations of crated by the new functional requirement are subject to their

7th Annual National Conference on Ada Technology 1989 597

constraints. All RTSs And ORSs musA be updated accord- Is Intended for Use with 0OD and Ada on DOD systems-5
ingly. FRT Is ftexible And relatively simple to use, And It can sup*

V' a55~ systemr iremrint is deleted, its RTS is destroyed Pont most requirements Analysis methods And object
and all references to It on ORS% ame removed. Not tha t Identification methods being used with Ada. It is simple
deletion of a functional requirmenit could cause some objcts because it is baued around only two fortris mid involves no
to becom e AeCsary. complex algorithmns. It allows the requirements anayst to

The most straightforwand way to handle a uoified perform the translation with confidence that all of t system
requiremenmt Is to assume It was deleted completely, then reureet am being addressed.
added under the same ID number. it Is also possible to juast Researchers have addressed many different aspects of
review the existing RTS for the requirement and make an~y applying QOD with Ada, but very few have taken a practical
ncesaty changes to Its translation and effected ORSS. approach to maintaining requirements traceability. In the

future, is possible that FRT, with the support of an
automated tool and sorte enthanicemenits to support the design

9. FUTURE IMPROVEMENTS phase, wilt help bridge this traceability gap.

here Are many ways FRT could be expanded And improved REFERENCES
int the futureM I s currentlY a manual1 method, and could be
very cumbersome for large systems. it also provides ver li. 1. Abbot, RiJ., "Progrm Desgln by informal English
t1e direct support for the design phase. Besides these two Descriptions," C~m,. ACM, Vol 26, No 11, Nov 1913.
major Uaeas ther are many other small Improvements which
could help make FRT more Acceptable to developers of Ada 2. Ballin, S.C., "An Automated Quality Assessor for Ada
system. Objet.OrienWe Designs." Proceedings eofNatlotal

The most Importat future Imiprovemnt in FRT is Its Aerospaice ad Electronics Cor~rence. IEEE, May
Automation. This Will be accomplished by developing a tool 91
for the ctcation And maintenance of the RTSs and ORSs.
Such a system could easily generate Master Requirements 3. Booch, G., "Object Oriented Development," IEEE Trans.
Lists And Master Objects Usts, and could Identify unsaticd Soffhave Eng., Vol SE.12, Feb 1986.
requirements and unnecessary objects. Other features which
could be useful are the automatic combination of completed 4. B~ooh, G., Software Engineering %ith Ada,
RTSs with existing ORSi And Identification of access loops Benjamin/Cummuings. 1933.
In the object structure

FR? could also be expanded to better support ilhe design 5. Boach, 0., Sofmare Engineering %ith Ada, 2nd Ed.,
phase. It should allow the analyst or designer to differentiate BenijaminiCummingns, 1983.
between hardware And software requirements, and it should
record decisions about the Ada constructs which will be used 6. Brown, R.J., "Requirements Analysis for COD," Wright
to implement each object and operation. it would Also beSaeUiestWnek98
Useful to extend the object requirements to include definitions SaeUiestWne 99

Of the exception$ handled And generated by each object.7.BwnR.,"eloigbjcOretdDinsfm
There are many other improvements which could make Fuctiownl R.J,"elirem btentsTwCae tDes,"n Wrgh

FR? more comprehensive and usefuil. For complex systc:1is Sutoa UniverSricngs 1988. tuis, rih

which exist in many configutions, it would be helpful to SaeUiest.srn 98

have some Sort of version numbering facility. Such a system
could also benrefit from a better method of tracking the source 8. Buhr. R.J.A. System Design with Ada, Prenticcellall, 191f4.
of individual requirements (currently this information is con.
tained In the ID number). A more complex improvement, but 9. DoeMarco, T., Structured Analysis and System
one which has been accomplished on othier COD support Specification, Prentice-liall, 1979.
tools[2I, is integration with a drawing tool which can be
modified to support OOD And provide parsable output to 1o. Faitley, R.E., Software Engineering Concepts, McGraw.
FRT. Hill. 1985.

10. CONCLUSIONS 11. General Electric Company, Software Engineering Hland-
book, McGraw-Hill, 1986.

We have introduced Functional Requirements Tranislation, a 12. Jackson, M.l., "Developing Ada Programs Using the
methodology for translating functional requirements to objectVinaDvlpetMho(DMSfw.rat
requirements while maintaining requirements traceability. It Via e epe nt ar ho 1985.Sotw r

506 7th Annual National Conference on Ada Technology 1M8

13. Jacksion, M., Sysienm Dci'dopmnt, Plrenticc-ifill, 1983.

14. Kachew, T. and D. Patterson, "A Small Taste of
Smaflta&k," SITE, Aug 1988.

15. Ladden, R.M., "A Survey of Issues to be Considered In

16. oolg fo Ad," Sq~.FoNotesJul 980.

1.Moslemo, M., and F.S.R. Germano% "JSD as in Objct
Oriented Design Method," S*tfw. Eng. Notes, Jul 1988.

17. Pascoe, G.A., "Elements of Ljecci.Oricntod Program-
ming," BYTrE. Aug 1988. RUSSEL14 J. BROWN

i8. Scidewitz, EV. and M. Stak, General Object.Oriented Russ Browni is a software systems engineer with the MR
Deveopmnt.Applications Group at GE Medical Systenms, Waukesha, Wt.

unpublished NASA GSFC report, NASA-TM489375, From 198.5 to 1988, Mr. Brown was an officer in the US.
Aug 1986. Air P04cc working for tht Trainint Systems Systems Prw.

gram Office at Wright.Patteron A Ii, Dayton, Oi1. lie has
19. Seldewitz, EV. and M. Stak, "Towards a Cooca a H.S.E from the University of Wisconsin - Madison, and

Ot~3ct.Orienttd Software Development Nicthodology", an M.S. In Computer Science from Wright State University
Ada Utsters, Vol 7, No 4. Jul-Aug 1987. in Dayton.

20. Thomson.Buec, Inc., Ada Simulation Validation Pro.
gramt Final Report. with appendices, 1998.

21. Yourdon, E., and LL Constantine, Structured Design:
Fundamental: of a Discipline of Computer Program and
System Design, Prentice.IialI, 1979.

22. Ada Simulator Validation Program, Lesons Learned
Seminar, Mar 1. 1988.

VFRLYNDA DOBBS

Vcrlynda Dobbs received her Ph.D. in computer science fromt
Thei Ohio State University in 19815. 11cr rescarh interests
are in thc arceas of softwuarecngineering, artificial Intclligenct.
and Ada for artificial intelligence. Dr. Dobbs Is currently on
tte faculty or the Deparment of computer Scitne anti
Engineering at Wright State University, Day=o, Ohio 45435.

7th Annual National Conference on Ada Technology 1989 599

AUTHORS INDEX

Name Pawv Name Page

Agrawa l.J. C 295 Guindi, D.S 463
Amoroso, E 266 Gunderson, E. P 44
Angel, M 122 Hager. J.A 475
Aragon. R.W.................................. 537 Harrison, G. C 404
Arden, W 114 HartmanS 218
ArIco, F 443 HayR.W 245
Bagley, D 251 Healer, G 383
Bailey, S.A 13 Hetzron, J 557
Barkatkl, S 362 Jazaa, A. T 469
Barley, S 557 JohnsonM 224
PAzzi, N 519 Jones, A.M 456
IBeazder, M 139, 154 Jones, D.W 528
Slau Liu, D 576 Juozills, P 122
Bostic, G. E., 1 44 Kelly, J 362
Bozeman, R 456 Kolofshe, B 342
Brashear, P 522 Lalrd, J. D 13
Brereton, 0. P 469 Land, 251
Brown, R 589 Latour, L 434
BuChman, C. D 549 Leach,R.J 109.270
Burgerme'ster, L 494 Lee,A.J 130
Byrnes, C 511 Lee, P.N 278
Carlson, G 209 Lelkowltz, S 139
Carruthers, C. L 584 Levitz, M 557
Carter. B. J., Jr. 584 Iftus, W. P 326
Carter, J. R348 Mackey, S.R 9
CasadoB 519 Macre, W. R 132
Caverly, P 87 Margono, J 239
Ch.an, K. V 193 Marhoo, C 87
Chen, T. L 411 Mayes. L 537
Chung, A. C 257 McCracken, W. M 463
Clarson, D 67 McCu!lough, S. J 93
Coe, D 25 Minder, K 213
Cogan, K J 87 Moinlan, F 313
Coleman, 0 109 Mollard, L. D 494
Cook, P. P7 Montgomery. D. G 262
Cupak, J. J., Jr 483 Moore, F. L 316
Dale, T 30 Mull, A.J 172
Davanzo,P 557 MuralldharanS 188
Dobbs, V.S 37,589 Najjar, M. M 197
Doberkat, E..E 39 Nguyen, T. D 266
Doi, D. K 132 Oel, C. L 326
Ellison, K. S 51 Peavy, C 58
Elrad, T 197 Petersen, C.G 288
Fedchak, E 368 Plrchner, R 67
Ferguson, W. D 584 Pottlinger, D 356
Fitzgibbon, J 58 Preston, D 368
Fong,T 284 Purdy, D. P 303
Fortin, P 316 Quinones, R 342
Foy, R. A 326 Rlchman, M. S 288
Frush, J. A 226 Rivera, I :
Fuhr, D.C 288 Robinson, K '4
Gallagher, E. J., Jr 368 Rodericks, D 342
Gargaro, A 443 Rudolph, R. S 307
George, K. M 567 Rugaber, S 463
Ginsberg, M 67 Schacht, E. N 78
Goel, A 145 Scholtz, J 182
Gopal, R 230 Schwartz, M I 245
Goulet, W .J 51 Serkin, M.B 100
Graham, N 170 Shah, S. N 162
Grasso, J. M 494 Shastry, S 128
Greene, H 139 Srnithm ler, L., Jr 168
Grlest, T. E 154 Sobklw, W 411
Grosberg, L 25 Sodhi, J 321,567
Gullfoyle, R 67 Solderitsch, J 419

600

N~ ~Pagif Name Pago

Staples,K.A.,Jr 584 Von Gerlchton........................... 67
Tamboll, A 278 Walker. J. E 239
Tamburro,H 251 Wallnau, K. C............. 419
Tarrlen, 0 537 Washington. R 224
Thalhamer. J.A 326.419 Wheetor.T.................. 333
Thompson, G. R........................... 186 Wiedonback,S........................... 182
Trost, J................................. 537 Williams, 11.............................. 522
Tsung~ivang, W.......................... 193 Wilson, F 522
Tupper, K 557 Wise, C-. 564
Vaughn,D.A............................. 44 Zlegler 494
Veg&,M 251

601

